首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Overexpression of epidermal growth factor receptor (EGFR) has been associated with cancer. Targeted inhibition of the EGFR pathway has been shown to limit proliferation of cancerous cells. Hence, we employed Traditional Chinese Medicine Database (TCM nawiaT@esabataD) (http://tcm.cmu.edu.tw) to identify potential EGFR inhibitor. Multiple Linear Regression (MLR), Support Vector Machine (SVM), Comparative Molecular Field Analysis (CoMFA), and Comparative Molecular Similarities Indices Analysis (CoMSIA) models were generated using a training set of EGFR ligands of known inhibitory activities. The top four TCM candidates based on DockScore were 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid, and all had higher binding affinities than the control Iressa®. The TCM candidates had interactions with Asp855, Lys716, and Lys728, all which are residues of the protein kinase binding site. Validated MLR (r2 = 0.7858) and SVM (r2 = 0.8754) models predicted good bioactivity for the TCM candidates. In addition, the TCM candidates contoured well to the 3D-Quantitative Structure-Activity Relationship (3D-QSAR) map derived from the CoMFA (q2 = 0.721, r2 = 0.986) and CoMSIA (q2 = 0.662, r2 = 0.988) models. The steric field, hydrophobic field, and H-bond of the 3D-QSAR map were well matched by each TCM candidate. Molecular docking indicated that all TCM candidates formed H-bonds within the EGFR protein kinase domain. Based on the different structures, H-bonds were formed at either Asp855 or Lys716/Lys728. The compounds remained stable throughout molecular dynamics (MD) simulation. Based on the results of this study, 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid are suggested to be potential EGFR inhibitors.  相似文献   

2.
Human epidermal growth factor receptor type 2 (HER2) overexpression, which has been reported to increase the malignancy of human ovarian cancer cells and the metastatic potential of human breast cancer cells, is an important factor in tumour formation and tumour growth. However, currently available HER2 inhibitors, such as Lapatinib, for cancer therapy cause adverse side effects including diarrhoea, rash and possible liver toxicity. We hoped to find novel agents that cause less adverse side effects by performing virtual screening process on the world's largest traditional Chinese medicine compound database. The results thus obtained were then validated using 3D quantitative structure–activity relationship model. Top three candidates were selected from the docking results. The top three candidates and the control both formed a hydrogen bond with the key residue, Lys724. This showed that the candidates and the control have similar binding effects to HER2. These candidates were investigated using comparative molecular field analysis and comparative molecular similarity indices analysis models. The results from these models showed high correlation coefficients (r 2) of 0.9547 and 0.9226, respectively. All top three candidates had high docking scores, favourable pharmacophores and functional groups forming stable hydrogen bonds with HER2. These properties suggested stable binding affinities and favourable interaction with HER2. We concluded that these candidates may be further investigated as potential HER2 inhibitors.  相似文献   

3.
4.
A model for the interaction of 31 amino acid fragment (protein) from DNA binding domain of human estrogen receptor (hER) with a five base pair DNA sequence 5'GGTCA 3' from estrogen regulatory element (ERE) has been obtained using a step-wise procedure based on structural data on model peptides, DNA binding domain of hER, steric constrains imposed by tetrahedral coordination of the Cys sulphurs with zinc ion and classical secondary structural elements. Structure of the protein as well as its complex with DNA is obtained by energy minimization followed by refinement by molecular mechanics. The complex is stabilized by H-bonds between Lys22, Lys26 and Arg27 with DNA bases G2, T3 and T6. Lys22 also made H-bond with the backbone of G2. The backbone of Cys18 H-bonded with N7 of G1. DNA was in distorted B form and showed evidence of protein-induced conformational changes.  相似文献   

5.
Upregulated phosphodiesterase 4D (PDE4D) disrupts the regulation of calcium ion channel in the central nerve system, and hence it is considered as one of the causes of Alzheimer's disease. We employed structure-based drug design techniques and the world's largest traditional Chinese medicine (TCM) database for identifying potential TCM-based PDE4D inhibitors. We then applied multiple linear regression (MLR) and support vector machine (SVM) for quantitative structure–activity relationship model, as well as for molecular dynamics simulation analysis. Screening results suggested that metal cations, Zn2+ and Mg2+, played key roles in mediating stable protein–ligand interactions with the ligand-binding residues, Asp367 and Asp484. In addition, each ligand was shown to interfere with the active residue His326 that suggested inhibitory effects. The MLR and SVM prediction models further implied the PDE4D inhibitory effect of each TCM compound. The molecular simulation further suggested the binding stability of each compound in the PDE4D binding site. We identified three TCM compounds, such as mumefural, 2-O-feruloyl tartaric acid and kainic acid, as potential PDE4D inhibitors. In addition, we further identified the key interaction features associated with the protein–ligand-binding stabilities.  相似文献   

6.
Computational studies on the interaction of novel inhibitor compounds with the Cathepsin K protease have been performed to study the inhibition properties of the inhibitor compounds. The quantum chemical calculations have been performed to analyze the molecular geometries, structural stability, reactivity, nature of interaction, and the charge transfer properties using B3LYP level of theory by implementing 6-311g(d,p) basis set. The calculated C–S and N–H…N bond lengths of the inhibitor-triad complexes are found to agree well with the previous literature results. The chemical reactivity of the inhibitors and catalytic triad are analyzed through frontier molecular orbital analysis and found that the inhibitors are subjected to nucleophilic attack by the catalytic triad. The nature of inhibition of the inhibitor compounds is examined using the quantum theory of Atoms in Molecules analysis and found to be partially covalent. The NBO stabilization energy for the Cys – inhibitor are found to be most stable than the other interactions. The molecular dynamic simulations were performed to study the influence of dynamic of the active site on the QM results. The many body decomposition interaction energy calculated for the final results of MD simulation reveals that the dynamic of the active site induces significant changes in the interaction energy and occupancy of H-bonds plays a major role in the stabilizing the active site inhibitor interactions. The present study reveals that the inhibitor compounds can inhibit the proteolytic activity of the proteases on binding with the catalytic active site.  相似文献   

7.
KY Chen  SS Chang  CY Chen 《PloS one》2012,7(9):e43932
Pancreatic triacylglycerol lipase (PNLIP) are primary lipases that are critical for triacylglyceride digestion in human. Since reduced metabolism of triacylglyceride might be a plausible concept for weight loss, we screened for potential PNLIP inhibitors from traditional Chinese medicine (TCM) with the aim to identify weight loss candidate compounds. TCM candidates Aurantiamide, Cnidiadin, and 2-hexadecenoic acid exhibited higher Dock Scores than the commercial drug Orlistat, and were also predicted to have inhibitory characteristics against PNLIP using constructed MLR (R2 = 0.8664) and SVM (R2 = 0.9030) models. Molecular dynamics indicated that the TCM-PNLIP complexes formed were stable. We identified that the PNLIP binding site has several residues that can serve as anchors, and a hydrophobic corridor that provides additional stability to the complex. Aurantiamide, Cnidiadin, and 2-hexadecenoic acid all have features that correspond to these binding site features, indicating their potential as candidates for PNLIP inhibitors. The information presented in this study may provide helpful insights to designing novel weight-control drugs.  相似文献   

8.
Plasmodium falciparum triosephosphate isomerase (PfTIM) is known to be functional only as a homodimer. Although many studies have shown that the interface Cys13 plays a major role in the stability of the dimer, a few reports have demonstrated that structurally conserved Tyr74 may be essential for the stability of PfTIM dimer. To understand the role of Tyr74, we have performed molecular dynamics (MD) simulations of monomeric and dimeric PfTIM mutated to glycine and cysteine at position 74. Simulations of the monomer revealed that mutant Tyr74Gly does not produce changes in folding and stability of the monomer. Interestingly, comparison of the flexibility of Tyr74 in the monomer and dimer revealed that this residue possesses an intrinsic restricted mobility, indicating that Tyr74 is an anchor residue required for homodimerization. Tyr74 also appears to play an important role in binding by facilitating the disorder-to-order transitions of loops 1 and 3, which allows Cys13 to form favorable interactions with loop 3 and Lys12 to be locked in a favorable position for catalysis. High-temperature MD simulations of the wild-type and Tyr74Gly PfTIM dimers showed that the aromatic moiety of Tyr74 is necessary to preserve the geometry and native contacts between loops 1 and 3 at the interface of the dimer. Disulfide cross-linking between mutant Tyr74Cys and Cys13 further revealed that Tyr74 stabilizes the geometry of loop 1 (which contains the catalytic residue Lys12) and the interactions between loops 1 and 3 via aromatic-aromatic interactions with residues Phe69, Tyr101, and Phe102. Principal component analysis showed that Tyr74 is also necessary to preserve the collective motions in the dimer that contribute to the catalytic efficiency of PfTIM dimer. We conclude that Tyr74 not only plays a role in the stability of the dimer, but also participates in the dimerization process and collective motions via coupled disorder-to-order transitions of intrinsically disordered regions, necessary for efficiency in the catalytic function of PfTIM.  相似文献   

9.
The polyphemusins present in the hemocytes of the horsechoe crab and their structurally modified analogs have been shown to exhibit activity against HIV-1. Among the many variants, T22 ([Tyr(5,12), Lys(7)]-polyphemusin II), and its shorter and more potent analog, T140 [Arg(1)-Arg-2-Nal-Cys-Tyr(5)-Arg-Lys-D-Lys-Pro-Tyr(10)-Arg-Cit-Cys-Arg(14)] (Polyphemusin II-derived peptide), affect the HIV-cell fusion process and inhibit the T-cell line-tropic (T-tropic) HIV-1 infection. Conformational studies of polyphemusin II derived peptide have been carried out by (1)H and (13)C 2D-NMR and MD simulations in water and HFA (40%). The NMR parameters of chemical shift, temperature coefficients of the NH chemical shifts, (3)JNHalpha coupling constants and the pattern of nOe's were used to deduce the structural characteristics. Solution structures were generated using dihedral and distance restraints by MD simulations. The structures are characterized by a dominant family possessing an anti-parallel beta-pleated sheet that is constrained by the disulphide bridge between Cys4 and Cys13. The two strands of the beta-sheet are joined by a Type II' beta-turn spanning the residues Lys(7)-D-Lys(8)-Pro(9)-Tyr(10). This conformation is present in both water and HFA. The only difference in the two structures is that the beta-strands are more cohesive in HFA being firmly held by H-bonds. The solution structures generated from MD simulations were refined by MARDIGRAS to R-factors of 0.44 and 0.57 in water and HFA respectively. The conformation deduced for T140 is very similar to that reported for T22 and is thought to be associated with their anti HIV activity.  相似文献   

10.

Background

Human epidermal growth factor receptor 2 (HER2) has an important role in cancer aggressiveness and poor prognosis. HER2 has been used as a drug target for cancers. In particular, to effectively treat HER2-positive cancer, small molecule inhibitors were developed to target HER2 kinase. Knowing that curcumin has been used as food to inhibit cancer activity, this study evaluated the efficacy of natural curcumins and curcumin analogs as HER2 inhibitors using in vitro and in silico studies. The curcumin analogs considered in this study composed of 4 groups classified by their core structure, β-diketone, monoketone, pyrazole, and isoxazole.

Results

In the present study, both computational and experimental studies were performed. The specificity of curcumin analogs selected from the docked results was examined against human breast cancer cell lines. The screened curcumin compounds were then subjected to molecular dynamics simulation study. By modifying curcumin analogs, we found that protein-ligand affinity increases. The benzene ring with a hydroxyl group could enhance affinity by forming hydrophobic interactions and the hydrogen bond with the hydrophobic pocket. Hydroxyl, carbonyl or methoxy group also formed hydrogen bonds with residues in the adenine pocket and sugar pocket of HER2-TK. These modifications could suggest the new drug design for potentially effective HER2-TK inhibitors. Two outstanding compounds, bisdemethylcurcumin (AS-KTC006) and 3,5-bis((E)-3,4-dimethoxystyryl)isoxazole (AS-KTC021 ),were well oriented in the binding pocket almost in the simulation time, 30 ns. This evidence confirmed the results of cell-based assays and the docking studies. They possessed more distinguished interactions than known HER2-TK inhibitors, considering them as a promising drug in the near future.

Conclusions

The series of curcumin compounds were screened using a computational molecular docking and followed by human breast cancer cell lines assay. Both AS-KTC006 and AS-KTC021 could inhibit breast cancer cell lines though inhibiting of HER2-TK. The intermolecular interactions were confirmed by molecular dynamics simulation studies. This information would explore more understanding of curcuminoid structures and HER2-TK.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-261) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.
Hydrogen bonding and polar interactions play a key role in identification of protein-inhibitor binding specificity. Quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) simulations combined with DFT and semi-empirical Hamiltonian (AM1d, RM1, PM3, and PM6) methods were performed to study the hydrogen bonding and polar interactions of two inhibitors BEN and BEN1 with trypsin. The results show that the accuracy of treating the hydrogen bonding and polar interactions using QM/MM MD simulation of PM6 can reach the one obtained by the DFT QM/MM MD simulation. Quantum mechanics/molecular mechanics generalized Born surface area (QM/MM-GBSA) method was applied to calculate binding affinities of inhibitors to trypsin and the results suggest that the accuracy of binding affinity prediction can be significantly affected by the accurate treatment of the hydrogen bonding and polar interactions. In addition, the calculated results also reveal the binding specificity of trypsin: (1) the amidinium groups of two inhibitors generate favorable salt bridge interaction with Asp189 and form hydrogen bonding interactions with Ser190 and Gly214, (2) the phenyl of inhibitors can produce favorable van der Waals interactions with the residues His58, Cys191, Gln192, Trp211, Gly212, and Cys215. This systematic and comparative study can provide guidance for the choice of QM/MM MD methods and the designs of new potent inhibitors targeting trypsin.  相似文献   

13.
Silent information regulator 1 (Sirt1), a class III nicotinamide adenine dinucleotide dependent histone deacetylases, is important in cardioprotection, neuroprotection, metabolic disease, calorie restriction, and diseases associated with aging. Traditional Chinese Medicine (TCM) compounds from TCM Database@Taiwan (http://tcm.cmu.edu.tw/) were employed for screening potent Sirt1 agonists, and molecular dynamics (MD) simulation was implemented to simulate ligand optimum docking poses and protein structure under dynamic conditions. TCM compounds such as (S)-tryptophan-betaxanthin, 5-O-feruloylquinic acid, and RosA exhibited good binding affinity across different computational methods, and their drug-like potential were validated by MD simulation. Docking poses indicate that the carboxylic group of the three candidates generated H-bonds with residues in the protein chain from Ser441 to Lys444 and formed H-bond, π–cation interactions, or hydrophobic contacts with Phe297 and key active residue, His363. During MD, stable π–cation interactions with residues Phe273 or Arg274 were formed by (S)-tryptophan-betaxanthin and RosA. All candidates were anchored to His363 by stable π- or H-bonds. Hence, we propose (S)-tryptophan-betaxanthin, 5-O-feruloylquinic acid, and RosA as potential lead compounds that can be further tested in drug development process for diseases associated with aging

An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:28  相似文献   

14.
Three different types of biotinylated endothelin 1 (ET-1) derivatives, [Cys1]-biotinylated ET-1, [Lys9]-biotinylated ET-1, and [Cys1][Lys9]-dibiotinylated ET-1, were obtained when the biotinylation reaction was carried out with sulfosuccinimidyl-6-(biotinamido)hexanoate in an aqueous solvent. The binding of [Lys9]-biotinylated ET-1 to the ET receptor was as efficient as that of natural ET-1, whereas the binding of either [Cys1]-biotinylated ET-1 or [Cys1][Lys9]-dibiotinylated ET-1 was significantly reduced. When ET-1 was reacted with succinimidyl-6-(biotinamido)hexanoate in an organic solvent, ET-1 was exclusively modified at lysine 9. The ET receptor was then isolated from human placenta by affinity chromatography with [Lys9]-biotinylated ET-1 and avidin-agarose. The purified ET receptor was active in ET binding and was resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis into two polypeptides with apparent molecular masses of 45 and 35 kDa. The NH2-terminal amino acid sequence indicated that the two polypeptides were from an identical subtype of the ET receptor (ETB, the ligand-nonselective type). A signal peptide from Met1 to Gly26 was missing from the 45-kDa ETB, whereas 64 amino acids at the NH2 terminus were missing from the 35-kDa ETB due to proteolytic cleavage which occurred between Arg64 and Ser65. Indeed, incubation of purified ETB with endopeptidase Arg-C resulted in degradation of the 45-kDa ETB, giving rise to the 35-kDa species by a specific cleavage at Arg64. The 35-kDa ETB was active in binding to ET-1, indicating that the NH2-terminal 64-amino-acid residues are not essential for ligand binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The discovery of clinically relevant inhibitors of retinoic acid receptor-related orphan receptor-gamma-t (RORγt) for autoimmune diseases therapy has proven to be a challenging task. In the present work, to find out the structural features required for the inhibitory activity, we show for the first time a three-dimensional quantitative structure–activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations for a series of novel thiazole/thiophene ketone amides with inhibitory activity at the RORγt receptor. The optimum CoMFA and CoMSIA models, derived from ligand-based superimposition I, exhibit leave-one-out cross-validated correlation coefficient (R2cv) of .859 and .805, respectively. Furthermore, the external predictive abilities of the models were evaluated by a test set, producing the predicted correlation coefficient (R2pred) of .7317 and .7097, respectively. In addition, molecular docking analysis was applied to explore the binding modes between the inhibitors and the receptor. MD simulation and MM/PBSA method were also employed to study the stability and rationality of the derived conformations, and the binding free energies in detail. The QSAR models and the results of molecular docking, MD simulation, binding free energies corroborate well with each other and further provide insights regarding the development of novel RORγt inhibitors with better activity.  相似文献   

16.
Farnesyltransferase (FT) inhibitors can suppress tumor cell proliferation without substantially interfering with normal cell growth, thus holding promise for cancer treatment. A structure-based approach to the design of improved FT inhibitors relies on knowledge of the conformational flexibility of the zinc-containing active site of FT. Although several X-ray structures of FT have been reported, detailed information regarding the active site conformational flexibility of the enzyme is still not available. Molecular dynamics (MD) simulations of FT can offer the requisite information, but have not been applied due to a lack of effective methods for simulating the four-ligand coordination of zinc in proteins. Here, we report in detail the problems that occurred in the conventional MD simulations of the zinc-bound FT and a solution to these problems by employing a simple method that uses cationic dummy atoms to impose orientational requirement for zinc ligands. A successful 1.0 ns (1.0 fs time step) MD simulation of zinc-bound FT suggests that nine conserved residues (Asn127alpha, Gln162alpha, Asn165alpha, Gln195alpha, His248beta, Lys294beta, Leu295beta, Lys353beta, and Ser357beta) in the active site of mammalian FT are relatively mobile. Some of these residues might be involved in the ligand-induced active site conformational rearrangement upon binding and deserve attention in screening and design of improved FT inhibitors for cancer chemotherapy.  相似文献   

17.
Tou WI  Chen CY 《PloS one》2012,7(3):e33728
Src kinase is an attractive target for drug development based on its established relationship with cancer and possible link to hypertension. The suitability of traditional Chinese medicine (TCM) compounds as potential drug ligands for further biological evaluation was investigated using structure-based, ligand-based, and molecular dynamics (MD) analysis. Isopraeroside IV, 9alpha-hydroxyfraxinellone-9-O-beta-D-glucoside (9HFG) and aurantiamide were the top three TCM candidates identified from docking. Hydrogen bonds and hydrophobic interactions were the primary forces governing docking stability. Their stability with Src kinase under a dynamic state was further validated through MD and torsion angle analysis. Complexes formed by TCM candidates have lower total energy estimates than the control Sacaratinib. Four quantitative-structural activity relationship (QSAR) in silico verifications consistently suggested that the TCM candidates have bioactive properties. Docking conformations of 9HFG and aurantiamide in the Src kinase ATP binding site suggest potential inhibitor-like characteristics, including competitive binding at the ATP binding site (Lys295) and stabilization of the catalytic cleft integrity. The TCM candidates have significantly lower ligand internal energies and are estimated to form more stable complexes with Src kinase than Saracatinib. Structure-based and ligand-based analysis support the drug-like potential of 9HFG and aurantiamide and binding mechanisms reveal the tendency of these two candidates to compete for the ATP binding site.  相似文献   

18.
Protein-tyrosine phosphatases (PTPs) are critically involved in regulation of signal transduction processes. Members of this class of enzymes are considered attractive therapeutic targets in several disease states, e.g. diabetes, cancer, and inflammation. However, most reported PTP inhibitors have been phosphorus-containing compounds, tight binding inhibitors, and/or inhibitors that covalently modify the enzymes. We therefore embarked on identifying a general, reversible, competitive PTP inhibitor that could be used as a common scaffold for lead optimization for specific PTPs. We here report the identification of 2-(oxalylamino)-benzoic acid (OBA) as a classical competitive inhibitor of several PTPs. X-ray crystallography of PTP1B complexed with OBA and related non-phosphate low molecular weight derivatives reveals that the binding mode of these molecules to a large extent mimics that of the natural substrate including hydrogen bonding to the PTP signature motif. In addition, binding of OBA to the active site of PTP1B creates a unique arrangement involving Asp(181), Lys(120), and Tyr(46). PTP inhibitors are essential tools in elucidating the biological function of specific PTPs and they may eventually be developed into selective drug candidates. The unique enzyme kinetic features and the low molecular weight of OBA makes it an ideal starting point for further optimization.  相似文献   

19.
Human epidermal growth factor receptor 2 (HER2) has become a well-established target for the treatment of HER2-positive lung cancer. However, a frequently observed in-frame mutation that inserts amino acid quadruplex Tyr776-Val777-Met778-Ala779 at G776 (G776YVMA) in HER2 kinase domain can cause drug resistance and sensitivity, largely limiting the application of reversible tyrosine kinase inhibitors in lung cancer therapy. A systematic investigation of the intermolecular interactions between the HER2YVMA mutant and clinical small-molecule inhibitors would help to establish a complete picture of drug response to HER2 G776YVMA insertion in lung cancer, and to design new tyrosine kinase inhibitors with high potency and selectivity to target the lung cancer-related HER2YVMA mutant. Here, we combined homology modeling, ligand grafting, structure minimization, molecular simulation and binding affinity analysis to profile a number of tyrosine kinase inhibitors against the G776YVMA insertion in HER2. It is found that the insertion is far away from HER2 active pocket and thus cannot contact inhibitor ligand directly. However, the insertion is expected to induce marked allosteric effect on some regions around the pocket, including A-loop and hinges connecting between the N- and C-lobes of HER2 kinase domain, which may exert indirect influence to inhibitor binding. Most investigated inhibitors exhibit weak binding strength to both wild-type and mutant HER2, which can be attributed to steric hindrance that impairs ligand compatibility with HER2 active pocket. However, the cognate inhibitor lapatinib and the non-cognate inhibitor bosutinib were predicted to have low affinity for wild-type HER2 but high affinity for HER2YVMA mutant, which was confirmed by subsequent kinase assay experiments; the inhibitory potencies of bosutinib against wild-type and mutant HER2 were determined to be IC50?>?1000 and =27?nM, respectively, suggesting that the bosutinib might be exploited as a selective inhibitor for mutant over wild-type HER2. Structural examination revealed that formation of additional non-bonded interactions such as hydrogen bonds and hydrophobic contacts with HER2 A-loop region due to G776YVMA insertion is the primary factor to improve bosutinib affinity upon the mutation.  相似文献   

20.
New Delhi metallo-beta-lactamase 1 (NDM-1) has been identified as a potential target for the treatment of multi-drug resistance bacterial infections. We used molecular docking, normal MD, SIE, QM/MM MD simulations, QM/MM GBSA binding free energy, and QM/MM GBSA alanine-scanning mutagenesis techniques to investigate interactions of the NDM-1 with 11 inhibitors (Tigecycline, BAL30072, D-captopril, Penicillin G, Ampicillin, Carbenicillin, Cephalexin, Cefaclor, Nitrocefin, Meropenem, and Imipenem). From our normal MD and QM/MM simulations, the correlation coefficients between the predicted binding free energies and experimental values are .88 and .93, respectively. Then simulations, which combined QM/MM/GBSA and alanine-scanning mutagenesis techniques, were performed and our results show that two residues (Lys211 and His250) have the strongest impact on the binding affinities of the 11 NDM-1/inhibitors. Therefore, our approach theoretically suggests that the two residues (Lys211 and His250) are responsible for the selectivity of NDM-1 associated inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号