首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primases synthesize short RNA strands on single-stranded DNA templates, thereby generating the hybrid duplexes required for the initiation of synthesis by DNA polymerases. We present the crystal structure of the catalytic unit of a primase enzyme, that of a approximately 320 residue fragment of Escherichia coli primase, determined at 2.9 A resolution. Central to the catalytic unit is a TOPRIM domain that is strikingly similar in its structure to that of corresponding domains in DNA topoisomerases, but is unrelated to the catalytic centers of other DNA or RNA polymerases. The catalytic domain of primase is crescent-shaped, and the concave face of the crescent is predicted to accommodate about 10 base-pairs of RNA-DNA duplex in a loose interaction, thereby limiting processivity.  相似文献   

2.
Mechanisms that allow replicative DNA polymerases to attain high processivity are often specific to a given polymerase and cannot be generalized to others. Here we report a protein engineering-based approach to significantly improve the processivity of DNA polymerases by covalently linking the polymerase domain to a sequence non-specific dsDNA binding protein. Using Sso7d from Sulfolobus solfataricus as the DNA binding protein, we demonstrate that the processivity of both family A and family B polymerases can be significantly enhanced. By introducing point mutations in Sso7d, we show that the dsDNA binding property of Sso7d is essential for the enhancement. We present evidence supporting two novel conclusions. First, the fusion of a heterologous dsDNA binding protein to a polymerase can increase processivity without compromising catalytic activity and enzyme stability. Second, polymerase processivity is limiting for the efficiency of PCR, such that the fusion enzymes exhibit profound advantages over unmodified enzymes in PCR applications. This technology has the potential to broadly improve the performance of nucleic acid modifying enzymes.  相似文献   

3.
Polymerase γ is solely responsible for fast and faithful replication of the mitochondrial genome. High processivity of the polymerase γ is often achieved by association of the catalytic subunit with accessory factors that enhance its catalytic activity and/or DNA binding. Here we characterize the intrinsic catalytic activity and processivity of the recombinant catalytic subunit of yeast polymerase γ, the Mip1 protein. We demonstrate that Mip1 can efficiently synthesize DNA stretches of up to several thousand nucleotides without dissociation from the template. Furthermore, we show that Mip1 can perform DNA synthesis on double-stranded templates utilizing a strand displacement mechanism. Our observations confirm that in contrast to its homologues in other organisms, Mip1 can function as a single-subunit replicative polymerase.  相似文献   

4.
The UmuC/DinB family of bypass polymerases is responsible for translesion DNA synthesis and includes the human polymerases eta, iota, and kappa. We determined the 2.3 A resolution crystal structure of a catalytic fragment of the DinB homolog (Dbh) polymerase from Sulfolobus solfataricus and show that it is nonprocessive and can bypass an abasic site. The structure of the catalytic domain is nearly identical to those of most other polymerase families. Homology modeling suggests that there is minimal contact between protein and DNA, that the nascent base pair binding pocket is quite accessible, and that the enzyme is already in a closed conformation characteristic of ternary polymerase complexes. These observations afford insights into the sources of low fidelity and low processivity of the UmuC/DinB polymerases.  相似文献   

5.
Genome replication is inefficient without processivity factors, which tether DNA polymerases to their templates. The vaccinia virus DNA polymerase E9 requires two viral proteins, A20 and D4, for processive DNA synthesis, yet the mechanism of how this tricomplex functions is unknown. This study confirms that these three proteins are necessary and sufficient for processivity, and it focuses on the role of D4, which also functions as a uracil DNA glycosylase (UDG) repair enzyme. A series of D4 mutants was generated to discover which sites are important for processivity. Three point mutants (K126V, K160V, and R187V) which did not function in processive DNA synthesis, though they retained UDG catalytic activity, were identified. The mutants were able to compete with wild-type D4 in processivity assays and retained binding to both A20 and DNA. The crystal structure of R187V was resolved and revealed that the local charge distribution around the substituted residue is altered. However, the mutant protein was shown to have no major structural distortions. This suggests that the positive charges of residues 126, 160, and 187 are required for D4 to function in processive DNA synthesis. Consistent with this is the ability of the conserved mutant K126R to function in processivity. These mutants may help unlock the mechanism by which D4 contributes to processive DNA synthesis.Poxviruses are large, double-stranded DNA viruses that replicate exclusively in the cell cytoplasm in granular structures known as virosomes (31). Separated from the host nucleus, they rely on their own encoded gene products for DNA synthesis and replication (43). To efficiently synthesize its ∼200,000-base genome, the poxvirus DNA polymerase must be tethered to the DNA template by its processivity factor. DNA processivity factors are proteins that stabilize polymerases onto their templates for effective genome replication (1, 22). Processivity factors are synthesized by nearly all replicating systems, ranging from bacteriophages to eukaryotes, yet each one is specific to its cognate polymerase. In the presence of these factors, polymerases are able to incorporate a great number of nucleotides per template binding event; in their absence, polymerases detach from their templates too frequently to successfully replicate the genome (14, 20). E9, the DNA polymerase of the prototypical poxvirus, vaccinia virus, synthesizes approximately 10 nucleotides before dissociating from the viral DNA template (28). However, it can incorporate thousands of nucleotides when it is associated with its processivity factor (29). This extended strand synthesis, known as processivity, is necessary for vaccinia virus to effectively replicate its 192-kb genome.The protein A20 was first reported to be a component of the vaccinia virus processive DNA polymerase (19, 37), yet we were unable to establish processivity in vitro using only A20 and E9. To identify which other proteins were required for processivity, we assessed six in vitro-synthesized proteins known to be involved in vaccinia virus replication (E9, A20, B1, D4, D5, and H5). We found that the protein D4, a uracil DNA glycosylase (UDG), was required in addition to A20 and E9 and that these three proteins are both necessary and sufficient for vaccinia virus processivity. Indeed, A20 and D4 have been shown to interact with each other (15, 26), and our finding supports a report identifying A20 and D4 as forming a heterodimeric processivity factor for E9 (41). Here, we use mutational analysis to examine the role of D4 in processive DNA synthesis. We report the finding of three D4 mutants which are unable to function in processivity yet retain their UDG enzymatic activity and their ability to bind both A20 and DNA.  相似文献   

6.
The catalytic subunit (alpha) of mitochondrial DNA polymerase (pol gamma) shares conserved DNA polymerase and 3'-5' exonuclease active site motifs with Escherichia coli DNA polymerase I and bacteriophage T7 DNA polymerase. A major difference between the prokaryotic and mitochondrial proteins is the size and sequence of the region between the exonuclease and DNA polymerase domains, referred to as the spacer in pol gamma-alpha. Four gamma-specific conserved sequence elements are located within the spacer region of the catalytic subunit in eukaryotic species from yeast to humans. To elucidate the functional roles of the spacer region, we pursued deletion and site-directed mutagenesis of Drosophila pol gamma. Mutant proteins were expressed from baculovirus constructs in insect cells, purified to near homogeneity, and analyzed biochemically. We find that mutations in three of the four conserved sequence elements within the spacer alter enzyme activity, processivity, and/or DNA binding affinity. In addition, several mutations affect differentially DNA polymerase and exonuclease activity and/or functional interactions with mitochondrial single-stranded DNA-binding protein. Based on these results and crystallographic evidence showing that the template-primer binds in a cleft between the exonuclease and DNA polymerase domains in family A DNA polymerases, we propose that conserved sequences within the spacer of pol gamma may position the substrate with respect to the enzyme catalytic domains.  相似文献   

7.
The intervening domain of the thermostable Thermus aquaticus DNA polymerase (TAQ: polymerase), which has no catalytic activity, has been exchanged for the 3'-5' exonuclease domain of the homologous mesophile Escherichia coli DNA polymerase I (E.coli pol I) and the homologous thermostable Thermotoga neapolitana DNA polymerase (TNE: polymerase). Three chimeric DNA polymerases have been constructed using the three-dimensional (3D) structure of the Klenow fragment of the E.coli pol I and 3D models of the intervening and polymerase domains of the TAQ: polymerase and the TNE: polymerase: chimera TaqEc1 (exchange of residues 292-423 from TAQ: polymerase for residues 327-519 of E.coli pol I), chimera TaqTne1 (exchange of residues 292-423 of TAQ: polymerase for residues 295-485 of TNE: polymerase) and chimera TaqTne2 (exchange of residues 292-448 of TAQ: polymerase for residues 295-510 of TNE: polymerase). The chimera TaqEc1 showed characteristics from both parental polymerases at an intermediate temperature of 50 degrees C: high polymerase activity, processivity, 3'-5' exonuclease activity and proof-reading function. In comparison, the chimeras TaqTne1 and TaqTne2 showed no significant 3'-5' exonuclease activity and no proof-reading function. The chimera TaqTne1 showed an optimum temperature at 60 degrees C, decreased polymerase activity compared with the TAQ: polymerase and reduced processivity. The chimera TaqTne2 showed high polymerase activity at 72 degrees C, processivity and less reduced thermostability compared with the chimera TaqTne1.  相似文献   

8.
The vaccinia virus DNA polymerase is inherently distributive but acquires processivity by associating with a heterodimeric processivity factor comprised of the viral A20 and D4 proteins. D4 is also an enzymatically active uracil DNA glycosylase (UDG). The presence of an active repair protein as an essential component of the polymerase holoenzyme is a unique feature of the replication machinery. We have shown previously that the A20-UDG complex has a stoichiometry of ~1:1, and our data suggest that A20 serves as a bridge between polymerase and UDG. Here we show that conserved hydrophobic residues in the N' terminus of A20 are important for its binding to UDG. Our data argue against the assembly of D4 into higher order multimers, suggesting that the processivity factor does not form a toroidal ring around the DNA. Instead, we hypothesize that the intrinsic, processive DNA scanning activity of UDG tethers the holoenzyme to the DNA template. The inclusion of UDG as an essential holoenzyme component suggests that replication and base excision repair may be coupled. Here we show that the DNA polymerase can utilize dUTP as a substrate in vitro. Moreover, uracil moieties incorporated into the nascent strand during holoenzyme-mediated DNA synthesis can be excised by the viral UDG present within this holoenzyme, leaving abasic sites. Finally, we show that the polymerase stalls upon encountering an abasic site in the template strand, indicating that, like many replicative polymerases, the poxviral holoenzyme cannot perform translesion synthesis across an abasic site.  相似文献   

9.
DNA polymerases are essential enzymes in all domains of life for both DNA replication and repair. The primary DNA replication polymerase from Sulfolobus solfataricus (SsoDpo1) has been shown previously to provide the necessary polymerization speed and exonuclease activity to replicate the genome accurately. We find that this polymerase is able to physically associate with itself to form a trimer and that this complex is stabilized in the presence of DNA. Analytical gel filtration and electrophoretic mobility shift assays establish that initially a single DNA polymerase binds to DNA followed by the cooperative binding of two additional molecules of the polymerase at higher concentrations of the enzyme. Protein chemical crosslinking experiments show that these are specific polymerase–polymerase interactions and not just separate binding events along DNA. Isothermal titration calorimetry and fluorescence anisotropy experiments corroborate these findings and show a stoichiometry where three polymerases are bound to a single DNA substrate. The trimeric polymerase complex significantly increases both the DNA synthesis rate and the processivity of SsoDpo1. Taken together, these results suggest the presence of a trimeric DNA polymerase complex that is able to synthesize long DNA strands more efficiently than the monomeric form.  相似文献   

10.
Human cyclin/PCNA (proliferating cell nuclear antigen) is structurally, functionally, and immunologically homologous to the calf thymus auxiliary protein for DNA polymerase delta. This auxiliary protein has been investigated as a stimulatory factor for the nuclear DNA polymerases from S. cerevisiae. Calf cyclin/PCNA enhances by more than ten-fold the ability of DNA polymerase III to replicate templates with high template/primer ratios, e.g. poly(dA).oligo(dT) (40:1). The degree of stimulation increases with the template/primer ratio. At a high template/primer ratio, i.e. low primer density, cyclin/PCNA greatly increases processive DNA synthesis by DNA polymerase III. At low template/primer ratios (e.g. poly(dA).oligo(dT) (2.5:1), where addition of cyclin/PCNA only minimally increases the processivity of DNA polymerase III, a several-fold stimulation of total DNA synthesis is still observed. This indicates that cyclin/PCNA may also increase productive binding of DNA polymerase III to the template-primer and stabilize the template-primer-polymerase complex. The activity of yeast DNA polymerases I and II is not affected by addition of cyclin/PCNA. These results strengthen the hypothesis that yeast DNA polymerase III is functionally analogous to the mammalian DNA polymerase delta.  相似文献   

11.
DNA replication in bacteria is performed by a specialized multicomponent replicase, the DNA polymerase III holoenzyme, that consist of three essential components: a polymerase, the beta sliding clamp processivity factor, and the DnaX complex clamp-loader. We report here the assembly of the minimal functional holoenzyme from Thermus thermophilus (Tth), an extreme thermophile. The minimal holoenzyme consists of alpha (pol III catalytic subunit), beta (sliding clamp processivity factor), and the essential DnaX (tau/gamma), delta and delta' components of the DnaX complex. We show with purified recombinant proteins that these five components are required for rapid and processive DNA synthesis on long single-stranded DNA templates. Subunit interactions known to occur in DNA polymerase III holoenzyme from mesophilic bacteria including delta-delta' interaction, deltadelta'-tau/gamma complex formation, and alpha-tau interaction, also occur within the Tth enzyme. As in mesophilic holoenzymes, in the presence of a primed DNA template, these subunits assemble into a stable initiation complex in an ATP-dependent manner. However, in contrast to replicative polymerases from mesophilic bacteria, Tth holoenzyme is efficient only at temperatures above 50 degrees C, both with regard to initiation complex formation and processive DNA synthesis. The minimal Tth DNA polymerase III holoenzyme displays an elongation rate of 350 bp/s at 72 degrees C and a processivity of greater than 8.6 kilobases, the length of the template that is fully replicated after a single association event.  相似文献   

12.
Cell survival after DNA damage depends on specialized DNA polymerases able to perform DNA synthesis on imperfect templates. Most of these enzymes belong to the recently discovered Y-family of DNA polymerases, none of which has been previously described in plants. We report here the isolation, functional characterization and expression analysis of a plant representative of the Y-family. This polymerase, which we have termed AtPolkappa, is a homolog of Escherichia coli pol IV and human pol kappa, and thus belongs to the DinB subfamily. We purified AtPolkappa and found a template-directed DNA polymerase, endowed with limited processivity that is able to extend primer-terminal mispairs. The activity and processivity of AtPolkappa are enhanced markedly upon deletion of 193 amino acids (aa) from its carboxy (C)-terminal domain. Loss of this region also affects the nucleotide selectivity of the enzyme, leading to the incorporation of both dCTP and dTTP opposite A in the template. We detected three cDNA forms, which result from the alternative splicing of AtPOLK mRNA and have distinct patterns of expression in different plant organs. Histochemical localization of beta-glucuronidase (GUS) activity in transgenic plants revealed that the AtPOLK promoter is active in endoreduplicating cells, suggesting a possible role during consecutive DNA replication cycles in the absence of mitosis.  相似文献   

13.
BACKGROUND: Members of the Pol II family of DNA polymerases are responsible for chromosomal replication in eukaryotes, and carry out highly processive DNA replication when attached to ring-shaped processivity clamps. The sequences of Pol II polymerases are distinct from those of members of the well-studied Pol I family of DNA polymerases. The DNA polymerase from the archaebacterium Desulfurococcus strain Tok (D. Tok Pol) is a member of the Pol II family that retains catalytic activity at elevated temperatures. RESULTS: The crystal structure of D. Tok Pol has been determined at 2.4 A resolution. The architecture of this Pol II type DNA polymerase resembles that of the DNA polymerase from the bacteriophage RB69, with which it shares less than approximately 20% sequence identity. As in RB69, the central catalytic region of the DNA polymerase is located within the 'palm' subdomain and is strikingly similar in structure to the corresponding regions of Pol I type DNA polymerases. The structural scaffold that surrounds the catalytic core in D. Tok Pol is unrelated in structure to that of Pol I type polymerases. The 3'-5' proofreading exonuclease domain of D. Tok Pol resembles the corresponding domains of RB69 Pol and Pol I type DNA polymerases. The exonuclease domain in D. Tok Pol is located in the same position relative to the polymerase domain as seen in RB69, and on the opposite side of the palm subdomain compared to its location in Pol I type polymerases. The N-terminal domain of D. Tok Pol has structural similarity to RNA-binding domains. Sequence alignments suggest that this domain is conserved in the eukaryotic DNA polymerases delta and epsilon. CONCLUSIONS: The structure of D. Tok Pol confirms that the modes of binding of the template and extrusion of newly synthesized duplex DNA are likely to be similar in both Pol II and Pol I type DNA polymerases. However, the mechanism by which the newly synthesized product transits in and out of the proofreading exonuclease domain has to be quite different. The discovery of a domain that seems to be an RNA-binding module raises the possibility that Pol II family members interact with RNA.  相似文献   

14.
García PB  Robledo NL  Islas AL 《Biochemistry》2004,43(51):16515-16524
DNA polymerases use an uninterrupted template strand to direct synthesis of DNA. However, some DNA polymerases can synthesize DNA across two discontinuous templates by binding and juxtaposing them, resulting in synthesis across the junction. Primer/template duplexes with 3' overhangs are especially efficient substrates, suggesting that DNA polymerases use the overhangs as regions of microhomology for template synapsis. The formation of these overhangs may be the result of non-template-directed nucleotide addition by DNA polymerases. To examine the relative magnitude and mechanism of template switching, we studied the in vitro enzyme kinetics of template switching and non-template-directed nucleotide addition by the 3'-5' exonuclease-deficient large fragment of Escherichia coli DNA polymerase I. Non-template-directed nucleotide addition and template switching were compared to that of standard primer extension. We found that non-template-directed nucleotide addition and template switching showed similar rates and were approximately 100-fold slower than normal template-directed DNA synthesis. Furthermore, non-template-directed nucleotide addition showed a 10-fold preference for adding dAMP to the ends of DNA over that of the other three nucleotides. For template switching, kinetic analysis revealed that the two template substrates acted as a random bireactant system with mixed-type inhibition of substrate binding by one substrate over the other. These data are the first to establish the binding kinetics of two discontinuous DNA substrates to a single DNA polymerase. Our results suggest that although the activities are relatively weak, non-template-directed nucleotide addition and template switching allow DNA polymerases to overcome breaks in the template strand in an error-prone manner.  相似文献   

15.
DNA synthesis by two eukaryotic DNA polymerases, alpha and delta, was studied using a single-strand M13 DNA template primed at a unique site. In the presence of low amounts of either DNA polymerase alpha or delta, DNA synthesis was limited and short DNA strands of approximately 100 bases were produced. Addition of replication factors RF-A, PCNA and RF-C, which were previously shown to be required for SV40 DNA replication in vitro, differentially stimulated the activity of both DNA polymerases. RF-A and RF-C independently stimulated DNA polymerase alpha activity 4- to 6-fold, yielding relatively short DNA strands (less than 1 kb) and PCNA had no effect. In contrast, polymerase delta activity was stimulated co-operatively by PCNA, RF-A and RF-C approximately 25- to 30-fold, yielding relatively long DNA strands (up to 4 kb). Neither RF-C nor RF-A appear to correspond to known polymerase stimulatory factors. RF-A was previously shown to be required for initiation of DNA replication at the SV40 origin. Results presented here suggest that it also functions during elongation. The differential effects of these three replication factors on DNA polymerases alpha and delta is consistent with the model that the polymerases function at the replication fork on the lagging and leading strand templates respectively. We further suggest that co-ordinated synthesis of these strands requires dynamic protein-protein interactions between these replication factors and the two DNA polymerases.  相似文献   

16.
17.
XPF/Rad1/Mus81/Hef proteins recognize and cleave branched DNA structures. XPF and Rad1 proteins cleave the 5' side of nucleotide excision repair bubble, while Mus81 and Hef cleave similar sites of the nicked Holliday junction, fork, or flap structure. These proteins all function as dimers and consist of catalytic and helix-hairpin-helix DNA binding (HhH) domains. We have determined the crystal structure of the HhH domain of Pyrococcus furiosus Hef nuclease (HefHhH), which revealed the distinct mode of protein dimerization. Our structural and biochemical analyses also showed that each of the catalytic and HhH domains binds to distinct regions within the fork-structured DNA: each HhH domain from two separate subunits asymmetrically binds to the arm region, while the catalytic domain binds near the junction center. Upon binding to DNA, Hef nuclease disrupts base pairs near the cleavage site. It is most likely that this bipartite binding mode is conserved in the XPF/Rad1/Mus81 nuclease family.  相似文献   

18.
We have previously purified and characterized wheat germ DNA polymerases A and B. To determine the role played by DNA polymerases A and B in DNA replication, we have measured the level of their activities during wheat embryo germination. The level of cellular proteins known to be associated with DNA synthesis such as PCNA and DNA primase were also investigated. The activity of DNA polymerase A gradually increased reaching a maximal level at 12 h after germination. Three days later, only a residual activity was detected. DNA polymerase B showed the same pattern during germination with very similar changes in activity. Our results indicate a striking correlation between maximal activities of DNA polymerase A, DNA polymerase B and optimal levels of DNA synthesis. These results support a replicative role of these enzymes. The activity of wheat DNA primase that copurifies with DNA polymerase A also increases during wheat germination. Taking together all its properties, and in spite of its behaviour with some inhibitors, DNA polymerase A may be considered as the plant counterpart of animal DNA polymerase . Concerning DNA polymerase B we have previously shown that PCNA stimulates its processivity. Besides studying the changes of DNA polymerases A and B and DNA primase we have also studied changes in PCNA during germination. We show that PCNA is present in wheat embryos at a constant relatively high level during the first 24 h of germination. After 48 h, the absence of PCNA is concomitant with an important decrease in DNA polymerase B activity. In this report we confirm the behaviour of DNA polymerase B as a -like activity.Département de Biologie, Université de Drah-Lmraz,Fez, Maroc  相似文献   

19.
Polyadenylation of mRNAs in poxviruses, crucial for virion maturation, is carried out by a poly(A) polymerase heterodimer composed of a catalytic component, VP55, and a processivity factor, VP39. The ATP-gamma-S bound and unbound crystal structures of the vaccinia polymerase reveal an unusual architecture for VP55 that comprises of N-terminal, central or catalytic, and C-terminal domains with different topologies and that differs from many polymerases, including the eukaryotic poly(A) polymerases. Residues in the active site of VP55, located between the catalytic and C-terminal domains, make specific interactions with the adenine of the ATP analog, establishing the molecular basis of ATP recognition. VP55's concave surface docks the globular VP39. A model for RNA primer binding that involves all three VP55 domains and VP39 is proposed. The model supports biochemical evidence that VP39 functions as a processivity factor by partially enclosing the RNA primer at the heterodimer interface.  相似文献   

20.
The 2.25 A resolution crystal structure of a pol alpha family (family B) DNA polymerase from the hyperthermophilic marine archaeon Thermococcus sp. 9 degrees N-7 (9 degrees N-7 pol) provides new insight into the mechanism of pol alpha family polymerases that include essentially all of the eukaryotic replicative and viral DNA polymerases. The structure is folded into NH(2)- terminal, editing 3'-5' exonuclease, and polymerase domains that are topologically similar to the two other known pol alpha family structures (bacteriophage RB69 and the recently determined Thermococcus gorgonarius), but differ in their relative orientation and conformation.The 9 degrees N-7 polymerase domain structure is reminiscent of the "closed" conformation characteristic of ternary complexes of the pol I polymerase family obtained in the presence of their dNTP and DNA substrates. In the apo-9 degrees N-7 structure, this conformation appears to be stabilized by an ion pair. Thus far, the other apo-pol alpha structures that have been determined adopt open conformations. These results therefore suggest that the pol alpha polymerases undergo a series of conformational transitions during the catalytic cycle similar to those proposed for the pol I family. Furthermore, comparison of the orientations of the fingers and exonuclease (sub)domains relative to the palm subdomain that contains the pol active site suggests that the exonuclease domain and the fingers subdomain of the polymerase can move as a unit and may do so as part of the catalytic cycle. This provides a possible structural explanation for the interdependence of polymerization and editing exonuclease activities unique to pol alpha family polymerases.We suggest that the NH(2)-terminal domain of 9 degrees N-7 pol may be structurally related to an RNA-binding motif, which appears to be conserved among archaeal polymerases. The presence of such a putative RNA- binding domain suggests a mechanism for the observed autoregulation of bacteriophage T4 DNA polymerase synthesis by binding to its own mRNA. Furthermore, conservation of this domain could indicate that such regulation of pol expression may be a characteristic of archaea. Comparion of the 9 degrees N-7 pol structure to its mesostable homolog from bacteriophage RB69 suggests that thermostability is achieved by shortening loops, forming two disulfide bridges, and increasing electrostatic interactions at subdomain interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号