首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Peptide histidine isoleucine (PHI) and VIP are derived from the same precursor. While central VIP decreases food intake, potential effects of PHI on feeding have not been studied. In the current study, we found that PHI administered intracerebroventricularly (ICV) or into the hypothalamic paraventricular nucleus (PVN) or central nucleus of the amygdala (CeA) decreased food consumption in overnight-deprived rats. The magnitude of an anorexigenic response to PHI differed depending on the injection route: ICV-infused peptide evoked the most potent effect. We determined that that only PVN- and CeA-injected PHI did not have aversive consequences. In addition, we infused anorexigenic doses of PHI via the same routes and assessed Fos immunoreactivity of PVN oxytocin (OT) and vasopressin (VP) neurons using double immunohistochemistry. OT and VP are thought to promote feeding termination. PHI increased the percentage of Fos-positive OT neurons regardless of the injection route. PVN- and ICV-infused PHI induced activation of VP cells. We conclude that central PHI has an inhibitory influence on food intake in rats. The PVN, with OT and VP neurons, and CeA may be involved in the mediation of anorexigenic effects of PHI.  相似文献   

2.
Interoceptive stimuli modulate stress responses and emotional state, in part, via ascending viscerosensory inputs to the hypothalamus and limbic forebrain. It is unclear whether similar viscerosensory pathways are recruited by emotionally salient exteroceptive stimuli, such as odors. To address this question, we investigated conditioned avoidance and central c-Fos activation patterns in rats exposed to synthetic trimethylthiazoline (TMT), an odiferous natural component of fox feces. Experiment 1 demonstrated that rats avoid consuming novel flavors that previously were paired with TMT exposure, evidence that TMT supports conditioned flavor avoidance. Experiment 2 examined central neural systems activated by TMT. Odor-naive rats were acutely exposed to low or high levels of TMT or a novel nonaversive control odor and were perfused with fixative 60-90 min later. A subset of rats received retrograde neural tracer injections into the central nucleus of the amygdala (CeA) 7-10 days before odor exposure and perfusion. Brain sections were processed for dual-immunocytochemical detection of c-Fos and other markers to identify noradrenergic (NA) neurons, corticotropin-releasing hormone (CRH) neurons, and retrogradely labeled neurons projecting to the CeA. Significantly greater proportions of medullary and pontine NA neurons, hypothalamic CRH neurons, and CeA-projecting neurons were activated in rats exposed to TMT compared with activation in rats exposed to the nonaversive control odor. Thus the ability of TMT to support conditioned avoidance behavior is correlated with significant odor-induced recruitment of hypothalamic CRH neurons and brain stem viscerosensory inputs to the CeA.  相似文献   

3.

Background

Recent evidence suggests that oxytocin (OT), secreted in the superficial spinal cord dorsal horn by descending axons of paraventricular hypothalamic nucleus (PVN) neurons, produces antinociception and analgesia. The spinal mechanism of OT is, however, still unclear and requires further investigation. We have used patch clamp recording of lamina II neurons in spinal cord slices and immunocytochemistry in order to identify PVN-activated neurons in the superficial layers of the spinal cord and attempted to determine how this neuronal population may lead to OT-mediated antinociception.

Results

We show that OT released during PVN stimulation specifically activates a subpopulation of lamina II glutamatergic interneurons which are localized in the most superficial layers of the dorsal horn of the spinal cord (lamina I-II). This OT-specific stimulation of glutamatergic neurons allows the recruitment of all GABAergic interneurons in lamina II which produces a generalized elevation of local inhibition, a phenomenon which might explain the reduction of incoming Aδ and C primary afferent-mediated sensory messages.

Conclusion

Our results obtained in lamina II of the spinal cord provide the first clear evidence of a specific local neuronal network that is activated by OT release to induce antinociception. This OT-specific pathway might represent a novel and interesting therapeutic target for the management of neuropathic and inflammatory pain.  相似文献   

4.
Ample evidence implicates corticotropin-releasing factor (CRF)-producing neurons of the central amygdaloid nucleus (CeA) in vegetative, endocrine, and behavioral responses to stress and anxiety in laboratory rats. Monoaminergic systems are involved in modulating these responses. In the present paper, interrelations between CRF-immunoreactive (ir) neurons, and noradrenergic, serotonergic, and dopaminergic afferents were studied using single and double immunolabeling for light and electron microscopy in the rat CeA. Dopaminergic axons formed dense plexus in the CeA overlapping with the localization of CRF-ir neurons, and their terminals formed frequent associations with CRF-ir somata. Contacts of serotonergic axons on CRF-ir neurons were few, and contacts of noradrenergic axons were the exception. Ultrastructurally, symmetric synapses of dopaminergic terminals on CRF-ir somata and dendrites were found. More than 83% of CRF-ir somata were contacted in single ultrathin sections. About half of these possessed two or more contacts. Of non-ir somata, 37% were contacted by dopaminergic terminals, and only 13% of these had two or more contacts. Correlative in situ hybridization indicated that CeA CRF-ir neurons may express receptor subtype dopamine receptor subtype 2. In conclusion, dopaminergic afferents appear to specifically target CeA CRF neurons. They are thus in a position to exert significant influence on the rat amygdaloid CRF stress system.  相似文献   

5.
Young LJ 《Neuron》2007,54(3):353-356
Centrally released oxytocin regulates maternal behavior, social memory, and social bonding. A recent paper by Jin et al. published in Nature demonstrates that the transmembrane receptor CD38 plays a critical role in regulating social behaviors by regulating the release of OT from hypothalamic neurons.  相似文献   

6.
Growth hormone (GH) production of the anterior pituitary gland is controlled by inhibiting and releasing hormones that are synthesized in the diencephalon. In order to elucidate the possible interrelationships between somatostatin and growth hormone-releasing factor (GRF) synthesizing neurons at the hypothalamic level, immunocytochemical double labelling studies were performed on sections containing the arcuate nucleus (ARC) of the rat. Somatostatin producing neurons were located in the dorsomedial part of the ARC, while somatostatin immunoreactive (IR) axons were found in the ventro-lateral part of the nucleus, an area containing GRF-synthesizing cells. The use of the dual antigen localization technique revealed the approach and juxtaposition of somatostatin containing axons to dendrites and cell bodies of GRF-synthesizing neurons. At the light microscopic level, several somatostatinergic axon varicosities were clustered around single GRF-synthesizing cells. Ultrastructural analysis of the ventro-lateral part of the ARC showed that (i), somatostatinergic axons established synaptic connections (ii), GRF-producing neurons received axons terminals on their somata and dendrites and (iii), somatostatin-IR axons formed asymmetric synaptic specializations with both dendrites and somata of GRF-synthesizing neurons. These morphological findings indicate that the hormone production and release of hypophysiotrophic GRF-IR neurons can be influenced by the central somatostatin system via direct synaptic mechanisms. The data support the concept, that the interaction of inhibiting and releasing hormones, which determines responses of the pituitary target cells, may take place also at the hypothalamic level.  相似文献   

7.
A number of changes occur in the oxytocin (OT) system during gestation, such as increases in hypothalamic OT mRNA, increased neural lobe and systemic OT, and morphological and electrophysiological changes in OT-containing magnocellular neurons, suggestive of altered neuronal sensitivity, which may be mediated by ovarian steroids. Because central norepinephrine (NE) and histamine (HA) are potent stimulators of OT release during parturition and lactation, the present study investigated the effects of central noradrenergic and histaminergic receptor activation on systemic (NE, HA) and intranuclear (NE) OT release in pregnant rats and in ovariectomized rats treated with ovarian steroids. Plasma OT levels in late gestation were significantly higher compared with all other groups, and neither adrenergic nor histaminergic receptor blockade decreased these elevated levels. Furthermore, the alpha-adrenergic agonist phenylephrine, but not histamine, stimulated systemic OT release to a significantly greater extent in late gestation than in midpregnant, ovariectomized, or steroid-treated females. Although basal extracellular OT levels in the paraventricular nucleus, as measured with microdialysis, were unchanged during pregnancy or steroid treatment, noradrenergic receptor stimulation of intranuclear OT release was significantly elevated in midgestation females compared with all other groups. These studies indicate that sensitivity of intranuclear and systemic OT release to noradrenergic receptor activation differentially varies during the course of gestation.  相似文献   

8.
We previously demonstrated that 3rd ventricular (3V) neuropeptide Y (NPY) or agouti-related protein (AgRP) injection potently stimulates food foraging/hoarding/intake in Siberian hamsters. Because NPY and AgRP are highly colocalized in arcuate nucleus neurons in this and other species, we tested whether subthreshold doses of NPY and AgRP coinjected into the 3V stimulates food foraging, hoarding, and intake, and/or neural activation [c-Fos immunoreactivity (c-Fos-ir)] in hamsters housed in a foraging/hoarding apparatus. In the behavioral experiment, each hamster received four 3V treatments by using subthreshold doses of NPY and AgRP for all behaviors: 1) NPY, 2) AgRP, 3) NPY+AgRP, and 4) saline with a 7-day washout period between treatments. Food foraging, intake, and hoarding were measured 1, 2, 4, and 24 h and 2 and 3 days postinjection. Only when NPY and AgRP were coinjected was food intake and hoarding increased. After identical treatment in separate animals, c-Fos-ir was assessed at 90 min and 14 h postinjection, times when food intake (0-1 h) and hoarding (4-24 h) were uniquely stimulated. c-Fos-ir was increased in several hypothalamic nuclei previously shown to be involved in ingestive behaviors and the central nucleus of the amygdala (CeA), but only in NPY+AgRP-treated animals (90 min and 14 h: magno- and parvocellular regions of the hypothalamic paraventricular nucleus and perifornical area; 14 h only: CeA and sub-zona incerta). These results suggest that NPY and AgRP interact to stimulate food hoarding and intake at distinct times, perhaps released as a cocktail naturally with food deprivation to stimulate these behaviors.  相似文献   

9.
Neuropeptides vasopressin and oxytocin regulate a variety of behaviors ranging from maternal and pair bonding to aggression and fear. Their role in modulating fear responses has been widely recognized, but not yet well understood. Animal and human studies indicate the major role of the amygdala in controlling fear and anxiety. The amygdala is involved in detecting threat stimuli and linking them to defensive behaviors. This is accomplished by projections connecting the central nucleus of the amygdala (CeA) to the brain stem and to hypothalamic structures, which organize fear responses. A recent study by Huber et al demonstrates that vasopressin and oxytocin modulate the excitatory inputs into the CeA in opposite manners. Therefore this finding elucidates the mechanisms through which these neuropeptides may control the expression of fear.  相似文献   

10.
Cho YK  Li CS  Smith DV 《Chemical senses》2003,28(2):155-171
The lateral hypothalamus (LH) and the central nucleus of the amygdala (CeA) exert an influence on many aspects of ingestive behavior. These nuclei receive projections from several areas carrying gustatory and viscerosensory information, and send axons to these nuclei as well, including the nucleus of the solitary tract (NST). Gustatory responses of NST neurons are modulated by stimulation of the LH and the CeA, and by several physiological factors related to ingestive behavior. We investigated the effect of both LH and CeA stimulation on the activity of 215 taste-responsive neurons in the hamster NST. More than half of these neurons (113/215) were modulated by electrical stimulation of the LH and/or CeA; of these, 52 cells were influenced by both areas, often bilaterally. The LH influenced more neurons than the CeA (101 versus 64 cells). Contralateral stimulation of these forebrain areas was more often effective (144 responses) than ipsilateral (74). Modulatory effects were mostly excitatory (102 cells); 11 cells were inhibited, mostly by ipsilateral LH stimulation. A subset of these cells (n = 25) was examined for the effects of microinjection of DL-homocysteic acid (DLH), a glutamate receptor agonist, into the LH and/or CeA. The effects of electrical stimulation were completely mimicked by DLH, indicating that cell somata in and around the stimulating sites were responsible for these effects. Other cells (n = 25) were tested for the effects of electrical stimulation of the LH and/or CeA on the responses to taste stimulation of the tongue (32 mM sucrose, NaCl and quinine hydrochloride, and 3.2 mM citric acid). Responses to taste stimuli were enhanced by the excitatory influence of the LH and/or CeA. These data demonstrate that descending influences from the LH and CeA reach many of the same cells in the gustatory NST and can modulate their responses to taste stimulation.  相似文献   

11.
We examined the effects of centrally administered orexin-A on corticotropin-releasing factor (CRF)-containing neurons in the hypothalamic paraventricular nucleus (PVN) and the central amygdaloid nucleus (CeA) of rats, using dual immunostaining for CRF and Fos. Ninety minutes after intracerebroventricular administration of orexin-A, approximately 96% and 45% of CRF-containing neurons expressed Fos-like immunoreactivity (LI) in the PVN and the CeA, respectively. We also examined the effects of immobilized stress and cold exposure on orexin-A-containing neurons in the rat hypothalamus using dual immunostaining for orexin-A and Fos. After immobilized stress for 20 min and cold exposure at 4 degrees C for 30 min, approximately 24% and 15% of orexin-A-containing neurons expressed Fos-LI, respectively. These results suggest that orexins in the central nervous system may be involved in the activation of central CRF neurons induced by stress.  相似文献   

12.
Summary Growth hormone (GH) production of the anterior pituitary gland is controlled by inhibiting and releasing hormones that are synthesized in the diencephalon. In order to elucidate the possible interrelationships between somatostatin and growth hormone-releasing factor (GRF) synthesizing neurons at the hypothalamic level, immunocytochemical double labelling studies were performed on sections containing the arcuate nucleus (ARC) of the rat. Somatostatin producing neurons were located in the dorsomedial part of the ARC, while somatostatin immunoreactive (IR) axons were found in the ventro-lateral part of the nucleus, an area containing GRF-synthesizing cells. The use of the dual antigen localization technique revealed the approach and juxtaposition of somatostatin containing axons to dendrites and cell bodies of GRF-synthesizing neurons. At the light microscopic level, several somatostatinergic axon varicosities were clustered around single GRF-synthesizing cells. Ultrastructural analysis of the ventrolateral part of the ARC showed that (i), somatostatinergic axons established synaptic connections (ii), GRF-producing neurons received axons terminals on their somata and dendrites and (iii), somatostatin-IR axons formed asymmetric synaptic specializations with both dendrites and somata of GRF-synthesizing neurons.These morphological findings indicate that the hormone preduction and release of hypophysiotrophic GRF-IR neurons can be influenced by the central somatostatin system via direct synaptic mechanisms. The data support the concent that the interaction of inhibiting and releasing hormones, which determines responses of the pituitary target cells, may take place also at the hypothalamic level.Supported by grants from the National Institute of Health (NIH NS 19266), the National Science Foundation (INT 8703030, 8602688), the Hungarian Academy of Sciences (OTKA 104) and the National Foundation of Technical Development (OKKFT Tt 286/1986)  相似文献   

13.
The adrenergic innervation of somatostatin synthesizing neurons located in the anterior region of the rat hypothalamic periventricular nucleus was studied by means of a light and electron microscopic immunocytochemical double labelling technique. This region which is the source of hypophysiotrophic somatostatin immunoreactive (IR) neurons also receives a dense plexus of adrenergic axons as determined by immunocytochemistry of phenylethanolamine-N-methyltransferase (PNMT), the marker enzyme for the central adrenergic system. The simultaneous detection of PNMT and somatostatin antigens in hypothalamic sections of colchicine pretreated animals revealed a congruency in the distribution of the labelled elements and also close juxtaposition of PNMT-IR axons to somatostatin producing neurons. At the ultrastructural level, axo-somatic and axo-dendritic synaptic connections were found between PNMT-containing axons and somatostatin expressing neurons. These morphological findings support the view that the central adrenergic system might influence the production and secretion of growth hormone in the pituitary gland by a direct monosynaptic interaction with somatostatin synthesizing neurons.  相似文献   

14.
Summary The adrenergic innervation of somatostatin synthesizing neurons located in the anterior region of the rat hypothalamic periventricular nucleus was studied by means of a light and electron microscopic immunocytochemical double labelling technique. This region which is the source of hypophysiotrophic somatostatin immunoreactive (IR) neurons also receives a dense plexus of adrenergic axons as determined by immunocytochemistry of phenylethanolamine-N-methyltransferase (PNMT), the marker enzyme for the central adrenergic system. The simultaneous detection of PNMT and somatostatin antigens in hypothalamic sections of colchicine pretreated animals revealed a congruency in the distribution of the labelled elements and also close juxtaposition of PNMT-IR axons to somatostatin producing neurons. At the ultrastructural level, axo-somatic and axo-dendritic synaptic connections were found between PNMT-containing axons and somatostatin expressing neurons. These morphological findings support the view that the central adrenergic system might influence the production and secretion of growth hormone in the pituitary gland by a direct monosynaptic interaction with somatostatin synthesizing neurons.  相似文献   

15.
The neuropeptide oxytocin (OT) influences prosocial behavior(s), aggression, and stress responsiveness, and these diverse effects are regulated in a species- and context-specific manner. The naked mole-rat (Heterocephalus glaber) is a unique species with which to study context-dependent effects of OT, exhibiting a strict social hierarchy with behavioral specialization within the subordinate caste: soldiers are aggressive and defend colonies against unfamiliar conspecifics while workers are prosocial and contribute to in-colony behaviors such as pup care. To determine if OT is involved in subcaste-specific behaviors, we compared behavioral responses between workers and soldiers of both sexes during a modified resident/intruder paradigm, and quantified activation of OT neurons in the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON) using the immediate-early-gene marker c-fos co-localized with OT neurons. Resident workers and soldiers were age-matched with unfamiliar worker stimulus animals as intruders, and encounters were videorecorded and scored for aggressive behaviors. Colony-matched controls were left in their home colony for the duration of the encounters. Brains were extracted and cell counts were conducted for OT immunoreactive (ir), c-fos-ir, and percentage of OT-c-fos double-labeled cells. Results indicate that resident workers were less aggressive but showed greater OT neural activity than soldiers. Furthermore, a linear model including social treatment, cortisol, and subcaste revealed that subcaste was the only significant predictor of OT-c-fos double-labeled cells in the PVN. These data suggest that in naked mole-rats OT promotes prosocial behaviors rather than aggression and that even within subordinates status exerts robust effects on brain and behavior.  相似文献   

16.
Electrophysiological recordings in lactating rats show that oxytocin (OT) and vasopressin (AVP) neurons exhibit specific patterns of activities in relation to peripheral stimuli: periodic bursting firing for OT neurons during suckling, phasic firing for AVP neurons during hyperosmolarity (systemic injection of hypertonic saline). These activities are autocontrolled by OT and AVP released somato-dentritically within the hypothalamic magnocellular nuclei. In vivo, OT enhances the amplitude and frequency of bursts, an effect accompanied with an increase in basal firing rate. However, the characteristics of firing change as facilitation proceeds: the spike patterns become very irregular with clusters of spikes spaced by long silences; the firing rate is highly variable and clearly oscillates before facilitated bursts. This unstable behaviour dramatically decreases during intense tonic activation which temporarily interrupts bursting, and could therefore be a prerequisite for bursting. In vivo, the effects of AVP depend on the initial firing pattern of AVP neurons: AVP excites weakly active neurons (increasing duration of active periods and decreasing silences), inhibits highly active neurons, and does not affect neurons with intermediate phasic activity. AVP brings the entire population of AVP neurons to discharge with a medium phasic activity characterised by periods of firing and silence lasting 20–40 s, a pattern shown to optimise the release of AVP from the neurohypophysis. Each of the peptides (OT or AVP) induces an increase in intracellular Ca2+ concentration, specifically in the neurons containing either OT or AVP respectively. OT evokes the release of Ca2+ from IP3-sensitive intracellular stores. AVP induces an influx of Ca2+ through voltage-dependent Ca2+ channels of T-, L- and N-types. We postulate that the facilitatory autocontrol of OT and AVP neurons could be mediated by Ca2+ known to play a key role in the control of the patterns of phasic neurons.  相似文献   

17.
Corticotropin releasing factor (CRF) appears to be critical for the control of important aspects of the behavioral and physiological response to stressors and drugs of abuse. However, the extent to which the different brain CRF neuronal populations are similarly activated after stress and drug administration is not known. We then studied, using double immunohistochemistry for CRF and Fos protein, stress and amphetamine-induced activation of CRF neurons in cortex, central amygdala (CeA), medial parvocellular dorsal, and submagnocellular parvocellular regions of the paraventricular nucleus of the hypothalamus (PVNmpd and PVNsm, respectively) and Barrington nucleus (Bar). Neither exposure to a novel environment (hole-board, HB) nor immobilization (IMO) increased Fos-like immunoreactivity (FLI) in the CeA, but they did to the same extent in cortical regions. In other regions only IMO increased FLI. HB and IMO both failed to activate CRF+ neurons in cortical areas, but after IMO, some neurons expressing FLI in the PVNsm and most of them in the PVNmpd and Bar were CRF+. Amphetamine administration increased FLI in cortical areas and CeA (with some CRF+ neurons expressing FLI), whereas the number of CRF+ neurons increased only in the PVNsm, in contrast to the effects of IMO. The present results indicate that stress and amphetamine elicited a distinct pattern of brain Fos-like protein expression and differentially activated some of the brain CRF neuronal populations, despite similar levels of overall FLI in the case of IMO and amphetamine.  相似文献   

18.
The hypothalamo-neurohypophyseal system (HNS) is?the neurovascular structure through which the hypothalamic neuropeptides oxytocin and arginine-vasopressin exit the brain into the bloodstream, where they go on to affect peripheral physiology. Here, we investigate the molecular cues that regulate the neurovascular contact between hypothalamic axons and neurohypophyseal capillaries of the zebrafish. We developed a transgenic system in which both hypothalamic axons and neurohypophyseal vasculature can be analyzed in?vivo. We identified the cellular organization of the zebrafish HNS as well as the dynamic processes that contribute to formation of the HNS neurovascular interface. We show that formation of this interface is regulated during development by local release of oxytocin, which affects endothelial morphogenesis. This cell communication process is essential for the establishment of a tight axovasal interface between the neurons and blood vessels of the HNS. We present a unique example of axons affecting endothelial morphogenesis through secretion of a neuropeptide.  相似文献   

19.
Increasing evidence is establishing that adult neurons and their associated glia can undergo state-dependent changes in their morphology and in consequence, in their relationships and functional interactions. A neuronal system that illustrates this kind of neuronal-glial plasticity in an exemplary fashion is that responsible for the secretion of the neurohormone oxytocin (OT). As shown by comparative ultrastructural analysis, during physiological conditions like lactation and dehydration, which result in enhanced peripheral and central release of the peptide, astrocytic coverage of OT neurons is markedly reduced and their surfaces are left directly juxtaposed. Such reduced glial coverage is of consequence to neuronal activity since it modifies extracellular ionic homeostasis and glutamate neurotransmission. In addition, it is probably prerequisite to the synaptic remodeling that occurs concurrently, and results in an enhanced number of inhibitory (GABAergic) and excitatory (glutamatergic, noradrenergic) synapses, thus further affecting neuronal function. The neuronal-glial and synaptic changes occur rapidly, within a matter of hours, and are reversible with termination of stimulation. The adult OT system retains many juvenile molecular features that may allow such plasticity, including expression of cell adhesion molecules implicated in neuronal-glial interactions during development, like polysialylated NCAM, F3/contactin and its ligand, the matrix glycoprotein, tenascin-C. On the other hand, OT itself can induce the changes since in vivo (ventricular microinfusion) or in vitro (on acute hypothalamic slices) application leads to glial and neuronal transformations similar to those induced by physiological stimuli.  相似文献   

20.
Evidence suggests that GABA might mediate the inhibitory influence of centrifugal inputs on taste-evoked responses in the parabrachial nucleus (PBN). Previous studies show that activation of the gustatory cortex (GC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH) inhibits PBN taste responses, GABAergic neurons are present in these forebrain regions, and GABA reduces the input resistance of PBN neurons. The present study investigated the expression of glutamic acid decarboxylase immunoreactivity (GAD_67 ir) in GC, BNST, CeA, and LH neurons that project to the PBN in rats. After anesthesia (50 mg/kg ip Nembutal), injections of the retrograde tracer Fluorogold (FG) were made in the physiologically defined gustatory PBN. Brain tissue containing the above forebrain structures was processed and examined for FG and GAD_67 ir. Similar to previous studies, each forebrain site contained retrogradely labeled neurons. Our results suggest further that the major source of input to the PBN taste region is the CeA (608 total cells) followed by GC (257 cells), LH (106 cells), and BNST (92 cells). This suggests a differential contribution to centrifugal control of PBN taste processing. We further show that despite the presence of GAD_67 neurons in each forebrain area, colocalization was extremely rare, occurring only in 3 out of 1,063 FG-labeled cells. If we assume that the influence of centrifugal input is mediated by direct projections to the gustatory region of the PBN, then GABAergic forebrain neurons apparently are not part of this descending pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号