首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to demonstrate the presence or absence of a pyrroloquinoline quinone (PQQ) synthesizing capacity in microorganisms, we have found that media and equipment must be treated to remove contaminating PQQ. Procedures are described which appear to be effective for that purpose. These have been used with Acinetobacter calcoaceticus PQQ- strains to develop a sensitive and reliable assay for PQQ. They also have been used to show that under our conditions of growth Escherichia coli does not synthesize PQQ. Fluorescence spectroscopy is not selective enough to detect PQQ in a protein hydrolysate due to background fluorescence in the same spectral regions as PQQ. In addition, PQQ reacts with amino acids to give products that cannot be detected by either fluorescence spectroscopy or biological assay. In this regard, claims that several materials originating from plants or animals contain PQQ should be reexamined. Moreover, PQQ cannot be detected with these methods in hydrolysates of enzymes containing covalently bound PQQ.  相似文献   

2.
Pyrroloquinoline quinone (PQQ) is a peptide-derived redox cofactor produced by prokaryotes that also plays beneficial roles in organisms from other kingdoms. We review recent developments on the pathway of PQQ biogenesis, focusing on the mechanisms of PqqE, PqqF/G, and PqqB. These advances may shed light on other, uncharacterized biosynthetic pathways.  相似文献   

3.
The presently best known and largest group of quinoproteins consists of enzymes using the cofactor 2,7,9-tricarboxy-1H-pyrrolo[2,3-f]quinoline- 4,5-dione (PQQ), a compound having a pyrrole ring fused to a quinoline ring with an o-quinone group in it. Representatives of this group are found among the bacterial, NAD(P)-independent, periplasmic dehydrogenases. Despite their high midpoint redox potential, the overall behaviour of quinoprotein dehydrogenases is similar to that of their counterparts, those using a flavin cofactor or a nicotinamide coenzyme. Apart from an exceptional Gram-positive one, the sole organisms where the presence of PQQ has really been established are Gram-negative bacteria. Evidence for the occurrence of covalently bound PQQ is lacking since it has now been shown that several enzymes previously considered to contain this prosthetic group do not in fact do so. Another group of quinoproteins, consisting of amine oxidoreductases, has a protein chain containing one of the following quinonoid aromatic amino acids: 6-hydroxy-phenylalanine-3,4-dione (TPQ) or 4-(2'-tryptophyl)-tryptophan-6,7-dione (TTQ). There is no doubt that these o-quinones play a role as cofactor, in the case of TPQ in prokaryotic as well as eukaryotic amine oxidases. It appears, therefore, that a novel class of amino-acid-derived cofactors is emerging, ranging from the free radical form of tyrosine and tryptophan to those containing a dicarbonyl group (like the already known pyryvoyl group and the o-quinones here described.  相似文献   

4.
Factors relevant in bacterial pyrroloquinoline quinone production   总被引:2,自引:0,他引:2  
Quinoprotein content and levels of external pyrroloquinoline quinone (PQQ) were determined for several bacteria under a variety of growth conditions. From these data and those from the literature, a number of factors can be indicated which are relevant for PQQ production. Synthesis of PQQ is only started if synthesis of a quinoprotein occurs, but quinoprotein synthesis does not depend on PQQ synthesis. The presence of quinoprotein substrates is not necessary for quinoprotein and PQQ syntheses. Although the extent of PQQ production was determined by the type of organism and quinoprotein produced, coordination between quinoprotein and PQQ syntheses is loose, since underproduction and overproduction of PQQ with respect to quinoprotein were observed. The results can be interpreted to indicate that quinoprotein synthesis depends on the growth rate whereas PQQ synthesis does not. In that view, the highest PQQ production can be achieved under limiting growth conditions, as was shown indeed by the much higher levels of PQQ produced in fed-batch cultures compared with those produced in batch experiments. The presence of nucleophiles, especially amino acids, in culture media may cause losses of PQQ due to transformation into biologically inactive compounds. Some organisms continued to synthesize PQQ de novo when this cofactor was administered exogenously. Most probably PQQ cannot be taken up by either passive diffusion or active transport mechanisms and is therefore not able to exert feedback regulation on its biosynthesis in these organisms.  相似文献   

5.
Factors relevant in bacterial pyrroloquinoline quinone production.   总被引:1,自引:1,他引:0       下载免费PDF全文
Quinoprotein content and levels of external pyrroloquinoline quinone (PQQ) were determined for several bacteria under a variety of growth conditions. From these data and those from the literature, a number of factors can be indicated which are relevant for PQQ production. Synthesis of PQQ is only started if synthesis of a quinoprotein occurs, but quinoprotein synthesis does not depend on PQQ synthesis. The presence of quinoprotein substrates is not necessary for quinoprotein and PQQ syntheses. Although the extent of PQQ production was determined by the type of organism and quinoprotein produced, coordination between quinoprotein and PQQ syntheses is loose, since underproduction and overproduction of PQQ with respect to quinoprotein were observed. The results can be interpreted to indicate that quinoprotein synthesis depends on the growth rate whereas PQQ synthesis does not. In that view, the highest PQQ production can be achieved under limiting growth conditions, as was shown indeed by the much higher levels of PQQ produced in fed-batch cultures compared with those produced in batch experiments. The presence of nucleophiles, especially amino acids, in culture media may cause losses of PQQ due to transformation into biologically inactive compounds. Some organisms continued to synthesize PQQ de novo when this cofactor was administered exogenously. Most probably PQQ cannot be taken up by either passive diffusion or active transport mechanisms and is therefore not able to exert feedback regulation on its biosynthesis in these organisms.  相似文献   

6.
Diamine oxidase was prepared from pea (Pisum sativum) seedlings by a new purification procedure involving two h.p.l.c. steps. We studied the optical and electrochemical properties of the homogeneous enzyme and also analysed the hydrolysed protein by several methods. The data presented here suggest that the carbonyl cofactor of diamine oxidase is firmly bound pyrroloquinoline quinone.  相似文献   

7.
The hybrid plasmid pBGT3, a derivative of pLA2917 containing a 7.8-kb fragment of Escherichia coli DNA, was found to complement pqqE and pqqF mutants of Methylobacterium organophilum, both impaired in PQQ biosynthesis. The cloned fragment of E. coli DNA did not hybridize with DNA fragments containing pqqE or pqqF previously cloned from M. organophilum. Yet, in M. organophilum mutants, expression of pqqE and pqqF genes from E. coli resulted in a PQQ production estimated at 9-16% of the production observed in M. organophilum wild-type. The growth rate in methanol medium of the complemented M. organophilum mutants was about 60% of that of the wild-type.  相似文献   

8.
Abstract The grwoth of MTMl, a mutant of methylobacterium organophilum) blocked in the use of methanol as a carbon and energy source, was restored by addition of pyrroloquinoline quinone (PQQ) in the culture medium. No PQQ could be detected in crude medium. No PQQ could be of MTMl. Therefore, MTMl can be regarded as a mutant blocked in the biosynthesis of PQQ. Under the conditions of growth employed, growth rates of MTMl on methanol, comparable to those of the wild type, occured at a PQQ concentration of 1 μM. Since lower amounts of methanol dehydrogenase (MDH) wer found in cell-free extracts of PQQ-supplemented MTMl, the wild type strain synthesizes a surplus of MDH under these conditions. Growth of M. organophilum on ethanol proceeds via MDH as a catalyst for the first step, since (NAD(P) -dependent etanol. dehydrogenase was absent in cell-free extracts and growth of MTMl on ethanol only took place in the presence of PQQ. On the hand, growth of MTMl on mthylamine was unimpaired. This is in accordance with the fact that methylamine dehydrogenase was absent and N -methylamine mate dehydrogenase was present in cell-free extracts  相似文献   

9.
10.
Pantoea ananatis accumulates gluconate during aerobic growth in the presence of glucose. Computer analysis of the P. ananatis SC17(0) sequenced genome revealed an ORF encoding a homologue (named gcd) of the mGDH (EC 1.1.99.17) apoenzyme from Escherichia coli and a putative pyrroloquinoline quinone (PQQ) biosynthetic operon homologous to pqqABCDEF from Klebsiella pneumoniae. Construction of Δgcd and Δpqq mutants of P. ananatis confirmed the proposed functions of these genetic elements. The P. ananatis pqqABCDEF was cloned in vivo and integrated into the chromosomes of P. ananatis and E. coli according to the Dual In/Out strategy. Introduction of a second copy of pqqABCDEF to P. ananatis SC17(0) doubled the accumulation of PQQ. Integration of the operon into E. coli MG1655ΔptsGΔmanXY restored the growth of bacteria on glucose. The obtained data show the essential role of pqqABCDEF in PQQ biosynthesis in P. ananatis and E. coli. We propose that the cloned operon could be useful for an efficient phosphoenolpyruvate-independent glucose consumption pathway due to glucose oxidation and construction of E. coli strains with the advantage of phosphoenolpyruvate-derived metabolite production.  相似文献   

11.
Physiologic importance of pyrroloquinoline quinone.   总被引:2,自引:0,他引:2  
Pyrroloquinoline quinone (PQQ, methoxatin) is a dissociable cofactor for a number of bacterial dehydrogenases. The compound is unusual because of its ability to catalyze redox cycling reactions at a high rate of efficiency and it has the potential of catalyzing various carbonyl amine reactions as well. In methylotrophic bacteria, PQQ is derived from the condensation of L-tyrosine with L-glutamic acid. Whether or not PQQ serves as a cofactor in higher plants and animals remains controversial. Nevertheless, a strong case may be made that PQQ and related quinoids have nutritional and pharmacologic importance. In highly purified, chemically defined diets, PQQ stimulates animal growth. Furthermore, PQQ deprivation appears to impair connective tissue maturation, particularly when initiated in utero and throughout perinatal development.  相似文献   

12.
Summary The nucleotide sequences of genes homologous to the Klebsiella pneumoniae nifEN genes have been determined in Bradyrhizobium japonicum 110. The coding regions for the nifE and nifN consist, respectively, of 1641 and 1407 nucleotides. The nifD gene (coding for the -subunit of dinitrogenase) and nifE are linked, and separated by 95 nucleotides. In the region of 12 nucleotides that separates nifE from nifN the stop codon for nifE overlaps the putative ribosome binding site for nifN. In contrast to Klebsiella and Azotobacter vinelandii, the B. japonicum nifEN genes are linked to the nifDK genes in the same operon. Comparison of dinitrogenase polypeptides (nifDK products) and the polypeptides of the nifE and nifN genes reveals considerable homology between nifD and nifE, and between nifK and nifN. Several protein domains, containing highly conserved cysteine residues, are conserved among the gene products of nifD, nifK, nifE and nifN. This result allows us to propose a probable evolutionary pathway for the common origin of these genes.  相似文献   

13.
Plasma amine oxidases (EC 1.4.3.6) are classified as containing the organic cofactor pyridoxal phosphate. Biochemical and bioassays on the pig plasma amine oxidase fail to reveal the presence of pyridoxal phosphate and 31P n.m.r. evidence is also inconsistent with pyridoxal phosphate in the enzyme. Resonance Raman spectral studies on phenylhydrazone derivatives of the pig and bovine plasma enzymes have been carried out and comparisons made with the corresponding derivatives of pyridoxal phosphate and pyrroloquinoline quinone (PQQ). The resonance Raman evidence indicates that the cofactor in both plasma amine oxidases is PQQ or a closely related species and not pyridoxal phosphate. The results substantiate earlier reports concerning the identity of the organic cofactor.  相似文献   

14.
Porcine brain glutamate decarboxylase was examined for the presence of covalently bound pyrroloquinoline quinone (PQQ). HPLC analysis of pure glutamate decarboxylase subjected to the hexanol extraction procedure gave negative results when monitored at 320 nm, the maximum of absorbance of 4-hydroxy-5-hexoxy-PQQ. Resolved glutamate decarboxylase exhibits a structureless absorption band at wavelengths longer than 300 nm which cannot be attributed to PQQ. The holoenzyme is not a pyridoxal-quinoprotein; its catalytic mechanism involves the participation of only one cofactor, i.e. pyridoxal-5-P. Free PQQ is a strong inhibitor of the decarboxylase (Ki = 13 microM) and the reaction with the protein results in spectral changes resembling those of polylysine treated with PQQ. If the concentration of free PQQ in some regions of the brain reaches the micromolar level, then PQQ might play a role in the regulation of glutamate decarboxylase activity.  相似文献   

15.
When pyrroloquinoline quinone (PQQ) is mixed with an amino acid, a corresponding Schiff base PQQ adduct is readily formed between carbonyl groups of PQQ and the primary amino group. A potent growth stimulating effect for microorganisms was observed with the PQQ adduct when it was administered in a culture medium. Although PQQ itself shows a marked growth stimulating effect, PQQ adducts appeared to be more active than authentic PQQ when compared on a molar basis. Conversely, unlike authentic PQQ, PQQ adducts were shown to be less active (greater than or equal to 100-fold) as the prosthetic group for a quinoprotein apo-glucose dehydrogenase when examined by holoenzyme formation by exogenous addition of PQQ or PQQ adducts. These observations suggested that PQQ adduct formation readily occurs during isolation procedures for PQQ from biological materials or PQQ - chromophore from quinoproteins. Therefore, the presence of such adducts gives a PQQ estimation much lower than theoretically expected. As an example, formation, isolation and characterization of PQQ - serine are described.  相似文献   

16.
The quinone cofactor TPQ in copper amine oxidase is generated by posttranslational modification of an active site tyrosine residue. Using X-ray crystallography, we have probed the copper-dependent autooxidation process of TPQ in the enzyme from Arthrobacter globiformis. Apo enzyme crystals were anaerobically soaked with copper; the structure determined from this crystal provides a view of the initial state: the unmodified tyrosine coordinated to the bound copper. Exposure of the copper-bound crystals to oxygen led to the formation of freeze-trapped intermediates; structural analyses indicate that these intermediates contain dihydroxyphenylalanine quinone and trihydroxyphenylalanine. These are the first visualized intermediates during TPQ biogenesis in copper amine oxidase.  相似文献   

17.
Elastin is an elastomeric, self-assembling extracellular matrix protein with potential for use in biomaterials applications. Here, we compare the microstructural and tensile properties of the elastin-based recombinant polypeptide (EP) EP20-244 crosslinked with either genipin (GP) or pyrroloquinoline quinone (PQQ). Recombinant EP-based sheets were produced via coacervation and subsequent crosslinking. The micron-scale topography of the GP-crosslinked sheets examined with atomic force microscopy revealed the presence of extensive mottling compared with that of the PQQ-crosslinked sheets, which were comparatively smoother. Confocal microscopy showed that the subsurface porosity in the GP-crosslinked sheets was much more open. GP-crosslinked EP-based sheets exhibited significantly greater tensile strength (P < or = 0.05). Mechanistically, GP appears to yield a higher crosslink density than PQQ, likely due to its capacity to form short-range and long-range crosslinks. In conclusion, GP is able to strongly modulate the microstructural and mechanical properties of elastin-based polypeptide biomaterials forming membranes with mechanical properties similar to native insoluble elastin.  相似文献   

18.
The publicly available annotated archaeal genome sequences (23 complete and three partial annotations, October 2005) were searched for the presence of potential two-component open reading frames (ORFs) using gene category lists and BLASTP. A total of 489 potential two-component genes were identified from the gene category lists and BLASTP. Two-component genes were found in 14 of the 21 Euryarchaeal sequences (October 2005) and in neither the Crenarchaeota nor the Nanoarchaeota. A total of 20 predicted protein domains were identified in the putative two-component ORFs that, in addition to the histidine kinase and receiver domains, also includes sensor and signalling domains. The detailed structure of these putative proteins is shown, as is the distribution of each class of two-component genes in each species. Potential members of orthologous groups have been identified, as have any potential operons containing two or more two-component genes. The number of two-component genes in those Euryarchaeal species which have them seems to be linked more to lifestyle and habitat than to genome complexity, with most examples being found in Methanospirillum hungatei, Haloarcula marismortui, Methanococcoides burtonii and the mesophilic Methanosarcinales group. The large numbers of two-component genes in these species may reflect a greater requirement for internal regulation. Phylogenetic analysis of orthologous groups of five different protein classes, three probably involved in regulating taxis, suggests that most of these ORFs have been inherited vertically from an ancestral Euryarchaeal species and point to a limited number of key horizontal gene transfer events.  相似文献   

19.
Method of enzymatic determination of pyrroloquinoline quinone   总被引:3,自引:0,他引:3  
An improved enzymatic method for the determination of pyrroloquinoline quinone, a novel prosthetic group of some important oxidoreductases, has been developed with cytoplasmic membrane of Escherichia coli K-12, in which D-glucose dehydrogenase (EC 1.1.99.17) was completely resolved to apo-enzyme by EDTA treatment. Incubation of the EDTA-treated membrane with exogenous pyrroloquinoline quinone in the presence of magnesium ions gave a quantitative determination of pyrroloquinoline quinone by assaying the restored D-glucose dehydrogenase activity. This novel enzymatic method was confirmed to be highly reproducible up to 10 ng of pyrroloquinoline quinone and could be applied to a routine assay of pyrroloquinoline quinone.  相似文献   

20.
吡咯喹啉醌(Pyrroloquinoline quinone,PQQ)是一种重要的氧化还原酶辅基,具有多种生理生化功能,在食品、医药卫生及农业等领域具有广泛的应用。文中采用重组氧化葡萄糖酸杆菌生物合成吡咯喹啉醌。首先构建丙酮酸脱羧酶基因GOX1081敲除的重组菌G. oxydans T1,减少副产物乙酸的形成。然后利用筛选的内源性组成型启动子P0169融合表达pqqABCDE基因簇及tldD基因,构建重组菌G. oxydans T2。最后对发酵培养基添加物和发酵条件进行优化。结果显示重组菌G. oxydans T1、G. oxydans T2生物量较野生菌分别提高43.02%和38.76%,而PQQ的产量分别是野生菌的4.82倍和20.5倍。进一步优化G. oxydans T2碳源及培养条件,最终PQQ产量达(51.3241±0.8997)mg/L,是野生菌的345.62倍。通过基因工程手段,可以有效提高氧化葡萄糖酸杆菌的生物量和合成PQQ的产量,为改善PQQ生物合成效率奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号