首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many tumor cells rely on aerobic glycolysis instead of oxidative phosphorylation for their continued proliferation and survival. Myc and HIF-1 are believed to promote such a metabolic switch by, in part, upregulating gene expression of pyruvate dehydrogenase (PDH) kinase 1 (PDHK1), which phosphorylates and inactivates mitochondrial PDH and consequently pyruvate dehydrogenase complex (PDC). Here we report that tyrosine phosphorylation enhances PDHK1 kinase activity by promoting ATP and PDC binding. Functional PDC can form in mitochondria outside of the matrix in some cancer cells and PDHK1 is commonly tyrosine phosphorylated in human cancers by diverse oncogenic tyrosine kinases localized to different mitochondrial compartments. Expression of phosphorylation-deficient, catalytic hypomorph PDHK1 mutants in cancer cells leads to decreased cell proliferation under hypoxia and increased oxidative phosphorylation with enhanced mitochondrial utilization of pyruvate and reduced tumor growth in xenograft nude mice. Together, tyrosine phosphorylation activates PDHK1 to promote the Warburg effect and tumor growth.  相似文献   

2.
Increased conversion of glucose to lactic acid associated with decreased mitochondrial respiration is a unique feature of tumors first described by Otto Warburg in the 1920s. Recent evidence suggests that the Warburg effect is caused by oncogenes and is an underlying mechanism of malignant transformation. Using a novel approach to measure cellular metabolic rates in vitro, the bioenergetic basis of this increased glycolysis and reduced mitochondrial respiration was investigated in two human cancer cell lines, H460 and A549. The bioenergetic phenotype was analyzed by measuring cellular respiration, glycolysis rate, and ATP turnover of the cells in response to various pharmacological modulators. H460 and A549 cells displayed a dependency on glycolysis and an ability to significantly upregulate this pathway when their respiration was inhibited. The converse, however, was not true. The cell lines were attenuated in oxidative phosphorylation (OXPHOS) capacity and were unable to sufficiently upregulate mitochondrial OXPHOS when glycolysis was disabled. This observed mitochondrial impairment was intimately linked to the increased dependency on glycolysis. Furthermore, it was demonstrated that H460 cells were more glycolytic, having a greater impairment of mitochondrial respiration, compared with A549 cells. Finally, the upregulation of glycolysis in response to mitochondrial ATP synthesis inhibition was dependent on AMP-activated protein kinase activity. In summary, our results demonstrate a bioenergetic phenotype of these two cancer cell lines characterized by increased rate of glycolysis and a linked attenuation in their OXPHOS capacity. These metabolic alterations provide a mechanistic explanation for the growth advantage and apoptotic resistance of tumor cells. oxygen consumption; oxidative phosphorylation; Warburg effect; real time  相似文献   

3.
An immunodetection study of protein tyrosine phosphatase 1B (PTP-1B), SHP-2, and Src in isolated mitochondria from different rat tissues (brain, muscle, heart, liver, and kidney) revealed their exclusive localization in the brain. Given this result, we sought whether mitochondria respond to ATP and to the general tyrosine phosphatase inhibitor orthovanadate and found little or no change in the tyrosine phosphorylation profile of mitochondria from muscle, heart, liver, and kidney. In contrast, ATP induced an enhancement in the tyrosine-phosphorylated protein profile of brain mitochondria, which was further greatly enhanced with orthovanadate and which disappeared when Src was inhibited with two inhibitors: PP2 and PP1. Importantly, we found that in brain mitochondria, ATP addition induced Src autophosphorylation at Tyr-416 in its catalytic site, leading to its activation, whereas the regulatory Tyr-527 site remained unphosphorylated. Functional implications were addressed by measurements of the enzymatic activity of each of the oxidative phosphorylation complexes in brain mitochondria in the presence of ATP. We found an increase in complex I, III, and IV activity and a decrease in complex V activity, partially reversed by Src inhibition, demonstrating that the complexes are Src substrates. These results complemented and reinforced our initial study showing that respiration of brain mitochondria was partially dependent on tyrosine phosphorylation. Therefore, the present data suggest a possible control point in the regulation of respiration by tyrosine phosphorylation of the complexes mediated by Src auto-activation.  相似文献   

4.
《Free radical research》2013,47(6-7):517-525
Abstract

While nitric oxide (NO) induces cardioprotection by targeting the mitochondrial permeability transition pore (mPTP), the precise mitochondrial signaling events that mediate the action of NO remain unclear. The purpose of this study was to test whether NO induces cardioprotection against ischemia/reperfusion by inhibiting oxidative stress through mitochondrial zinc and Src tyrosine kinase. The NO donor S-nitroso-N-acetyl penicillamine (SNAP) given before the onset of ischemia reduced cell death in rat cardiomyocytes subjected to simulated ischemia/reperfusion, and this was abolished by the zinc chelator N,N,N’,N’-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) and the Src tyrosine kinase inhibitor PP2. SNAP also prevented loss of mitochondrial membrane potential (ΔΨm) at reperfusion, an effect that was blocked by TPEN and PP2. SNAP increased mitochondrion-free zinc upon reperfusion and enhanced mitochondrial Src phosphorylation in a zinc-dependent manner. SNAP inhibited both mitochondrial complex I activity and mitochondrial reactive oxygen species (ROS) generation at reperfusion through zinc and Src tyrosine kinase. Finally, the anti-infarct effect of SNAP was abrogated by TPEN and PP2 applied at reperfusion in isolated rat hearts. In conclusion, NO induces cardioprotection at reperfusion by targeting mitochondria through attenuation of oxidative stress resulted from the inhibition of complex I at reperfusion. Activation of mitochondrial Src tyrosine kinase by zinc may account for the inhibition of complex I.  相似文献   

5.
6.
Relative specific amino acid dependency is one of the metabolic abnormalities of cancer cells, and restriction of specific amino acids induces apoptosis of prostate cancer cells. This study shows that restriction of tyrosine and phenylalanine (Tyr/Phe), glutamine (Gln), or methionine (Met), modulates Raf and Akt survival pathways and affects the function of mitochondria in DU145 and PC3, in vitro. These three restrictions inhibit energy production (ATP synthesis) and induce generation of reactive oxygen species (ROS). Restriction of Tyr/Phe or Met in DU145 and Met in PC3 reduces mitochondrial membrane potential (DeltaPsim) and induces caspase-dependent and -independent apoptosis. In DU145, Tyr/Phe or Met restriction reduces activity of Akt, mitochondrial distribution of phosphorylated Raf and apoptosis inducing factor (AIF), and increases mitochondrial distribution of Bak. Mitochondrial Bcl-XL is increased in Tyr/Phe-restricted but decreased in Met-restricted cells. Under Tyr/Phe or Met restriction, reduced mitochondrial Raf does not inactivate the pro-apoptotic function of Bak. Tyr/Phe restriction also inhibits Bcl-2 and Met restriction inhibits Bcl-XL in mitochondria. These comprehensive actions damage the integrity of the mitochondria and induce apoptosis of DU145. In PC3, apoptosis induced by Met restriction was not associated with alterations in intracellular distribution of Raf, Bcl-2 family proteins, or AIF. All of the amino acid restrictions inhibited Akt activity in this cell line. We conclude that specific amino acid restriction differentially interferes with homeostasis/balance between the Raf and Akt survival pathways and with the interaction of Raf and Bcl-2 family proteins in mitochondria to induce apoptosis of DU145 and PC3 cells.  相似文献   

7.
The biological functions of myotonic dystrophy protein kinase (DMPK), a serine/threonine kinase whose gene mutations cause myotonic dystrophy type 1 (DM1), remain poorly understood. Several DMPK isoforms exist, and the long ones (DMPK-A/B/C/D) are associated with the mitochondria, where they exert unknown activities. We have studied the isoform A of DMPK, which we have found to be prevalently associated to the outer mitochondrial membrane. The kinase activity of mitochondrial DMPK protects cells from oxidative stress and from the ensuing opening of the mitochondrial permeability transition pore (PTP), which would otherwise irreversibly commit cells to death. We observe that DMPK (i) increases the mitochondrial localization of hexokinase II (HK II), (ii) forms a multimeric complex with HK II and with the active form of the tyrosine kinase Src, binding its SH3 domain and (iii) it is tyrosine-phosphorylated by Src. Both interaction among these proteins and tyrosine phosphorylation of DMPK are increased under oxidative stress, and Src inhibition selectively enhances death in DMPK-expressing cells after HK II detachment from the mitochondria. Down-modulation of DMPK abolishes the appearance of muscle markers in in vitro myogenesis, which is rescued by oxidant scavenging. Our data indicate that, together with HK II and Src, mitochondrial DMPK is part of a multimolecular complex endowed with antioxidant and pro-survival properties that could be relevant during the function and differentiation of muscle fibers.  相似文献   

8.
Normal cells of aerobic organisms synthesize the energy they require in the form of ATP via the process of oxidative phosphorylation. This complex system resides in the mitochondria of cells and utilizes oxygen to produce a majority of cellular ATP. However, in most tumors, especially those with elevated cholesterogenesis, there is an increased reliance on glycolysis for energy, even in conditions where oxygen is available. This aerobic glycolysis (the Warburg effect) has far reaching ramifications on the tumor itself and the cells that surround it. In this brief review, we will discuss how abnormally high membrane cholesterol levels can result in a subsequent deficiency of oxidative energy production in mitochondria from cultured Morris hepatoma cells (MH-7777). We have identified the voltage dependent anion channel (VDAC) as a necessary component of a protein complex involved in mitochondrial membrane cholesterol distribution and transport. Work in our laboratory demonstrates that the ability of VDAC to influence mitochondrial membrane cholesterol distribution may have implications on mitochondrial characteristics such as oxidative phosphorylation and induction of apoptosis, as well as the propensity of cancer cells to exhibit a glycolytic phenotype.  相似文献   

9.
Bezielle (BZL101) is a candidate oral drug that has shown promising efficacy and excellent safety in the early phase clinical trials for advanced breast cancer. Bezielle is an aqueous extract from the herb Scutellaria barbata. We have reported previously that Bezielle was selectively cytotoxic to cancer cells while sparing non-transformed cells. In tumor, but not in non-transformed cells, Bezielle induced generation of ROS and severe DNA damage followed by hyperactivation of PARP, depletion of the cellular ATP and NAD, and inhibition of glycolysis. We show here that tumor cells' mitochondria are the primary source of reactive oxygen species induced by Bezielle. Treatment with Bezielle induces progressively higher levels of mitochondrial superoxide as well as peroxide-type ROS. Inhibition of mitochondrial respiration prevents generation of both types of ROS and protects cells from Bezielle-induced death. In addition to glycolysis, Bezielle inhibits oxidative phosphorylation in tumor cells and depletes mitochondrial reserve capacity depriving cells of the ability to produce ATP. Tumor cells lacking functional mitochondria maintain glycolytic activity in presence of Bezielle thus supporting the hypothesis that mitochondria are the primary target of Bezielle. The metabolic effects of Bezielle towards normal cells are not significant, in agreement with the low levels of oxidative damage that Bezielle inflicts on them. Bezielle is therefore a drug that selectively targets cancer cell mitochondria, and is distinguished from other such drugs by its ability to induce not only inhibition of OXPHOS but also of glycolysis. This study provides a better understanding of the mechanism of Bezielle's cytotoxicity, and the basis of its selectivity towards cancer cells.  相似文献   

10.
QS Zang  B Martinez  X Yao  DL Maass  L Ma  SE Wolf  JP Minei 《PloS one》2012,7(8):e43424
Our previous research demonstrated that sepsis produces mitochondrial dysfunction with increased mitochondrial oxidative stress in the heart. The present study investigated the role of mitochondria-localized signaling molecules, tyrosine kinase Src and tyrosine phosphatase SHP2, in sepsis-induced cardiac mitochondrial dysfunction using a rat pneumonia-related sepsis model. SD rats were given an intratracheal injection of Streptococcus pneumoniae, 4×10(6) CFU per rat, (or vehicle for shams); heart tissues were then harvested and subcellular fractions were prepared. By Western blot, we detected a gradual and significant decrease in Src and an increase in SHP2 in cardiac mitochondria within 24 hours post-inoculation. Furthermore, at 24 hours post-inoculation, sepsis caused a near 70% reduction in tyrosine phosphorylation of all cardiac mitochondrial proteins. Decreased tyrosine phosphorylation of certain mitochondrial structural proteins (porin, cyclophilin D and cytochrome C) and functional proteins (complex II subunit 30kD and complex I subunit NDUFB8) were evident in the hearts of septic rats. In vitro, pre-treatment of mitochondrial fractions with recombinant active Src kinase elevated OXPHOS complex I and II-III activity, whereas the effect of SHP2 phosphatase was opposite. Neither Src nor SHP2 affected complex IV and V activity under the same conditions. By immunoprecipitation, we showed that Src and SHP2 consistently interacted with complex I and III in the heart, suggesting that complex I and III contain putative substrates of Src and SHP2. In addition, in vitro treatment of mitochondrial fractions with active Src suppressed sepsis-associated mtROS production and protected aconitase activity, an indirect marker of mitochondrial oxidative stress. On the contrary, active SHP2 phosphatase overproduced mtROS and deactivated aconitase under the same in vitro conditions. In conclusion, our data suggest that changes in mitochondria-localized signaling molecules Src and SHP2 constitute a potential signaling pathway to affect mitochondrial dysfunction in the heart during sepsis.  相似文献   

11.
Lu W  Hu Y  Chen G  Chen Z  Zhang H  Wang F  Feng L  Pelicano H  Wang H  Keating MJ  Liu J  McKeehan W  Wang H  Luo Y  Huang P 《PLoS biology》2012,10(5):e1001326
Elevated aerobic glycolysis in cancer cells (the Warburg effect) may be attributed to respiration injury or mitochondrial dysfunction, but the underlying mechanisms and therapeutic significance remain elusive. Here we report that induction of mitochondrial respiratory defect by tetracycline-controlled expression of a dominant negative form of DNA polymerase γ causes a metabolic shift from oxidative phosphorylation to glycolysis and increases ROS generation. We show that upregulation of NOX is critical to support the elevated glycolysis by providing additional NAD+. The upregulation of NOX is also consistently observed in cancer cells with compromised mitochondria due to the activation of oncogenic Ras or loss of p53, and in primary pancreatic cancer tissues. Suppression of NOX by chemical inhibition or genetic knockdown of gene expression selectively impacts cancer cells with mitochondrial dysfunction, leading to a decrease in cellular glycolysis, a loss of cell viability, and inhibition of cancer growth in vivo. Our study reveals a previously unrecognized function of NOX in cancer metabolism and suggests that NOX is a potential novel target for cancer treatment.  相似文献   

12.
Regulation of cellular bioenergetics by PI3K/AKT signaling was examined in isogenic hepatocyte cell lines lacking the major inhibitor of PI3K/AKT signaling, PTEN (phosphatase and tensin homolog deleted on chromosome 10). PI3K/AKT signaling was manipulated using the activator (IGF-1) and the inhibitor (LY 294002) of the PI3K/AKT pathway. Activation of PI3K/AKT signaling resulted in an enhanced anaerobic glycolysis and mitochondrial respiration. AKT, when phosphorylated and activated, translocated to mitochondria and localized within the membrane structure of mitochondria, where it phosphorylated a number of mitochondrial-resident proteins including the subunits α and β of ATP synthase. Inhibition of GSK3β by either phosphorylation by AKT or lithium chloride resulted in activation of pyruvate dehydrogenase, i.e., a decrease in its phosphorylated form. AKT-dependent phosphorylation of ATP synthase subunits α and β resulted in an increased complex activity. AKT translocation to mitochondria was associated with an increased expression and activity of complex I. These data suggest that the mitochondrial signaling pathway AKT/GSK3β/PDH, AKT-dependent phosphorylation of ATP synthase, and upregulation of mitochondrial complex I expression and activity are involved in the control of mitochondrial bioenergetics by increasing substrate availability and regulating the mitochondrial catalytic/energy-transducing capacity.  相似文献   

13.
The H+-ATP synthase is a reversible engine of mitochondria that synthesizes or hydrolyzes ATP upon changes in cell physiology. ATP synthase dysfunction is involved in the onset and progression of diverse human pathologies. During ischemia, the ATP hydrolytic activity of the enzyme is inhibited by the ATPase inhibitory factor 1 (IF1). The expression of IF1 in human tissues and its participation in the development of human pathology are unknown. Here, we have developed monoclonal antibodies against human IF1 and determined its expression in paired normal and tumor biopsies of human carcinomas. We show that the relative mitochondrial content of IF1 increases significantly in carcinomas, suggesting the participation of IF1 in oncogenesis. The expression of IF1 varies significantly in cancer cell lines. To investigate the functional activity of IF1 in cancer, we have manipulated its cellular content. Overexpression of IF1 or of its pH-insensitive H49K mutant in cells that express low levels of IF1 triggers the up-regulation of aerobic glycolysis and the inhibition of oxidative phosphorylation with concurrent mitochondrial hyperpolarization. Treatment of the cells with the H+-ATP synthase inhibitor oligomycin mimicked the effects of IF1 overexpression. Conversely, small interfering RNA-mediated silencing of IF1 in cells that express high levels of IF1 promotes the down-regulation of aerobic glycolysis and the increase in oxidative phosphorylation. Overall, these findings support that the mitochondrial content of IF1 controls the activity of oxidative phosphorylation mediating the shift of cancer cells to an enhanced aerobic glycolysis, thus supporting an oncogenic role for the de-regulated expression of IF1 in cancer.  相似文献   

14.
Many cancer cells rely more on aerobic glycolysis (the Warburg effect) than mitochondrial oxidative phosphorylation and catabolize glucose at a high rate. Such a metabolic switch is suggested to be due in part to functional attenuation of mitochondria in cancer cells. However, how oncogenic signals attenuate mitochondrial function and promote the switch to glycolysis remains unclear. We previously reported that tyrosine phosphorylation activates and inhibits mitochondrial pyruvate dehydrogenase kinase (PDK) and phosphatase (PDP), respectively, leading to enhanced inhibitory serine phosphorylation of pyruvate dehydrogenase (PDH) and consequently inhibition of pyruvate dehydrogenase complex (PDC) in cancer cells. In particular, Tyr-381 phosphorylation of PDP1 dissociates deacetylase SIRT3 and recruits acetyltransferase ACAT1 to PDC, resulting in increased inhibitory lysine acetylation of PDHA1 and PDP1. Here we report that phosphorylation at another tyrosine residue, Tyr-94, inhibits PDP1 by reducing the binding ability of PDP1 to lipoic acid, which is covalently attached to the L2 domain of dihydrolipoyl acetyltransferase (E2) to recruit PDP1 to PDC. We found that multiple oncogenic tyrosine kinases directly phosphorylated PDP1 at Tyr-94, and Tyr-94 phosphorylation of PDP1 was common in diverse human cancer cells and primary leukemia cells from patients. Moreover, expression of a phosphorylation-deficient PDP1 Y94F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at different tyrosine residues inhibits PDP1 through independent mechanisms, which act in concert to regulate PDC activity and promote the Warburg effect.  相似文献   

15.
A unique feature of cancer cells is to convert glucose into lactate to produce cellular energy, even under the presence of oxygen. Called aerobic glycolysis [The Warburg Effect] it has been extensively studied and the concept of aerobic glycolysis in tumor cells is generally accepted. However, it is not clear if aerobic glycolysis in tumor cells is fixed, or can be reversed, especially under therapeutic stress conditions. Here, we report that mTOR, a critical regulator in cell proliferation, can be relocated to mitochondria, and as a result, enhances oxidative phosphorylation and reduces glycolysis. Three tumor cell lines (breast cancer MCF-7, colon cancer HCT116 and glioblastoma U87) showed a quick relocation of mTOR to mitochondria after irradiation with a single dose 5 Gy, which was companied with decreased lactate production, increased mitochondrial ATP generation and oxygen consumption. Inhibition of mTOR by rapamycin blocked radiation-induced mTOR mitochondrial relocation and the shift of glycolysis to mitochondrial respiration, and reduced the clonogenic survival. In irradiated cells, mTOR formed a complex with Hexokinase II [HK II], a key mitochondrial protein in regulation of glycolysis, causing reduced HK II enzymatic activity. These results support a novel mechanism by which tumor cells can quickly adapt to genotoxic conditions via mTOR-mediated reprogramming of bioenergetics from predominantly aerobic glycolysis to mitochondrial oxidative phosphorylation. Such a “waking-up” pathway for mitochondrial bioenergetics demonstrates a flexible feature in the energy metabolism of cancer cells, and may be required for additional cellular energy consumption for damage repair and survival. Thus, the reversible cellular energy metabolisms should be considered in blocking tumor metabolism and may be targeted to sensitize them in anti-cancer therapy.  相似文献   

16.
In a model system consisting of highly coupled rat liver mitochondria respiring in the presence of substrate, pyruvate kinase, phosphoenolpyruvate, ATP, hexokinase and glucose, the increase in the mitochondrial concentration results in a progressive decrease in the activity of pyruvate kinase. These results are in accord with a role of pyruvate kinase as a determinant of glycolytic activity by competing with mitochondrial oxidative phosphorylation for the available ADP. The addition of adequate amounts of the amino acids, cysteine, alanine and phenylalanine, known as inhibitors of pyruvate kinase, to living Ehrlich ascites tumor cell suspensions results in a stimulation of the respiratory rate and in a decrease of the glycolytic rate of the cells. Concomitant with these changes, there is an accumulation of intracellular phosphoenolpyruvate and ADP, and a decrease in pyruvate and ATP. These results provide additional evidence for paying attention to pyruvate kinase as another key enzyme whose properties and activities may be major determinants for the control of glycolysis and the Crabtree and Pasteur effects of tumor cells.  相似文献   

17.
Sarcomas represent a diverse group of malignancies with distinct molecular and pathological features. A better understanding of the alterations associated with specific sarcoma subtypes is critically important to improve sarcoma treatment. Renewed interest in the metabolic properties of cancer cells has led to an exploration of targeting metabolic dependencies as a therapeutic strategy. In this study, we have characterized key bioenergetic properties of human sarcoma cells in order to identify metabolic vulnerabilities between sarcoma subtypes. We have also investigated the effects of compounds that inhibit glycolysis or mitochondrial respiration, either alone or in combination, and examined relationships between bioenergetic parameters and sensitivity to metabolic inhibitors. Using 2-deoxy-D-glucose (2-DG), a competitive inhibitor of glycolysis, oligomycin, an inhibitor of mitochondrial ATP synthase, and metformin, a widely used anti-diabetes drug and inhibitor of complex I of the mitochondrial respiratory chain, we evaluated the effects of metabolic inhibition on sarcoma cell growth and bioenergetic function. Inhibition of glycolysis by 2-DG effectively reduced the viability of alveolar rhabdomyosarcoma cells vs. embryonal rhabdomyosarcoma, osteosarcoma, and normal cells. Interestingly, inhibitors of mitochondrial respiration did not significantly affect viability, but were able to increase sensitivity of sarcomas to inhibition of glycolysis. Additionally, inhibition of glycolysis significantly reduced intracellular ATP levels, and sensitivity to 2-DG-induced growth inhibition was related to respiratory rates and glycolytic dependency. Our findings demonstrate novel relationships between sarcoma bioenergetics and sensitivity to metabolic inhibitors, and suggest that inhibition of metabolic pathways in sarcomas should be further investigated as a potential therapeutic strategy.  相似文献   

18.
We have recently shown disorganization of the vimentin network in cultured cells deficient in oxidative phosphorylation (OXPHOS). We describe here the cellular responses to OXPHOS deficiency in osteosarcoma cells upon complex I (CI) and complex IV (CIV) inhibition, and upon the lack of mitochondrial DNA (rho0 cells). We examined the cytoskeletal organization and the distribution of mitochondria and analysed total proteome by 2-DE and vimentin expression by ELISA. Upon CIV inhibition and in rho0 cells, the vimentin network had collapsed around the nucleus and formed thick bundles. The mitochondria formed a perinuclear crescent upon CIV inhibition, whereas they accumulated around the nucleus in the rho0 cells, where the amount of vimentin was increased. Analysis of the total proteome revealed that a lack of mitochondrial DNA or inhibition of CI or CIV led to changes in the expression of cytoskeletal and cytoskeleton-associated proteins and proteins involved in apoptosis, OXPHOS, glycolysis, the tricarboxylic acid cycle, and oxidative stress responses. Our findings suggest that a deficiency in the energy converting system and oxidative stress can lead to cytoskeletal changes.  相似文献   

19.
Oxidative phosphorylation and glycolysis are important features, by which cells could bypass oxidative stress. The level of oxidative stress, and the ability of cells to promote oxidative phosphorylation or glycolysis, significantly determined proliferation or cell demise. In the present work, we have employed selective mitochondrial probe MitoTracker? Orange CMTM/Ros (MTO) to estimate the level of oxidative stress in cancer cells at different stressed conditions. MTO is partially sensitive to decrease of mitochondrial membrane potential and to reactive oxygen species (ROS) generated in mitochondria. We have demonstrated, that fluorescence lifetime of MTO is much more sensitive to oxidative stress than intensity-based approaches. This method was validated in different cancer cell lines. Our approach revealed, at relatively low ROS levels, that Gö 6976, a protein kinase C (PKC) α inhibitor, and rottlerin, an indirect PKCδ inhibitor, increased mitochondrial ROS level in glioma cell. Their involvement in oxidative phosphorylation and apoptosis was investigated with oxygen consumption rate estimation, western blot and flow-cytometric analysis. Our study brings new insight to identify feeble differences in ROS production in living cells.  相似文献   

20.
Norcantharidin (NCTD), a demethylated analog of cantharidin derived from blister beetles, has attracted considerable attentions in recent years due to their definitely toxic properties and the noteworthy advantages in stimulating bone marrow and increasing the peripheral leukocytes. Hence, it is worth studying the anti-tumor effect of NCTD on human prostate cancer cells DU145. It was found that after the treatment of NCTD with different concentrations (25-100 μM), the cell proliferation was significantly inhibited, which led to the appearance of micronucleus (MN). Moreover, the cells could be killed in a dose-/ time-dependent manner along with the reduction of PCNA (proliferating cell nuclear antigen) expression, destruction of mitochondrial membrane potential (MMP), down-regulation of MnSOD, induction of ROS, depletion of ATP, and activation of AMPK (Adenosine 5‘-monophosphate -activated protein kinase) . In addition, a remarkable release of cytochrome c was found in the cells exposed to 100 μM NCTD and exogenous SOD-PEG could eliminate the generation of NCTD-induced MN. In conclusion, our studies indicated that NCTD could induce the collapse of MMP and mitochondria dysfunction. Accumulation of intercellular ROS could eventually switch on the apoptotic pathway by causing DNA damage and depleting ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号