首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently reported the cDNA sequences of 11 copepod luciferases from the superfamily Augaptiloidea in the order Calanoida. They were classified into two groups, Metridinidae and Heterorhabdidae/Lucicutiidae families, by phylogenetic analyses. To elucidate the evolutionary processes, we have now further isolated 12 copepod luciferases from Augaptiloidea species (Metridia asymmetrica, Metridia curticauda, Pleuromamma scutullata, Pleuromamma xiphias, Lucicutia ovaliformis and Heterorhabdus tanneri). Codon-based synonymous/nonsynonymous tests of positive selection for 25 identified copepod luciferases suggested that positive Darwinian selection operated in the evolution of Heterorhabdidae luciferases, whereas two types of Metridinidae luciferases had diversified via neutral mechanism. By in silico analysis of the decoded amino acid sequences of 25 copepod luciferases, we inferred two protein sequences as ancestral copepod luciferases. They were expressed in HEK293 cells where they exhibited notable luciferase activity both in intracellular lysates and cultured media, indicating that the luciferase activity was established before evolutionary diversification of these copepod species.  相似文献   

2.
Phrixotrix (railroad worm) luciferases produce bioluminescence in the green and red regions of the spectrum, depending on the location of the lanterns, and are the only luciferases naturally producing red bioluminescence. Comparison of the luciferase sequences showed a set of substitutions that could be involved in bioluminescence colour determination: (a) unique substitutions in the red luciferase replacing otherwise invariant residues; (b) conserved basic residues in the green-yellow emitting luciferases; and (c) an additional R353 residue in red-emitting luciferase (Viviani et al., 1999). To investigate whether these sites have a functional role in bioluminescence colour determination, we performed a site-directed mutagenesis. Natural substitutions in the region 220-344 and residues in the putative luciferin-binding site were also investigated. With the exception of the previously identified substitution of R215 and T226 (Viviani et al., 2002), which display dramatic red-shift effects on the spectrum of green-yellow-emitting luciferases, only a few substitutions had a moderate effect on the spectrum of the green-emitting luciferase. In contrast, no single substitution affected the spectrum of the red-emitting luciferase. The results suggest that the identity of the active site residues is not so critical for determining red bioluminescence in PxRE luciferase. Rather, the conformation assumed during the emitting step could be critical to set up proper interactions with excited oxyluciferin.  相似文献   

3.
Firefly luciferases usually produce bioluminescence in the yellow-green region, with colors in the green and yellow-orange extremes of the spectrum being less common. Several firefly luciferases have already been cloned and sequenced, and site-directed mutagenesis studies have already identified important regions and residues for bioluminescence colors. However the structural determinants and mechanisms of bioluminescence colors turned out to be elusive, mainly when comparing luciferases with a high degree of divergence. Thus comparison of more similar luciferases producing colors in the two extremes of the spectrum could be revealing. The South-American fauna of fireflies remains largely unstudied, with some unique taxa that are not found anywhere else in the world and that produce a wide range of bioluminescence colors. Among them, fireflies of the genus Amydetes are especially interesting because its taxonomical status as an independent subfamily or as a tribe is not yet solved, and because they usually produce a continuous bright blue-shifted bioluminescence. In this work we cloned the cDNA for the luciferase of the Atlantic rain forest Amydetes fanestratus firefly, which is found near Sorocaba municipality (S?o Paulo, Brazil). Despite showing a higher degree of identity with the South-American Cratomorphus, the European Lampyris and the Asiatic Pyrocoelia, phylogenetical analysis of the luciferase sequence support the inclusion of Amydetes as an independent subfamily. Amydetes luciferase displays one of the most blue-shifted emission spectra (λ(max) = 538 nm) among beetle luciferases, with lower pH-sensitivity and higher affinity for ATP when compared to other luciferases, making this luciferase attractive for sensitive ATP and reporter assays.  相似文献   

4.
In vitro bioluminescence components of the dinoflagellates Gonyaulax polyedra, G. tamarensis, Dissodinium lunual, and Pyrocystis noctiluca were studied. The luciferases and luciferins of the four species cross-react in all combinations. All of these species possess high-molecular weight luciferases (200,000-400,000 daltons) with similar pH activity profiles. The active single chains of luciferases from the Gonyaulax species have a MW of 130,000 while those from P. noctiluca and D. lunula have a MW of 60,000. Extractable luciferase activity varies with time of day in the two Gonyaulax species, but not in the other two. A luciferin binding protein (LBP) can easily be extracted from the two Gonyaulax species (MW approximately 120,000 daltons), but none could be detected in extracts of either D. lunula or P. noctiluca. Scintillons are extractable from all four species, but they vary in density and the degree to which activity can be increased by added luciferin. Although the biochemistry of bioluminescence in these dinoflagellates is generally similar, the observations that D. lunula and P. noctiluca apparently lack LBP and have luciferases with low MW single chains require further clarification.  相似文献   

5.
Under physiological conditions firefly luciferase catalyzes the highly efficient emission of yellow-green light from the substrates luciferin, Mg-ATP, and oxygen. In nature, bioluminescence emission by beetle luciferases is observed in colors ranging from green (approximately 530 nm) to red (approximately 635 nm), yet all known luciferases use the same luciferin substrate. In an earlier report [Branchini, B. R., Magyar, R. M., Murtiashaw, M. H., Anderson, S. M., and Zimmer, M. (1998) Biochemistry 37, 15311-15319], we described the effects of mutations at His245 on luciferase activity. In the context of molecular modeling results, we proposed that His245 is located at the luciferase active site. We noted too that the H245 mutants displayed red-shifted bioluminescent emission spectra. We report here the construction and purification of additional His245 mutants, as well as mutants at residues Lys529 and Thr343, all of which are stringently conserved in the beetle luciferase sequences. Analysis of specific activity and steady-state kinetic constants suggested that these residues are involved in luciferase catalysis and the productive binding of substrates. Bioluminescence emission spectroscopy studies indicated that point mutations at His245 and Thr343 produced luciferases that emitted light over the color range from green to red. The results of mutational and biochemical studies with luciferase reported here have enabled us to propose speculative mechanisms for color determination in firefly bioluminescence. An essential role for Thr343, the participation of His245 and Arg218, and the involvement of bound AMP are indicated.  相似文献   

6.
In studying beetle bioluminescence in the early 1960s, Dr McElroy and his colleagues found that the Jamaican click beetle, Pyrophorus plagiophthalamus, was capable of emitting different colours of light. They further found that the luciferin substrate used by this beetle was the same as that in the firefly, demonstrating that the different colours of bioluminescence were due to differences in the structure of the luciferases. We have recently cloned cDNAs from this beetle species which code for at least four different luciferases. The luciferases are distinguishable by their different colours of bioluminescence when expressed in Escherichia coli. The sequence differences between these different luciferases are few, so the amino acids responsible for the different colours of emission must also be few. Through the construction of hybrid luciferases, by rearranging fragments of the original cDNA clones, we have identified some of these amino acid determinants of colour.  相似文献   

7.
The firefly bioluminescence reaction, which uses luciferin, Mg-ATP, and molecular oxygen to yield an electronically excited oxyluciferin, is carried out by luciferase and visible light is emitted. The bioluminescence color of firefly luciferases is determined by the luciferase structure and assay conditions. Among different beetle luciferases, those from Phrixothrix railroad worm emit either yellow or red bioluminescence colors. Sequence alignment analysis shows that the red-emitter luciferase from Phrixothrix hirtus has an additional Arg residue at 353, which is absent in firefly luciferases. We report here the construction and purification of a mutant at residue Arg(356), which is not conserved in beetle luciferases. By insertion of an additional residue (Arg(356)) using site-specific insertion mutagenesis in a green-emitter luciferase (Lampyris turkestanicus) the color of emitted light was changed to red and the optimum temperature of activity was also increased. Insertion of this Arg in an important flexible loop showed changes of the bioluminescence color and the luciferase reaction took place with relatively retention of its basic kinetic properties such as Km and relative activity. Comparison of native and mutant luciferases using homology modeling reveals a significant conformational change of the flexible loop in the red mutant. Movement of flexible loop brought about a new ionic interaction concomitant with a change in polarity of the emitter site, thereby leading to red emission. It is worthwhile to note that the increased optimum temperature and emission of red light might make mutant luciferase a suitable reporter for the study of gene expression and bioluminescence imaging.  相似文献   

8.
9.
The comparison of click beetle and railroadworm luciferases (pH-insensitive) with firefly luciferases (pH-sensitive) showed a set of conserved residues differing between the two groups which could be involved with the bioluminescence spectra pH sensitivity. The substitution C258V in Pyrocoelia miyako (Pml) firefly luciferase and V255C in Ragophthalmus ohbai railroad worm luciferase (Rol) had no effect on the bioluminescence spectra. Substitution of Thr226 in the green-light-emitting luciferases of Rol and Pyrearinus termitilluminans (Pyt) click beetle luciferases resulted in red-shifts (12 to 35 nm), whereas the substitution T226N in the red-light-emitting luciferase of Phrixothrix hirtus (PhRE) railroadworm resulted in a 10 nm blue-shift. In PmL the substitution N230S resulted in a typical red mutant (lambda(max) = 611 nm). The bioluminescence spectrum of all these luciferase mutants did not show altered pH-sensitivity nor considerably changed half-bandwidth in relation to the wild-type luciferases. Altogether present data suggest that Thr226 is an important residue for keeping active-site core in both groups of beetle luciferases. The mechanism for bioluminescence color determination between pH-sensitive and pH-insensitive luciferases could be different.  相似文献   

10.
Firefly luciferases are called pH-sensitive because their bioluminescence spectra display a typical red-shift at acidic pH, higher temperatures, and in the presence of heavy metal cations, whereas other beetle luciferases (click beetles and railroadworms) do not, and for this reason they are called pH-insensitive. Despite many studies on firefly luciferases, the origin of pH-sensitivity is far from being understood. This subject is revised in view of recent results. Some substitutions of amino-acid residues influencing pH-sensitivity in firefly luciferases have been identified. Sequence comparison, site-directed mutagenesis and modeling studies have shown a set of residues differing between pH-sensitive and pH-insensitive luciferases which affect bioluminescence colors. Some substitutions dramatically affecting bioluminescence colors in both groups of luciferases are clustered in the loop between residues 223-235 (Photinus pyralis sequence). A network of hydrogen bonds and salt bridges involving the residues N229-S284-E311-R337 was found to be important for affecting bioluminescence colors. It is suggested that these structural elements may affect the benzothiazolyl side of the luciferin-binding site affecting bioluminescence colors. Experimental evidence suggest that the residual red light emission in pH-sensitive luciferases could be a vestige that may have biological importance in some firefly species. Furthermore, the potential utility of pH-sensitivity for intracellular biosensing applications is considered.  相似文献   

11.
Lei B  Ding Q  Tu SC 《Biochemistry》2004,43(50):15975-15982
The excited state of 4a-hydroxy-4a,5-dihydroFMN has been postulated to be the emitter in the bacterial bioluminescence reaction. However, while the bioluminescence quantum yield of the luciferase emitter is about 0.16, chemiluminescence and fluorescence quantum yields of earlier flavin models mimicking the luciferase emitter were no more than 10(-5). To further examine the proposed chemical identity of the luciferase emitter, 5-decyl-4a-hydroxy-4a,5-dihydroFMN was prepared as a new flavin model. Both the wild-type Vibrio harveyi luciferase and a catalytically active alphaC106A mutant formed complexes with the flavin model at a 1:1 molar ratio with K(d) values at 2.4 and 1.2 microM, respectively. This flavin model inhibited the activity of both luciferases, suggesting that it was bound to the enzyme active center. While the free flavin model was itself only very weakly fluorescent, its binding to either luciferase species resulted in markedly enhanced fluorescence, peaking at 440 nm. The fluorescence quantum yields of 5-decyl-4a-hydroxy-4a,5-dihydroFMN bound to wild-type and alphaC106A luciferases were 0.08 and 0.05, respectively, which are about 50% of the respective emitter bioluminescence quantum yields of these two luciferases. The present findings clearly demonstrated that the luciferase active site was suitable for marked enhancement of fluorescence of 4a-hydroxyflavin and, hence, provides a strong support to the proposed identity of 4a-hydroxy-4a,5-dihydroFMN, in its exited state, as the luciferase emitter.  相似文献   

12.
《Luminescence》2002,17(5):321-330
Modern theory on general and specific effects of microenvironment on emission spectra was used for explanation of spectral differences for both natural and mutant forms of beetle luciferases, as well as for bioluminescence emitter oxyluciferin in model systems. For the analysis, both authors' and other published data were used. It was shown that active site mutations that resulted in spectral shifts of bioluminescence as a rule caused substantial decrease in the catalytic activity of the enzyme. At the same time, mutations in the conservative regions of the protein amino acid sequence that were in the periphery of the protein globe resulted in red shift of the bioluminescence spectra without affecting catalytic activity. Correlation was observed between the value of spectral shift and polarizability of the introduced amino acid residue: the higher the polarizability, the larger was the red shift of bioluminescence. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Bioluminescence is widely used in biosensors. For water toxicity analysis, the naturally bioluminescent bacteria Vibrio fischeri have been used extensively. We investigated the suitability of two new beetle luciferases for Escherichia coli light off biosensors: Macrolampis firefly and Pyrearinus termitilluminans click beetle luciferases. The bioluminescence detection assay using this system is very sensitive, being comparable or superior to V. fischeri. The luciferase of P. termitilluminans produces a strong and sustained bioluminescence that is useful for less sensitive and inexpensive assays that require integration of the emission, whereas Macrolampis luciferase displays a flash-like luminescence that is useful for fast and more sensitive assays. The effect of heavy metals and sanitizing agents was analyzed. Zinc, copper, 1-propanol, and iodide had inhibitory effects on bioluminescence and growth assays; however, in these cases the bioluminescence was not a very reliable indicator of cell growth and metabolic activity because these agents also inhibited the luciferase. On the other hand, mercury and silver strongly affected cell bioluminescence and growth but not the luciferase activity, indicating that bioluminescence was a reliable indicator of cell growth and metabolic activity in this case. Finally, bioluminescent E. coli immobilized in agarose matrix gave a more stable format for environmental assays.  相似文献   

14.
Firefly bioluminescence reaction in the presence of Mg2 +, ATP and molecular oxygen is carried out by luciferase. The luciferase structure alterations or modifications of assay conditions determine the bioluminescence color of firefly luciferase. Among different beetle luciferases, Phrixothrix hirtus railroad worm emits either yellow or red bioluminescence color. Sequence alignment analysis shows that the red-emitter luciferase from Phrixothrix hirtus has an additional arginine residue at 353 that is absent in other firefly luciferases. It was reported that insertion of Arg in an important flexible loop350–359 showed changes in bioluminescence color from green to red and the optimum temperature activity was also increased. To explain the color tuning mechanism of firefly luciferase, the structure of native and a mutant (E354R/356R/H431Y) of Lampyris turkestanicus luciferase is determined at 2.7 Å and 2.2 Å resolutions, respectively. The comparison of structure of both types of Lampyris turkestanicus luciferases reveals that the conformation of this flexible loop is significantly changed by addition of two Arg in this region. Moreover, its surface accessibility is affected considerably and some ionic bonds are made by addition of two positive charge residues. Furthermore, we noticed that the hydrogen bonding pattern of His431 with the flexible loop is changed by replacing this residue with Tyr at this position. Juxtaposition of a flexible loop (residues 351–359) in firefly luciferase and corresponding ionic and hydrogen bonds are essential for color emission.  相似文献   

15.
The recombinant coelenterazine-dependent luciferases (isoforms MLuc164 and MLuc39) from the marine copepod Metridia longa were expressed as inclusion bodies in E. coli cells, dissolved in 6 M guanidinium chloride and folded in conditions developed for proteins containing intramolecular disulfide bonds. One of them (MLuc39) was obtained in an active monomeric form with a high yield. The luciferase bioluminescence is found to be initiated not only by free coelenterazine, but also by Ca(2+)-dependent coelenterazine-binding protein (CBP) of Renilla muelleri on Ca(2+) addition. The use of CBP as a "substrate" provides higher light emission and simultaneously the lower level of background. The high purity MLuc39 can be detected down to attomol with a linear range extending over 5 orders of magnitude. The MLuc39 reveals also a high stability towards heating and chemical modification; the chemically synthesized biotinylated derivatives of the luciferase preserve 35-40 % of the initial activity. The luciferase applicability as an in vitro bioluminescent reporter is demonstrated in model tandem bioluminescent solid-phase microassay combining the Ca(2+)-regulated photoprotein obelin and the Metridia luciferase.  相似文献   

16.
Luminous bacteria contain several species of flavin reductases, which catalyze the reduction of FMN using NADH and/or NADPH as a reductant. The reduced FMN (i.e. FMNH(2)) so generated is utilized along with a long-chain aliphatic aldehyde and molecular oxygen by luciferase as substrates for the bioluminescence reaction. In this report, the general properties of luciferases and reductases from luminous bacteria are briefly summarized. Earlier and more recent studies demonstrating the direct transfer of FMNH(2) from reductases to luciferase are surveyed. Using reductases and luciferases from Vibrio harveyi and Vibrio fischeri, two mechanisms were uncovered for the direct transfer of reduced flavin cofactor and reduced flavin product of reductase to luciferase. A complex of an NADPH-specific reductase (FRP(Vh)) and luciferase from V. harveyi has been detected in vitro and in vivo. Both constituent enzymes in such a complex are catalytically active. The reduction of FRP(Vh)-bound FMN cofactor by NADPH is reversible, allowing the cellular contents of NADP(+) and NADPH as a factor for the regulation of the production of FMNH(2) by FRP(Vh) for luciferase bioluminescence. Other regulations of the activity coupling between reductase and luciferase are also discussed.  相似文献   

17.
All beetle luciferases have evolved from a common ancestor: they all use ATP, O2, and a common luciferin as substrates. The most studied of these luciferases is that derived from the firefly Photinus pyralis, a beetle in the superfamily of Cantharoidea. The sensitivity with which the activity of this enzyme can be assayed has made it useful in the measurement of minute concentrations of ATP. With the cloning of the cDNA coding this luciferase, it has also found wide application in molecular biology as a reporter gene. We have recently cloned other cDNAs that code for luciferases from the bioluminescent click beetle, Pyrophorus plagiophthalamus, in the superfamily Elateroidea. These newly acquired luciferases are of at least four different types, distinguishable by their ability to emit different colours of bioluminescence ranging from green to orange. Unique properties of these luciferases, especially their emission of multiple colours, may make them additionally useful in applications.  相似文献   

18.
Luciferases have proven to be useful tools in advancing our understanding of biologic processes. Having a multitude of bioluminescent reporters with different properties is highly desirable. We characterized codon-optimized thermostable green- and red-emitting luciferase variants from the Italian firefly Luciola italica for mammalian gene expression in culture and in vivo. Using lentivirus vectors to deliver and stably express these luciferases in mammalian cells, we showed that both variants displayed similar levels of activity and protein half-lives as well as similar light emission kinetics and higher stability compared to the North American firefly luciferase. Further, we characterized the red-shifted variant for in vivo bioluminescence imaging. Intramuscular injection of tumor cells stably expressing this variant into nude mice yielded a robust luciferase activity. Light emission peaked at 10 minutes post-d-luciferin injection and retained > 60% of signal at 1 hour. Similarly, luciferase activity from intracranially injected glioma cells expressing the red-shifted variant was readily detected and used as a marker to monitor tumor growth over time. Overall, our characterization of these codon-optimized luciferases lays the groundwork for their further use as bioluminescent reporters in mammalian cells.  相似文献   

19.
Firefly luciferase covers a wide range of applications. One common usage of the bioluminescence assay is the measurement of intracellular concentration of adenosine triphosphate (ATP) for cell viability. However, inhibition of the enzyme reaction by chemicals in the assay has so far limited the application of luciferase for high production volume (HPV) chemical testing. The objective of this research was to obtain a mutant luciferase with increased stability to inhibition by HPV chemicals, yet retaining specific activity comparable to, or better than, wild-type luciferase. The enzymatic properties of the wild-type luciferase were improved by random mutagenesis and colony-level screening. In this paper, the detailed process of creating mutant luciferases for testing the toxicity of HPV chemicals is described. As a result, two mutant luciferases were created, with different degrees of improved tolerance to inhibition by chloroform and other HPV chemicals.  相似文献   

20.
Studies on firefly (Lampyridae) luciferases have focused on nearctic species of Photinus and Photuris and Euroasiatic species of Lampyris, Luciola, Hotaria, and Pyrocoelia. Despite accounting for the greatest diversity of fireflies in the world, no molecular studies have been carried out on the highly diverse genera from the neotropical region. Here we report the luciferase cDNA cloning for the larva of the Brazilian firefly Cratomorphus distinctus. The cDNA has 1978 bp and codes for a 547-residue-long polypeptide. Noteworthy, sequence comparison as well as functional properties show the highest degree of similarity with Lampyris noctiluca (93%) and Pyrocoelia spp. (91%) luciferases, suggesting a close phylogenetic relationship despite the geographical distance separating these species. The bioluminescence emission spectrum peaks at 550 nm and, as expected, is sensitive to pH, shifting to 605 nm at pH 6. The kinetic properties of the recombinant luciferase were similar to those of other firefly luciferases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号