首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Behavioral and physiological processes, such as sleep-wakefulness, thermoregulation, and hormone secretion, exhibit 24-h rhythms in most organisms. These biological rhythms are driven by the circadian clock system and are entrained by the external environment, which in the case of humans includes social time schedules. Couples might be ideal experimental subjects to discriminate between individual traits and environmental factors, as they share lifestyle habits but not genetic backgrounds. In this study, sleep timing was compared between married Japanese couples (n?=?225) who had lived together for 1 yr or more (mean 17 yrs). Additionally, the authors evaluated the influence of individual traits and environmental factors on an individual's sleep timing per each couple. The results reveal that the sleep timings of a couple are mainly associated with the chronotypes of the husband and wife, whereas the sleep timings are significantly influenced by certain environmental factors. The findings suggest that chronotype remains one of the major determinants of an individual's sleep onset and wake times. Understanding an individual's chronotype may help improve the quality of life issues surrounding sleep. (Author correspondence: )  相似文献   

2.
ABSTRACT: The amount and timing of sleep and sleep architecture (sleep stages) are determined by several factors, important among which are the environment, circadian rhythms and time awake. Separating the roles played by these factors requires specific protocols, including the constant routine and altered sleep-wake schedules. Results from such protocols have led to the discovery of the factors that determine the amounts and distribution of slow wave and rapid eye movement sleep as well as to the development of models to determine the amount and timing of sleep. One successful model postulates two processes. The first is process S, which is due to sleep pressure (and increases with time awake) and is attributed to a 'sleep homeostat'. Process S reverses during slow wave sleep (when it is called process S'). The second is process C, which shows a daily rhythm that is parallel to the rhythm of core temperature. Processes S and C combine approximately additively to determine the times of sleep onset and waking. The model has proved useful in describing normal sleep in adults. Current work aims to identify the detailed nature of processes S and C. The model can also be applied to circumstances when the sleep-wake cycle is different from the norm in some way. These circumstances include: those who are poor sleepers or short sleepers; the role an individual's chronotype (a measure of how the timing of the individual's preferred sleep-wake cycle compares with the average for a population); and changes in the sleep-wake cycle with age, particularly in adolescence and aging, since individuals tend to prefer to go to sleep later during adolescence and earlier in old age. In all circumstances, the evidence that sleep times and architecture are altered and the possible causes of these changes (including altered S, S' and C processes) are examined.  相似文献   

3.
4.
Melatonin in circadian sleep disorders in the blind   总被引:2,自引:0,他引:2  
Assessment of sleep patterns in blind people demonstrates a high prevalence of sleep disorders. Our studies have shown that subjects with no conscious light perception (NPL) have a higher occurrence and more severe sleep disorders than those with some degree of light perception (LP). A detailed study of 49 blind individuals showed that those with NPL are likely to have free-running (FR) circadian rhythms (aMT6s, cortisol) including sleep. Non-24-hour (or FR) sleep-wake disorder, characterised by periods of good and bad sleep is a condition that may benefit from melatonin treatment. Melatonin has been administered to NPL subjects with FR circadian rhythms and compared with placebo (or the no-treatment baseline) sleep parameters improved. The results suggest that prior knowledge of the subject's type of circadian rhythm, and timing of treatment in relation to the individual's circadian phase, may improve the efficacy of melatonin.  相似文献   

5.
The appropriate time and place for sleep and waking are important factors for survival. Sleep and waking, rest and activity, flight and fight, feeding, and reproduction are all organized in relation to the day and night. A biological clock, the suprachiasmatic nucleus (SCN), synchronized by photic influences and other environmental cues, provides an endogenous timing signal that entrains circadian body rhythms and is complemented by a homeostatic sleep pressure factor. Cholinergic, catecholaminergic, serotonergic, and histaminergic nuclei control wakefulness and mutually interact with the SCN as well as sleep- and wake-promoting neurons in the hypothalamus to form a bistable switch that controlls the timing of behavioral state transitions. Hypocretin neurons integrate circadian-photic and nutritional-metabolic influences and act as a conductor in the aminergic orchestra. Their loss causes narcolepsy, a disease conferring the inability to separate sleep and waking. Their role in appetitive behavior, stress, and memory functions is important to our understanding of addiction and compulsion.  相似文献   

6.
The appropriate time and place for sleep and waking are important factors for survival. Sleep and waking, rest and activity, flight and fight, feeding, and reproduction are all organized in relation to the day and night. A biological clock, the suprachiasmatic nucleus (SCN), synchronized by photic influences and other environmental cues, provides an endogenous timing signal that entrains circadian body rhythms and is complemented by a homeostatic sleep pressure factor. Cholinergic, catecholaminergic, serotonergic, and histaminergic nuclei control wakefulness and mutually interact with the SCN as well as sleep- and wake-promoting neurons in the hypothalamus to form a bistable switch that controls the timing of behavioral state transitions. Hypocretin neurons integrate circadian-photic and nutritional-metabolic influences and act as a conductor in the aminergic orchestra. Their loss causes narcolepsy, a disease conferring the inability to separate sleep and waking. Their role in appetitive behavior, stress, and memory functions is important to our understanding of addiction and compulsion.  相似文献   

7.
The appropriate time and place for sleep and waking are important factors for survival. Sleep and waking, rest and activity, flight and fight, feeding, and reproduction are all organized in relation to the day and night. A biological clock, the suprachiasmatic nucleus (SCN), synchronized by photic influences and other environmental cues, provides an endogenous timing signal that entrains circadian body rhythms and is complemented by a homeostatic sleep pressure factor. Cholinergic, catecholaminergic, serotonergic, and histaminergic nuclei control wakefulness and mutually interact with the SCN as well as sleep‐ and wake‐promoting neurons in the hypothalamus to form a bistable switch that controlls the timing of behavioral state transitions. Hypocretin neurons integrate circadian‐photic and nutritional‐metabolic influences and act as a conductor in the aminergic orchestra. Their loss causes narcolepsy, a disease conferring the inability to separate sleep and waking. Their role in appetitive behavior, stress, and memory functions is important to our understanding of addiction and compulsion.  相似文献   

8.
Moorad JA  Linksvayer TA 《Genetics》2008,179(2):899-905
Threshold models are useful for understanding the evolution of dimorphic traits with polygenic bases. Selection for threshold characters on individuals is expected to be frequency dependent because of the peculiar way that selection views underlying genetic and environmental factors. Selection among individuals is inefficient because individual phenotypes fall into only two discrete categories that map imperfectly to the underlying genes. Incidence, however, can be continuously distributed among groups, making among-group selection relatively more efficient. Differently put, the group-mean phenotype can be a better predictor of an individual's genotype than that individual's own phenotype. Because evolution in group-structured populations is governed by the balance of selection within and between groups, we can expect threshold traits to evolve in fundamentally different ways when group mean fitness is a function of morph frequency. We extend the theory of selection on threshold traits to include group selection using contextual analysis. For the simple case of linear group-fitness functions, we show that the group-level component of selection, like the individual-level component, is frequency dependent. However, the conditions that determine which component dominates when levels of selection are in conflict (as described by Hamilton's rule) are not frequency dependent. Thus, enhanced group selection is not an inherent property of threshold characters. Nevertheless, we show that predicting the effects of multiple levels of selection on dimorphic traits requires special considerations of the threshold model.  相似文献   

9.
Individual size, rate of growth, and mode and frequency of asexual reproduction are life-history traits of primary importance for sea anemones. These traits determine sexual reproductive output, affect an individual's probability of survival, and are crucial in adapting an individual to its environmental surroundings. The sea anemone Metridium senile (L.) is highly variable in ecological distribution and life history, including rate of growth, individual size, and rate of asexual reproduction. Gonad size (measured as cross-sectional area of gonadal tissue) increases with body weight, so individuals should grow as large and as rapidly as possible to maximize individual sexual reproductive output. Cessation of growth and small body size in intertidal populations suggest that growth is constrained by genetic or environmental conditions. The growth of intertidal individuals transplanted to harbor-float panels demonstrated that growth limits are imposed by environmental factors, most probably limited food and feeding time and damage from wave exposure (which stimulates fragmentation). Individuals in harbor-float populations, which are continuously immersed, grow much larger, and large individuals comprise a greater proportion of the population than in the intertidal zone. The highest rate of fragmentation observed was on harbor-float panels. Patterns of growth and asexual reproduction provide adaptive advantages for M. senile. For harborfloat individuals, large individual size increases gamete production and may increase feeding efficiency. For intertidal individuals, asexual reproduction allows growth despite individual size constraints and rapid population growth, with specific advantages resulting from clone formation.  相似文献   

10.
Most circadian rhythms are controlled by a major pacemaker located in the hypothalamic suprachiasmatic nucleus. Some of these rhythms, called marker rhythms, serve to characterize the timing of the internal temporal order. However, these variables are susceptible to masking effects as the result of activity, body position, light exposure, environmental temperature and sleep. Recently, wrist skin temperature (WT) has been proposed as a new index for evaluating circadian system status. In light of previous evidence suggesting the important relationship between WT and core body temperature regulation, the aim of this work was to purify the WT pattern in order to obtain its endogenous rhythm with the application of multiple demasking procedures. To this end, 103 subjects (18–24 years old) were recruited and their WT, activity, body position, light exposure, environmental temperature and sleep were recorded under free-living conditions for 1 week. WT demasking by categories or intercepts was applied to simulate a “constant routine” protocol (awakening, dim light, recumbent position, low activity and warm environmental temperature). Although the overall circadian pattern of WT was similar regardless of the masking effects, its amplitude was the rhythmic parameter most affected by environmental conditions. The acrophase and mesor were determined to be the most robust parameters for characterizing this rhythm. In addition, a circadian modulation of the masking effect was found for each masking variable. WT rhythm exhibits a strong endogenous component, despite the existence of multiple external influences. This was evidenced by simultaneously eliminating the influence of activity, body position, light exposure, environmental temperature and sleep. We therefore propose that it could be considered a valuable and minimally-invasive means of recording circadian physiology in ambulatory conditions.  相似文献   

11.
The study was performed upon a sample of aged and non-institutionalized subjects. Information was obtained by questionnaires and diaries on personal factors during a typical week. A random subset was subjected to a more detailed analysis of the composition of their meals.

Results showed that increasing age was correlated with: a decreased day-by-day variability in an individual's time of retiring, rising and eating meals; earlier sleep times; increased frequency of daytime naps and nocturnal awakenings; and decreased physical activity. These results occurred both in subjects living alone and in those living with company. Day-by-day differences in the composition of meals tended to decrease with age. When differences between individuals were considered then these tended to increase with age.

Some implications of these findings for studies of circadian rhythmicity in aged subjects-in whom the timing of circadian rhythms becomes more erratic and amplitude falls-are discussed.  相似文献   

12.
《Chronobiology international》2013,30(10):1469-1476
There is evidence that the sleep and circadian systems play a role in glucose metabolism. In addition to physiological factors, sleep is also affected by behavioral, environmental, cultural and social factors. In this study, we examined whether morning or evening preference, sleep timing and sleep duration are associated with glycemic control in patients with type 2 diabetes residing in Thailand. Two hundred and ten type 2 diabetes patients who were not shift workers completed an interview and questionnaires to collect information on diabetes history, habitual sleep duration and sleep timing. Chronotype, an individual’s tendency for being a “morning” or “evening” person, was assessed using the Composite Score of Morningness (CSM), which reflects an individual’s subjective preference for activities in the morning or evening, as well as mid-sleep time on weekend nights (MSF), which reflects their actual sleep behavior. Most recent hemoglobin A1c (HbA1c) values were retrieved from medical records. Evening preference (as indicated by lower CSM), later bedtime on weekends, and shorter sleep duration correlated with higher HbA1c (r?=??0.18, p?=?0.01; r?=?0.17, p?=?0.01 and r?=??0.17, p?=?0.01, respectively), while there was no association between MSF or wake up time and glycemic control. In addition, later bedtime on weekends significantly correlated with shorter sleep duration (r?=??0.34, p?<?0.001). Hierarchical regression analyses adjusting for age, sex, body mass index, insulin use and diabetes duration revealed that later bedtime on weekends was significantly associated with poorer glycemic control (B?=?0.018, p?=?0.02), while CSM was not. Mediation analysis revealed that this association was fully mediated by sleep duration. In summary, later bedtime on weekends was associated with shorter sleep duration and poorer glycemic control in patients with type 2 diabetes. It is likely that patients with later weekend bedtimes curtail their sleep by waking up earlier. Exploring the potential reasons for this phenomenon (e.g. cultural influences, metropolitan lifestyle, environmental factors, family and social obligations) specific to a Thai population may help identify behavioral modifications (i.e. earlier bedtime and/or sleep duration extension) that could possibly lead to improved glycemic control in this population.  相似文献   

13.
There is not a clinically available technique for measuring the physiological traits causing obstructive sleep apnea (OSA). Therefore, it is often difficult to determine why an individual has OSA or to what extent the various traits contribute to the development of OSA. In this study, we present a noninvasive method for measuring four important physiological traits causing OSA: 1) pharyngeal anatomy/collapsibility, 2) ventilatory control system gain (loop gain), 3) the ability of the upper airway to dilate/stiffen in response to an increase in ventilatory drive, and 4) arousal threshold. These variables are measured using a single maneuver in which continuous positive airway pressure (CPAP) is dropped from an optimum to various suboptimum pressures for 3- to 5-min intervals during sleep. Each individual's set of traits is entered into a physiological model of OSA that graphically illustrates the relative importance of each trait in that individual. Results from 14 subjects (10 with OSA) are described. Repeatability measurements from separate nights are also presented for four subjects. The measurements and model illustrate the multifactorial nature of OSA pathogenesis and how, in some individuals, small adjustments of one or another trait (which might be achievable with non-CPAP agents) could potentially treat OSA. This technique could conceivably be used clinically to define a patient's physiology and guide therapy based on the traits.  相似文献   

14.
A recent physiologically based model of human sleep is extended to incorporate the effects of caffeine on sleep-wake timing and fatigue. The model includes the sleep-active neurons of the hypothalamic ventrolateral preoptic area (VLPO), the wake-active monoaminergic brainstem populations (MA), their interactions with cholinergic/orexinergic (ACh/Orx) input to MA, and circadian and homeostatic drives. We model two effects of caffeine on the brain due to competitive antagonism of adenosine (Ad): (i) a reduction in the homestatic drive and (ii) an increase in cholinergic activity. By comparing the model output to experimental data, constraints are determined on the parameters that describe the action of caffeine on the brain. In accord with experiment, the ranges of these parameters imply significant variability in caffeine sensitivity between individuals, with caffeine's effectiveness in reducing fatigue being highly dependent on an individual's tolerance, and past caffeine and sleep history. Although there are wide individual differences in caffeine sensitivity and thus in parameter values, once the model is calibrated for an individual it can be used to make quantitative predictions for that individual. A number of applications of the model are examined, using exemplar parameter values, including: (i) quantitative estimation of the sleep loss and the delay to sleep onset after taking caffeine for various doses and times; (ii) an analysis of the system's stable states showing that the wake state during sleep deprivation is stabilized after taking caffeine; and (iii) comparing model output successfully to experimental values of subjective fatigue reported in a total sleep deprivation study examining the reduction of fatigue with caffeine. This model provides a framework for quantitatively assessing optimal strategies for using caffeine, on an individual basis, to maintain performance during sleep deprivation.  相似文献   

15.
In the contemporary era, when life habits are largely determined by social needs and individual preferences, sleep is nevertheless affected by seasonal environmental changes. Japan has large seasonal and geographical alterations of photoperiod and climate. Japan does not adopt the daylight saving time (DST) system, making it a suitable country for the study of seasonal variations in natural human sleep. The aim of this study was to analyze the seasonal changes in the sleep properties (timing and quality) and identify their relationship with environmental changes. Here, we report an analysis of objective sleep data of 691 161 nights collected from 1856 Japanese participants (age 20–79 years, male 91%, female 9%) for 3 years using contactless biomotion sensors. Sleep onset time did not show clear seasonal variation, but sleep offset time showed a seasonal change with a single latest peak in winter. Seasonal variation was larger during weekends than during weekdays. Sleep offset time well correlated with sunrise time but was different in spring and autumn even when the sunrise time was same, suggesting the role of temperature difference. Sleep quality, estimated by wake time after sleep onset and sleep efficiency, showed seasonal changes with the lowest trough around mid-summer. In conclusion, despite profound social influences, the timing and quality of sleep showed seasonal fluctuation indicating that they were influenced by climate factors even in the developed country.  相似文献   

16.
Humans show large differences in the preferred timing of their sleep and activity. This so-called "chronotype" is largely regulated by the circadian clock. Both genetic variations in clock genes and environmental influences contribute to the distribution of chronotypes in a given population, ranging from extreme early types to extreme late types with the majority falling between these extremes. Social (e.g., school and work) schedules interfere considerably with individual sleep preferences in the majority of the population. Late chronotypes show the largest differences in sleep timing between work and free days leading to a considerable sleep debt on work days, for which they compensate on free days. The discrepancy between work and free days, between social and biological time, can be described as 'social jetlag.' Here, we explore how sleep quality and psychological wellbeing are associated with individual chronotype and/or social jetlag. A total of 501 volunteers filled out the Munich ChronoType Questionnaire (MCTQ) as well as additional questionnaires on: (i) sleep quality (SF-A), (ii) current psychological wellbeing (Basler Befindlichkeitsbogen), (iii) retrospective psychological wellbeing over the past week (POMS), and (iv) consumption of stimulants (e.g., caffeine, nicotine, and alcohol). Associations of chronotype, wellbeing, and stimulant consumption are strongest in teenagers and young adults up to age 25 yrs. The most striking correlation exists between chronotype and smoking, which is significantly higher in late chronotypes of all ages (except for those in retirement). We show these correlations are most probably a consequence of social jetlag, i.e., the discrepancies between social and biological timing rather than a simple association to different chronotypes. Our results strongly suggest that work (and school) schedules should be adapted to chronotype whenever possible.  相似文献   

17.
1. For more than 30 years many studies have been carried out concerning rhythms with periods approaching 24 hr (circadian rhythms). 2. The latter have been demonstrated as resulting from environmental 24 hr synchronizers (zeitgebers), but they usually persist in the absence of a 24 hr synchronization, which proves their endogenous nature. 3. Biological rhythms with periods less than 20 hr (ultradian rhythms) and particularly those approaching 1 hr (circahoral rhythms) have been determined: for motility, rest-activity, sleep phases, endocrine secretions and other physiological functions. 4. These ultradian and circahoral rhythms have been found in rodents, birds, monkeys and humans. 5. Existing at all stages of ontogeny, they have been proved to be endogenous and species and strain specific. 6. As these ultradian rhythms can be influenced by environmental factors and sometimes by circadian rhythms they are not truly periodic, so therefore cannot be computed by the usual processes of mathematical time analysis.  相似文献   

18.
The suprachiasmatic nucleus (SCN) regulates the circadian rhythms of body temperature (T(b)) and vigilance states in mammals. We studied rats in which circadian rhythmicity was abolished after SCN lesions (SCNx rats) to investigate the association between the ultradian rhythms of sleep-wake states and brain temperature (T(br)), which are exposed after lesions. Ultradian rhythms of T(br) (mean period: 3.6 h) and sleep were closely associated in SCNx rats. Within each ultradian cycle, nonrapid eye movement (NREM) sleep was initiated 5 +/- 1 min after T(br) peaks, after which temperature continued a slow decline (0.02 +/- 0.006 degrees C/min) until it reached a minimum. Sleep and slow wave activity (SWA), an index of sleep intensity, were associated with declining temperature. Cross-correlation analysis revealed that the rhythm of T(br) preceded that of SWA by 2-10 min. We also investigated the thermoregulatory and sleep-wake responses of SCNx rats and controls to mild ambient cooling (18 degrees C) and warming (30 degrees C) over 24-h periods. SCNx rats and controls responded similarly to changes in ambient temperature. Cooling decreased REM sleep and increased wake. Warming increased T(br), blunted the amplitude of ultradian T(br) rhythms, and increased the number of transitions into NREM sleep. SCNx rats and controls had similar percentages of NREM sleep, REM sleep, and wake, as well as the same average T(b) within each 24-h period. Our results suggest that, in rats, the SCN modulates the timing but not the amount of sleep or the homeostatic control of sleep-wake states or T(b) during deviations in ambient temperature.  相似文献   

19.
Studies of melatonin and body temperature rhythms revealed that women, younger adults, and morning-oriented types show a relatively larger phase angle between entrained circadian phase and sleep timing than men, older adults, and evening-oriented types, respectively. However, none of these studies has been designed to compare participants representing all these three dimensions of individual variation. Since daily fluctuations in self-reported level of alertness–sleepiness closely follow the circadian rhythms of melatonin and body temperature, one can predict that a study of circadian phase characteristics of fluctuations of sleepiness shell reveals identical sex-, age-, and diurnal type-related differences in phase angle between circadian phase and sleep timing. Analysis of self-scorings of alertness–sleepiness provided by 130 healthy participants of sleep deprivation experiments confirmed this prediction. It seems that both fundamental research and field studies of sleep-deprived individuals can benefit from the evaluation of circadian phase through self-assessment of nocturnal rise of alertness–sleepiness.  相似文献   

20.
The aim of this study was to compare the availability of diurnal and nocturnal light in two residences for aged persons (R1 and R2, Palma de Mallorca, Illes Balears, Spain). We found that the R1 inmates were exposed to lower amounts of light during waking time and higher amounts during sleeping time. The main traits of the circadian rhythms and the quality of sleep in the inmates of the two residences were found to be positively related to the availability of light during waking time and negatively to the increased light exposure during bed time. In addition, the sleep of R1 inmates suffered higher disturbances as a consequence of the different policy for nocturnal diapers check and change. Altogether, these two factors may explain the differences observed in the two residences regarding the circadian rhythms, health status and quality of life. Two conclusions stem from these results: (1) the circadian rhythms of aged people are particularly sensitive to the contrast between diurnal and nocturnal light and (2) the nursing staff of institutions for aged people must receive specific formation on the best practices for maintaining the circadian health of aged people.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号