首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 302 毫秒
1.
Uroplakins, cytokeratins and the apical plasma membrane were studied in the epithelia of mouse urinary tract. In the simple epithelium covering the inner medulla of the renal pelvis, no uroplakins or cytokeratin 20 were detected and cells had microvilli on their apical surface. The epithelium covering the inner band of the outer medulla became pseudostratified, with the upper layer consisting of large cells with stalks connecting them to the basal lamina. Uroplakins and cytokeratin 20 were not expressed in these cells. However, some superficial cells appeared without connections to the basal lamina; these cells expressed uroplakins Ia, Ib, II and III and cytokeratin 20, they contained sparse small uroplakin-positive cytoplasmic vesicles and their apical surface showed both microvilli and ridges. Cytokeratin 20 was seen as dots in the cytoplasm. This epithelium therefore showed partial urothelial differentiation. The epithelium covering the outer band of the outer medulla gradually changed from a two-layered to a three-layered urothelium with typical umbrella cells that contained all four uroplakins. Cytokeratin 20 was organized into a complex network. The epithelium possessed an asymmetric unit membrane at the apical cell surface and fusiform vesicles. Umbrella cells were also observed in the ureter and urinary bladder. In males and females, the urothelium ended in the bladder neck and was continued by a non-keratinized stratified epithelium in the urethra in which no urothelial cell differentiation markers were detected. We thus show here the expression, distribution and organization of specific proteins associated with the various cell types in the urinary tract epithelium.W. Mello Jr. thanks FAPESP, São Paulo, Brazil for financial support.  相似文献   

2.
Urothelial umbrella cells are characterized by apical, rigid membrane plaques, which contain four major uroplakin proteins (UP Ia, Ib, II and III) forming UPIa/UPII and UPIb/UPIII pairs. These integral membrane proteins are thought to play an important role in maintaining the physical integrity and the permeability barrier function of the urothelium. We asked whether the four uroplakins always coexpress in the entire human lower urinary tract. We stained immunohistochemically (ABC-peroxidase method) paraffin sections of normal human ureter (n = 18) and urinary bladder (n = 10) using rabbit antibodies against UPIa, UPIb, UPII and UPIII; a recently raised mouse monoclonal antibody (MAb), AU1, and two new MAbs, AU2 and AU3, all against UPIII; and mouse MAbs against umbrella cell-associated cytokeratins CK18 and CK20. Immunoblotting showed that AU1, AU2 and AU3 antibodies all recognized the N-terminal extracellular domain of bovine UPIII. By immunohistochemistry, we found that in 15/18 cases of human ureter, but in only 2/10 cases of bladder, groups of normal-looking, CK18-positive umbrella cells lacked both UPIII and UPIb immunostaining. The UPIb/UPIII-negative cells showed either normal or reduced amounts of UPIa and UPII staining. These data were confirmed by double immunofluorescence microscopy. The distribution of the UPIb/UPIII-negative umbrella cells was not correlated with localized urothelial proliferation (Ki-67 staining) or with the distribution pattern of CK20. Similar heterogeneities were observed in bovine but not in mouse ureter. We provide the first evidence that urothelial umbrella cells are heterogeneous as some normal-looking umbrella cells can possess only one, instead of two, uroplakin pairs. This heterogeneity seems more prominent in the urothelium of human ureter than that of bladder. This finding may indicate that ureter urothelium is intrinsically different from bladder urothelium. Alternatively, a single lineage of urothelium may exhibit different phenotypes resulting from extrinsic modulations due to distinct mesenchymal influence and different degrees of pressure and stretch in bladder versus ureter. Additional studies are needed to distinguish these two possibilities and to elucidate the physiological and pathological significance of the observed urothelial and uroplakin heterogeneity.  相似文献   

3.
Much of the lower urinary tract, including the bladder, is lined by a stratified urothelium forming a highly differentiated, superficial umbrella cell layer. The apical plasma membrane as well as abundant cytoplasmic fusiform vesicles of the umbrella cells is covered by two-dimensional crystals that are formed by four membrane proteins named uroplakins (UPs) Ia, Ib, II, and III. UPs are synthesized on membrane-bound polysomes, and after several co- and posttranslational modifications they assemble into planar crystals in a post-Golgi vesicular compartment. Distension of the bladder may cause fusiform vesicles to fuse with the apical plasma membrane. We have investigated the early stages of uroplakin assembly by expressing the four uroplakins in 293T cells. Transfection experiments showed that, when expressed individually, only UPIb can exit from the endoplasmic reticulum (ER) and move to the plasma membrane, whereas UPII and UPIII reach the plasma membrane only when they form heterodimeric complexes with UPIa and UPIb, respectively. Heterodimer formation in the ER was confirmed by pulse-chase experiment followed by coimmunoprecipitation. Our results indicate that the initial building blocks for the assembly of crystalline uroplakin plaques are heterodimeric uroplakin complexes that form in the ER.  相似文献   

4.
The epithelium of the urinary bladder must maintain a highly impermeable barrier despite large variations in urine volume during bladder filling and voiding. To study how the epithelium accommodates these volume changes, we mounted bladder tissue in modified Ussing chambers and subjected the tissue to mechanical stretch. Stretching the tissue for 5 h resulted in a 50% increase in lumenal surface area (from approximately 2900 to 4300 microm(2)), exocytosis of a population of discoidal vesicles located in the apical cytoplasm of the superficial umbrella cells, and release of secretory proteins. Surprisingly, stretch also induced endocytosis of apical membrane and 100% of biotin-labeled membrane was internalized within 5 min after stretch. The endocytosed membrane was delivered to lysosomes and degraded by a leupeptin-sensitive pathway. Last, we show that the exocytic events were mediated, in part, by a cyclic adenosine monophosphate, protein kinase A-dependent process. Our results indicate that stretch modulates mucosal surface area by coordinating both exocytosis and endocytosis at the apical membrane of umbrella cells and provide insight into the mechanism of how mechanical forces regulate membrane traffic in non-excitable cells.  相似文献   

5.
Cytokeratins, uroplakins and the asymmetric unit membrane are biochemical and morphological markers of urothelial differentiation. The aim of our study was to follow the synthesis, subcellular distribution and supramolecular organization of differentiation markers, cytokeratins and uroplakins, during differentiation of umbrella cells of mouse bladder urothelium. Regenerating urothelium after destruction with cyclophosphamide was used to simulate de-novo differentiation of cells, which was followed from day 1 to day 14 after cyclophosphamide injection. Cytokeratin 7 and uroplakins co-localized in the subapical cytoplasm of superficial cells from the early stage of differentiation on. At early stages of superficial cell differentiation cytokeratin 7 was filamentary organized, and rare uroplakins were found on the membranes of relatively small cytoplasmic vesicles, which were grouped in clusters under the apical membrane. Later, cytokeratin 7 gradually reorganized into a continuous trajectorial network, and uroplakins became organized into plaques of asymmetric unit membrane, which formed fusiform vesicles. After insertion of fusiform vesicles into the apical plasma membrane, the surface acquired microridged appearance of umbrella cells. Cytokeratin 20 appeared as the last differentiation marker of umbrella cells. Cytokeratin 20 was incorporated into the pre-existing trajectorial cytokeratin network. These results indicate that differentiation of urothelial cells starts with the synthesis of differentiation-related proteins i.e., cytokeratins and uroplakins, and later with their specific organization. We consider that the umbrella cell has reached its final stage of differentiation when uroplakins form plaques of asymmetric unit membrane that are inserted into the apical plasma membrane and when cytokeratin 20 becomes included in a trajectorial cytokeratin network in the subapical area of cytoplasm.  相似文献   

6.
Human bladder urothelium is able to secrete tissue-type plasminogen activator (tPA). The aim of our study was to analyse localisation of tPA antigen in comparison to differentiation state of cells in samples of histologically normal urothelium and non-invasive tumours of the human urinary bladder. Twenty-five samples of normal urothelium and 31 non-invasive papillary tumours from 36 patients were examined. The presence of tPA antigen was evaluated immunohistochemically. Differentiation of superficial cells was assessed by the presence of urothelial cell differentiation markers, uroplakins (UPs; immunohistochemistry) and cell's apical surface architecture (scanning electron microscopy). All tissue samples stained anti-tPA positive. In normal urothelium, the intensity of anti-tPA staining was the strongest in superficial cells, which were well-differentiated. In tumours, all cell layers stained anti-tPA positive. The intensity of anti-tPA positive reaction in the upper cell layer correlated with the percentage of anti-UP positive superficial cells. Superficial cells showed various differentiation states. The localisation of tPA antigen in human in vivo tissue is not confined to the well-differentiated superficial cells. Our results suggest a positive correlation between tPA secretion and cell differentiation.  相似文献   

7.
Human urinary disorders are generally studied in rodent models due to limitations of functional in vitro culture models of primary human urothelial cells (HUCs). Current HUC culture models are often derived from immortalized cancer cell lines, which likely have functional characteristics differ from healthy human urothelium. Here, we described a simple explant culture technique to generate HUCs and assessed their in vitro functions. Using transmission electron microscopy, we assessed morphology and heterogeneity of the generated HUCs and characterized their intercellular membrane structural proteins relative to ex vivo urothelium tissue. We demonstrated that our cultured HUCs are free of fibroblasts. They are also heterogeneous, containing cells characteristic of both immature basal cells and mature superficial urothelial cells. The cultured HUCs expressed muscarinic receptors (MR1 and MR2), carnitine acetyltransferase (CarAT), immunoregulatory cytokines IL7, IL15, and IL23, as well as the chemokine CCL20. HUCs also expressed epithelial cell-specific molecules essential for forming intercellular structures that maintain the functional capacity to form the physiological barrier of the human bladder urothelium. A subset of HUCs, identified by the high expression of CD44, expressed the Toll-like receptor 4 (TLR4) along with its co-receptor CD14. We demonstrated that HUCs express, at the mRNA level, both forms of the IL22 receptor, the membrane-associated (IL22RA1) and the secreted soluble (IL22RA2) forms; in turn, IL22 inhibited expression of MR1 and induced expression of CarAT and two antimicrobial peptides (S100A9 and lipocalin-2). While the cellular sources of IL22 have yet to be identified, the HUC cytokine and chemokine profiles support the concept that IL22-producing cells are present in the human bladder mucosa tissue and that IL22 plays a regulatory role in HUC functions. Thus, the described explant technique is clearly capable of generating functional HUCs suitable for the study of human urinary tract disorders, including interactions between urothelium and IL22-producing cells.  相似文献   

8.
The formation of fusiform vesicles (FVs) is one of the most distinctive features in the urothelium of the urinary bladder. FVs represent compartments for intracellular transport of urothelial plaques, which modulate the surface area of the superficial urothelial (umbrella) cells during the distension-contraction cycle. We have analysed the three-dimensional (3D) structure of FVs and their organization in umbrella cells of mouse urinary bladders. Compared to chemical fixation, high pressure freezing gave a new insight into the ultrastructure of urothelial cells. Electron tomography on serial sections revealed that mature FVs had a shape of flattened discs, with a diameter of up to 1.2 μm. The lumen between the two opposing asymmetrically thickened membranes was very narrow, ranging from 5 nm to 10 nm. Freeze-fracturing and immunolabelling confirmed that FVs contain two opposing urothelial plaques connected by a hinge region that made an omega shaped curvature. In the central cytoplasm, 4-15 FVs were often organized into stacks. In the subapical cytoplasm, FVs were mainly organized as individual vesicles. Distension-contraction cycles did not affect the shape of mature FVs; however, their orientation changed from parallel in distended to perpendicular in contracted bladder with respect to the apical plasma membrane. In the intermediate cells, shorter and more dilated immature FVs were present. The salient outcome from this research is the first comprehensive, high resolution 3D view of the ultrastructure of FVs and how they are organized differently depending on their location in the cytoplasm of umbrella cells. The shape of mature FVs and their organization into tightly packed stacks makes them a perfect storage compartment, which transports large amounts of urothelial plaques while occupying a small volume of umbrella cell cytoplasm.  相似文献   

9.
本文运用超薄切片、冰冻蚀刻及免疫胶体金标记等多种电镜技术并结合免疫组化、免疫荧光染色技术,直观地显示出小鼠膀胱上皮的中间层细胞存在Uroplakins,并在梭形泡膜上形成了与表层细胞类似的AUM结构,而且梭形泡的AUM结构也结合在中间纤维上。蛋白质免疫印迹反应进一步证实中间层细胞含有与表层细胞相同的Uroplakin Ⅰ和UroplakinⅢ等AUM蛋白的主要成份,从而为AUM的发生及其与细胞分化关系的研究提供了重要的实验证据。  相似文献   

10.
Superficial cell desquamation followed by differentiation of newly exposed superficial cells induces regeneration of the urinary bladder epithelium, urothelium. In the present work, chitosan was evaluated as a new inducer of urothelial cell desquamation, in order to study the regeneration of mouse urothelial cells in vivo. Intravesical application of chitosan dispersion caused complete removal of only the superficial layer of cells within 20 min of treatment. Differentiation of the new superficial layer was followed by the appearance and distribution of three urothelial differentiation markers, tight junction protein ZO1, cytokeratin 20 and the maturation of the apical plasma membrane. The arrangement of ZO1 into continuous lines in individual cells of the intermediate layer was already found after 10 min of chitosan application, when desquamation had just started. The appearance of the apical membrane changed from microvillar to typically scalloped within 20 min of regeneration, while complete arrangement of the cytokeratin 20 network took 60 min. These findings provide a new perspective on the rate of the differentiation process in the urothelium and make chitosan a new and a very controllable tool for studies on urothelial regeneration.  相似文献   

11.
In superficial umbrella cells of normal urothelium, uroplakins (UPs) are assembled into urothelial plaques, which form fusiform vesicles (FVs) and microridges of the apical cell surface. Altered urothelial differentiation causes changes in the cell surface structure. Here, we investigated ultrastructural localization of UPIa, UPIb, UPII and UPIIIa in normal and cyclophosphamide-induced preneoplastic mouse urothelium. In normal urothelium, terminally differentiated umbrella cells expressed all four UPs, which were localized to the large urothelial plaques covering mature FVs and the apical plasma membrane. The preneoplastic urothelium contained two types of superficial cells with altered differentiation: (1) poorly differentiated cells with microvilli and small, round vesicles that were uroplakin-negative; no urothelial plaques were observed in these cells; (2) partially differentiated cells with ropy ridges contained uroplakin-positive immature fusiform vesicles and the apical plasma membrane. Freeze-fracturing showed small urothelial plaques in these cells. We concluded that in normal urothelium, all four UPs colocalize in urothelial plaques. However, in preneoplastic urothelium, the growth of the uroplakin plaques was hindered in the partially differentiated cells, leading to the formation of immature FVs and ropy ridges instead of mature FVs and microridges. Our study demonstrates that despite a lower level of expression, UPIa, UPIb, UPII and UPIIIa maintain their plaque association in urothelial preneoplastic lesions.  相似文献   

12.
The superficial epithelial layer in the urinary bladder of adult rats was examined, in various states, using the transmission and scanning electron microscopes. A good agreement was obtained between the results of the two methods. When the urinary bladder is unexpanded, the superficial cells show marked bulges into the bladder lumen and the contacts between cells (mainly desmosomes) are displaced deep into the epithelium. The luminal surface is bizarrely bent and large parts of the membrane intrude into the cytoplasm, where they give the appearance of discoid and fusiform vesicles. Between neighboring cells, deep interdigitations are observed. In the scanning electron microscope, the surface of the epithelium appears cauliflower-like and has deep grooves, gullys and folds. When the bladder is expanded, the surface becomes smoother and the contacts between cells move to the surface. The stretched cells are angular in form (5-, 6- or 7-sided) and show great variations in surface area (150-500 mum2). The luminal cell membrane consists of an alternation of asymmetrical areas (120 A thick and 0.2-0.4 mum in length) with normal sections which are 80 A thick. In the scanning electron microscope, these thick areas appear as 4-, 5- or 6-sided plaques with a maximal diameter of 0.4 mum. The borders of the plaques are formed of portions of cell membrane which have a normal thickness and extrude as microcristae into the lumen. This produces a honeycomb appearance on the cell surface.  相似文献   

13.
Summary For the first time we report on the growth, culture, and matrix production characteristics of a cell type isolated from the lamina propria of the urinary bladder wall. A fibroblastlike cell was identified as distinct from bladder detrusor smooth muscle cells and urothelium based on morphology, growth characteristics, and immunohistochemical staining. Characterization of extracellular matrix synthesis by this cell type using35S-methionine metabolic labeling demonstrated that these cells are capable of secreting components of the surrounding connective tissue, including several fibrillar collagens, a basement membrane collagen, and fibronectin.  相似文献   

14.
The urothelium, a specialized epithelium that covers the mucosa cell surface of the urinary bladder, undergoes dramatic morphological changes during the micturition cycle that involve a membrane apical traffic. This traffic was first described as a lysosomal pathway, in addition to the known endocytosis/exocytosis membrane recycling. In an attempt to understand the role of membrane lipid composition in those effects, we previously described the lipid-dependent leakage of the endocytosed vesicle content. In this work, we demonstrated clear differences in the traffic of both the fluid probe and the membrane-bound probe in urothelial umbrella cells by using spectrofluorometry and/or confocal and epifluorescence microscopy. Different membrane lipid compositions were established by using three diet formulae enriched in oleic acid, linoleic acid and a commercial formula. Between three and five animals for each dietary treatment were used for each analysis. The decreased endocytosis of both fluid and membrane-bound probes (approximately 32 and 49 % lower, respectively) in oleic acid-derived umbrella cells was concomitant with an increased recycling (approximately 4.0 and 3.7 times, respectively) and diminished sorting to the lysosome (approximately 23 and 37 %, respectively) when compared with the control umbrella cells. The higher intravesicular pH and the impairment of the lysosomal pathway of oleic acid diet-derived vesicles compared to linoleic acid diet-derived vesicles and control diet-derived vesicles correlate with our findings of a lower V-ATPase activity previously reported. We integrated the results obtained in the present and previous work to determine the sorting of endocytosed material (fluid and membrane-bound probes) into the different cell compartments. Finally, the weighted average effect of the individual alterations on the intracellular distribution was evaluated. The results shown in this work add evidences for the modulatory role of the membrane lipid composition on sorting of the endocytosed material. This suggests that changes in the membrane organization can be one of the underlying mechanisms for regulating the endocytosis/exocytosis processes and membrane intracellular trafficking.  相似文献   

15.
The mammalian urothelium apical surface plays important roles in bladder physiology and diseases, and it provides a unique morphology for ultrastructural studies. Atomic force microscopy (AFM) is an emerging tool for studying the architecture and dynamic properties of biomolecular structures under near-physiological conditions. However, AFM imaging of soft tissues remains a challenge because of the lack of efficient methods for sample stabilization. Using a porous nitrocellulose membrane as the support, we were able to immobilize large pieces of soft mouse bladder tissue, thus enabling us to carry out the first AFM investigation of the mouse urothelial surface. The submicrometer-resolution AFM images revealed many details of the surface features, including the geometry of the urothelial plaques that cover the entire surface and the membrane interdigitation at the cell borders. This interdigitation creates a membrane zipper, likely contributing to the barrier function of the urothelium. In addition, we were able to image the intracellular bacterial communities of type 1-fimbriated bacteria grown between the intermediate filament bundles of the umbrella cells, shedding light on the bacterial colonization of the urothelium.  相似文献   

16.
17.
A sodium saccharin (NaSac) diet was used to induce cell damage and regeneration in the urothelium of the male rat urinary bladder. Foci of terminally differentiated superficial cell exfoliation were detected after 5 weeks and their number increased after 10 and 15 weeks of the diet. At the sites of superficial cell loss, regenerative simple hyperplasia developed. Within 5 weeks of NaSac removal, regeneration re-established normal differentiated urothelium. In order to follow urothelial differentiation during regeneration we studied the expression of uroplakins and cytokeratins by means of immunocytochemistry and immunohistochemistry, respectively. Normal urothelium was characterised by terminally differentiated superficial cells which expressed uroplakins in their luminal plasma membrane and cytokeratin 20 (CK20) in the cytoplasm. Basal and intermediate cells were CK20 negative and cytokeratin 17 (CK17) positive. In hyperplastic urothelium all cells synthesised CK17, but not CK20. Differentiation of the superficial layer was reflected in three successive cell types: cells with microvilli, cells with rounded microridges and those with a rigid-looking plasma membrane on the luminal surface. The cells with microvilli did not stain with anti-uroplakin antibody. When the synthesis of uroplakins was detected rounded microridges were formed. With the elevated expression of uroplakins the luminal plasma membrane becomes rigid-looking which is characteristic of asymmetric unit membrane of terminally differentiated cells. During differentiation, syn-thesis of CK17 ceased in superficial cells while the synthesis of CK20 started. These results indicate that during urothelial regeneration after NaSac treatment, specific superficial cell types develop in which the switch to uroplakin synthesis and transition from CK17 to CK20 synthesis are crucial events for terminal differentiation. Accepted: 19 August 1997  相似文献   

18.
19.
An examination of the mucosal epithelium of the urinary bladder of the toad reveals that the two major cell types which abut on the urinary surface, the granular and mitochondria-rich cells, also contact the basement membrane. Thus, the epithelium functions as a single cell layer. Although basal cells are interpolated between the granular cells and the basement membrane over a large portion of the epithelium, they do not constitute an additional continuous cell layer. This finding is consistent with extensive physiological data which had assumed that the major permeability barriers of this epithelium were the apical and basal-lateral plasma membranes of a single layer of cells.  相似文献   

20.
The diagnostic and didactic utility of plastic-embedded semi-thin sections of fine needle aspiration biopsies is presented using a case-study approach. The Spurr epoxy semi-thin sections were stained with a newly developed sequential basic fuchsin-methylene blue stain, which gives hematoxylin-and-eosin-like staining and simultaneously substitutes for a wide variety of special stains. The informational content of the sections can approach that of electron microscopy. The use of a direct off-the-slide "pop-off" technique in preparing the plastic-embedded sections allows for a direct comparison between similar groups of cells embedded in plastic and present on the routine aspiration slides; retrospective analysis can discern subtle, previously unrecognized morphologic features in the alcohol-fixed, Papanicolaou-stained slides. The limitations of this comparative approach, however, become manifest when the effects of alcohol fixation on cells are directly compared in plastic and at the ultrastructural level to aldehyde fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号