首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SB Yang  AC Tien  G Boddupalli  AW Xu  YN Jan  LY Jan 《Neuron》2012,75(3):425-436
The prevalence of obesity in older people is the leading cause of metabolic syndromes. Central neurons serving as homeostatic sensors for body-weight control include hypothalamic neurons that express pro-opiomelanocortin (POMC) or neuropeptide-Y (NPY) and agouti-related protein (AgRP). Here, we report an age-dependent increase of mammalian target of rapamycin (mTOR) signaling in POMC neurons that elevates the ATP-sensitive potassium (K(ATP)) channel activity cell-autonomously to silence POMC neurons. Systemic or intracerebral administration of the mTOR inhibitor rapamycin causes weight loss in old mice. Intracerebral rapamycin infusion into old mice enhances the excitability and neurite projection of POMC neurons, thereby causing?a reduction of food intake and body weight. Conversely, young mice lacking the mTOR-negative regulator TSC1 in POMC neurons, but not those lacking TSC1 in NPY/AgRP neurons, were obese. Our study reveals that an increase in mTOR signaling in hypothalamic POMC neurons contributes to age-dependent obesity. VIDEO ABSTRACT:  相似文献   

2.
Vong L  Ye C  Yang Z  Choi B  Chua S  Lowell BB 《Neuron》2011,71(1):142-154
Leptin acts in the brain to prevent obesity. The underlying neurocircuitry responsible for this is poorly understood, in part because of incomplete knowledge regarding first-order, leptin-responsive neurons. To address this, we and others have been removing leptin receptors from candidate first-order neurons. While functionally relevant neurons have been identified, the observed effects have been small, suggesting that most first-order neurons remain unidentified. Here we take an alternative approach and test whether first-order neurons are inhibitory (GABAergic, VGAT?) or excitatory (glutamatergic, VGLUT2?). Remarkably, the vast majority of leptin's antiobesity effects are mediated by GABAergic neurons; glutamatergic neurons play only a minor role. Leptin, working directly on presynaptic GABAergic neurons, many of which appear not to express AgRP, reduces inhibitory tone to postsynaptic POMC neurons. As POMC neurons prevent obesity, their disinhibition by leptin action on presynaptic GABAergic neurons probably mediates, at least in part, leptin's antiobesity effects.  相似文献   

3.
4.
Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP)/Neuropeptide Y (NPY)/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb). Despite progress in the understanding of LepRb signaling and function, the sub-cellular localization of LepRb in target neurons has not been determined, primarily due to lack of sensitive anti-LepRb antibodies. Here we applied light microscopy (LM), confocal-laser scanning microscopy (CLSM), and electron microscopy (EM) to investigate LepRb localization and signaling in mice expressing a HA-tagged LepRb selectively in POMC or AgRP/NPY/GABA neurons. We report that LepRb receptors exhibit a somato-dendritic expression pattern. We further show that LepRb activates STAT3 phosphorylation in neuronal fibers within several hypothalamic and hindbrain nuclei of wild-type mice and rats, and specifically in dendrites of arcuate POMC and AgRP/NPY/GABA neurons of Leprb +/+ mice and in Leprb db/db mice expressing HA-LepRb in a neuron specific manner. We did not find evidence of LepRb localization or STAT3-signaling in axon-fibers or nerve-terminals of POMC and AgRP/NPY/GABA neurons. Three-dimensional serial EM-reconstruction of dendritic segments from POMC and AgRP/NPY/GABA neurons indicates a high density of shaft synapses. In addition, we found that the leptin activates STAT3 signaling in proximity to synapses on POMC and AgRP/NPY/GABA dendritic shafts. Taken together, these data suggest that the signaling-form of the leptin receptor exhibits a somato-dendritic expression pattern in POMC and AgRP/NPY/GABA neurons. Dendritic LepRb signaling may therefore play an important role in leptin’s central effects on energy balance, possibly through modulation of synaptic activity via post-synaptic mechanisms.  相似文献   

5.
The binding of leptin to hypothalamic neurons elicits inhibition of orexigenic NPY/AgRP neurons and stimulation of anorexigenic POMC/CART neurons. Projections of serotonergic neurons onto POMC neurons suggest that leptin and serotonin converge onto POMC neurons to regulate body weight. We probed the interaction of these pathways by generating transgenic mice overexpressing leptin (LepTg) without 5HT2c receptors. On a chow diet, the lean phenotype of LepTg mice was unaffected by the absence of 5HT2c receptors, whereas on a high fat diet, LepTg/5HT2c receptors knockout mice showed an exacerbation of diet-induced obesity. POMC mRNA levels were low in LepTg, 5HT2c receptors knockout and LepTg/5HT2c receptors knockout mice, demonstrating that perturbations of the 5HT2c receptor and leptin pathways, either alone or in combination, negatively impact on POMC expression. Thus, on a chow diet, leptin action is independent of 5HT2c receptors whereas on a high fat diet 5HT2c receptors are required for the attenuation of obesity.  相似文献   

6.
Insulin action in the central nervous system regulates energy homeostasis and glucose metabolism. To define the insulin-responsive neurons that mediate these effects, we generated mice with selective inactivation of the insulin receptor (IR) in either pro-opiomelanocortin (POMC)- or agouti-related peptide (AgRP)-expressing neurons of the arcuate nucleus of the hypothalamus. While neither POMC- nor AgRP-restricted IR knockout mice exhibited altered energy homeostasis, insulin failed to normally suppress hepatic glucose production during euglycemic-hyperinsulinemic clamps in AgRP-IR knockout (IRΔAgRP) mice. These mice also exhibited reduced insulin-stimulated hepatic interleukin-6 expression and increased hepatic expression of glucose-6-phosphatase. These results directly demonstrate that insulin action in POMC and AgRP cells is not required for steady-state regulation of food intake and body weight. However, insulin action specifically in AgRP-expressing neurons does play a critical role in controlling hepatic glucose production and may provide a target for the treatment of insulin resistance in type 2 diabetes.  相似文献   

7.
Hunger elicits feeding behavior by activating Agouti-related peptide (AgRP) neurons. Two recent studies show how fasting, or the hunger hormone ghrelin, promote excitatory glutamate release onto AgRP neurons (Yang et?al., 2011) and increase postsynaptic glutamate receptor-mediated drive (Liu et?al., 2012).  相似文献   

8.
近年来,因肥胖症所造成的社会问题和医疗负担越发严重。肥胖主要是由于机体能量的摄入与消耗不平衡所致,而中枢神经系统以及相关神经元在机体能量代谢平衡的调控中发挥着重要作用。下丘脑弓状核含有抑食性阿黑皮素原(Proopiomelanocortin,POMC)神经元和促食性神经肽Y (Neuropeptid Y,NPY)/刺鼠相关蛋白(Agouti-related protein,AgRP)神经元,是调控机体摄食行为的主要神经元。研究显示,高脂饮食会诱导POMC神经元中的Rb蛋白发生磷酸化修饰并失活,导致POMC神经元从静息状态重新进入细胞周期循环,进而迅速转向细胞凋亡。高脂饮食也会引起神经元再生抑制,并诱导炎症发生和神经元损伤,使神经元稳态失衡,引发瘦素抵抗,最终导致肥胖症的发生。文中就神经元稳态失衡以及肥胖症等疾病之间的关系进行了综述,希望能为饮食诱导肥胖症等疾病的治疗和预防提供新的方向和思路。  相似文献   

9.
Although acute food deprivation and chronic food restriction both result in body weight loss, they produce different metabolic states. To evaluate how these two treatments affect hypothalamic peptide systems involved in energy homeostasis, we compared patterns of hypothalamic neuropeptide Y (NPY), agouti-related protein (AgRP), proopiomelanocotin (POMC), and leptin receptor gene expression in acutely food-deprived and chronically food-restricted rats. Both acute food deprivation and chronic food restriction reduced body weight and circulating leptin levels and resulted in increased arcuate NPY and decreased arcuate POMC gene expression. Arcuate AgRP mRNA levels were only elevated in acutely deprived rats. NPY gene expression was increased in the compact subregion of the dorsomedial hypothalamus (DMH) in response to chronic food restriction, but not in response to acute food deprivation. Leptin receptor expression was not affected by either treatment. Double in situ hybridization histochemistry revealed that, in contrast to the situation in the arcuate nucleus, NPY and leptin receptor mRNA-expressing neurons were not colocalized in the DMH. Together, these data suggest that arcuate and DMH NPY gene expression are differentially regulated. DMH NPY-expressing neurons do not appear to be under the direct control of leptin signaling.  相似文献   

10.
Jong-Woo Sohn 《BMB reports》2015,48(4):229-233
The central nervous system (CNS) controls food intake and energy expenditure via tight coordinations between multiple neuronal populations. Specifically, two distinct neuronal populations exist in the arcuate nucleus of hypothalamus (ARH): the anorexigenic (appetite-suppressing) pro-opiomelanocortin (POMC) neurons and the orexigenic (appetite-increasing) neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons. The coordinated regulation of neuronal circuit involving these neurons is essential in properly maintaining energy balance, and any disturbance therein may result in hyperphagia/obesity or hypophagia/starvation. Thus, adequate knowledge of the POMC and NPY/AgRP neuron physiology is mandatory to understand the pathophysiology of obesity and related metabolic diseases. This review will discuss the history and recent updates on the POMC and NPY/AgRP neuronal circuits, as well as the general anorexigenic and orexigenic circuits in the CNS. [BMB Reports 2015; 48(4): 229-233]  相似文献   

11.
Increases in cytosolic Ca2+ concentration ([Ca2+]i) mediated by NMDA-sensitive glutamate receptors (NMDARs) are important for synaptic plasticity. We studied a wide variety of dendritic spines on rat CA1 pyramidal neurons in acute hippocampal slices. Two-photon uncaging and Ca2+ imaging revealed that NMDAR-mediated currents increased with spine-head volume and that even the smallest spines contained a significant number of NMDARs. The fate of Ca2+ that entered spine heads through NMDARs was governed by the shape (length and radius) of the spine neck. Larger spines had necks that permitted greater efflux of Ca2+ into the dendritic shaft, whereas smaller spines manifested a larger increase in [Ca2+]i within the spine compartment as a result of a smaller Ca2+ flux through the neck. Spine-neck geometry is thus an important determinant of spine Ca2+ signaling, allowing small spines to be the preferential sites for isolated induction of long-term potentiation.  相似文献   

12.
Two articles—one published online in January and in the March issue EMBO reports—implicate autophagy in the control of appetite by regulating neuropeptide production in hypothalamic neurons. Autophagy decline with age in POMC neurons induces obesity and metabolic syndrome.Kaushik et al. EMBO reports, this issue doi:10.1038/embor.2011.260Macroautophagy, which I will call autophagy, is a critical process that degrades bulk cytoplasm, including organelles, protein oligomers and a range of selective substrates. It has been linked with diverse physiological and disease-associated functions, including the removal of certain bacteria, protein oligomers associated with neurodegenerative diseases and dysfunctional mitochondria [1]. However, the primordial role of autophagy—conserved from yeast to mammals—appears to be its ability to provide nutrients to starving cells by releasing building blocks, such as amino acids and free fatty acids, obtained from macromolecular degradation. In yeast, autophagy deficiency enhances death in starvation conditions [2], and in mice it causes death from starvation in the early neonatal period [3,4]. Two recent articles from the Singh group—one of them in this issue of EMBO reports—also implicate autophagy in central appetite regulation [5,6].Autophagy seems to decline with age in the liver [7], and it has thus been assumed that autophagy declines with age in all tissues, but this has not been tested rigorously in organs such as the brain. Conversely, specific autophagy upregulation in Caenorhabditis elegans and Drosophila extends lifespan, and drugs that induce autophagy—but also perturb unrelated processes, such as rapamycin—promote longevity in rodents [8].Autophagy literally means self-eating, and it is therefore interesting to see that this cellular ‘self-eating'' has systemic roles in mammalian appetite control. The control of appetite is influenced by central regulators, including various hormones and neurotransmitters, and peripheral regulators, including hormones, glucose and free fatty acids [9]. Autophagy probably has peripheral roles in appetite and energy balance, as it regulates lipolysis and free fatty acid release [10]. Furthermore, Singh and colleagues have recently implicated autophagy in central appetite regulation [5,6].The arcuate nucleus in the hypothalamus has received extensive attention as an integrator and regulator of energy homeostasis and appetite. Through its proximity to the median eminence, which is characterized by an incomplete blood–brain barrier, these neurons rapidly sense metabolic fluctuations in the blood. There are two different neuronal populations in the arcuate nucleus, which appear to have complementary effects on appetite (Fig 1). The proopiomelanocortin (POMC) neurons produce the neuropeptide precursor POMC, which is cleaved to form α-melanocyte stimulating hormone (α-MSH), among several other products. The α-MSH secreted from these neurons activates melanocortin 4 receptors on target neurons in the paraventricular nucleus of the hypothalamus, which ultimately reduce food intake. The second group of neurons contain neuropeptide Y (NPY) and Agouti-related peptide (AgRP). Secreted NPY binds to downstream neuronal receptors and stimulates appetite. AgRP blocks the ability of α-MSH to activate melanocortin 4 receptors [11]. Furthermore, AgRP neurons inhibit POMC neurons [9].Open in a separate windowFigure 1Schematic diagram illustrating the complementary roles of POMC and NPY/AgRP neurons in appetite control. AgRP, Agouti-related peptide; MC4R, melanocortin 4 receptor; α-MSH, α-melanocyte stimulating hormone; NPY, neuropeptide Y; POMC, proopiomelanocortin.The first study from Singh''s group started by showing that starvation induces autophagy in the hypothalamus [5]. This finding alone merits some comment. Autophagy is frequently assessed by using phosphatidylethanolamine-conjugated Atg8/LC3 (LC3-II), which is specifically associated with autophagosomes and autolysosomes. LC3-II levels on western blot and the number of LC3-positive vesicles strongly correlate with the number of autophagosomes [1]. To assess whether LC3-II formation is altered by a perturbation, its level can be assessed in the presence of lysosomal inhibitors, which inhibit LC3-II degradation by blocking autophagosome–lysosome fusion [12]. Therefore, differences in LC3-II levels in response to a particular perturbation in the presence of lysosomal inhibitors reflect changes in autophagosome synthesis. An earlier study using GFP-LC3 suggested that autophagy was not upregulated in the brains of starved mice, compared with other tissues where this did occur [13]. However, this study only measured steady state levels of autophagosomes and was performed before the need for lysosomal inhibitors was appreciated. Subsequent work has shown rapid flux of autophagosomes to lysosomes in primary neurons, which might confound analyses without lysosomal inhibitors [14]. Thus, the data of the Singh group—showing that autophagy is upregulated in the brain by a range of methods including lysosomal inhibitors [5]—address an important issue in the field and corroborate another recent study that examined this question by using sophisticated imaging methods [15].“…decreasing autophagy with ageing in POMC neurons could contribute to the metabolic problems associated with age”Singh and colleagues then analysed mice that have a specific knockout of the autophagy gene Atg7 in AgRP neurons [5]. Although fasting increases AgRP mRNA and protein levels in normal mice, these changes were not seen in the knockout mice. AgRP neurons provide inhibitory signals to POMC neurons, and Kaushik and colleagues found that the AgRP-specific Atg7 knockout mice had higher levels of POMC and α-MSH, compared with the normal mice. This indicated that starvation regulates appetite in a manner that is partly dependent on autophagy. The authors suggested that the peripheral free fatty acids released during starvation induce autophagy by activating AMP-activated protein kinase (AMPK), a known positive regulator of autophagy. This, in turn, enhances degradation of hypothalamic lipids and increases endogenous intracellular free fatty acid concentrations. The increased intracellular free fatty acids upregulate AgRP mRNA and protein expression. As AgRP normally inhibits POMC/α-MSH production in target neurons, a defect in AgRP responses in the autophagy-null AgRP neurons results in higher α-MSH levels, which could account for the decreased mouse bodyweight.In follow-up work, Singh''s group have now studied the effects of inhibiting autophagy in POMC neurons, again using Atg7 deletion [6]. These mice, in contrast to the AgRP autophagy knockouts, are obese. This might be accounted for, in part, by an increase in POMC preprotein levels and its cleavage product adrenocorticotropic hormone in the knockout POMC neurons, which is associated with a failure to generate α-MSH. Interestingly, these POMC autophagy knockout mice have impaired peripheral lipolysis in response to starvation, which the authors suggest might be due to reduced central sympathetic tone to the periphery from the POMC neurons. In addition, POMC-neuron-specific Atg7 knockout mice have impaired glucose tolerance.This new study raises several interesting issues. How does the autophagy defect in the POMC neurons alter the cleavage pattern of POMC? Is this modulated within the physiological range of autophagy activity fluctuations in response to diet and starvation? Importantly, in vivo, autophagy might fluctuate similarly (or possibly differently) in POMC and AgRP neurons in response to diet and/or starvation. Given the tight interrelation of these neurons, how does this affect their overall response to appetite regulation in wild-type animals?Finally, the study also shows that hypothalamic autophagosome formation is decreased in older mice. To my knowledge, this is the first such demonstration of this phenomenon in the brain. The older mice phenocopied aspects of the POMC-neuron autophagy null mice—increased hypothalamic POMC preprotein and ACTH and decreased α-MSH, along with similar adiposity and lipolytic defects, compared with young mice. These data are provocative from several perspectives. In the context of metabolism, it is tantalizing to consider that decreasing autophagy with ageing in POMC neurons could contribute to the metabolic problems associated with ageing. Again, this model considers the POMC neurons in isolation, and it would be important to understand how reduced autophagy in aged AgRP neurons counterbalances this situation. In a more general sense, the data strongly support the concept that neuronal autophagy might decline with age.Autophagy is a major clearance route for many mutant, aggregate-prone intracytoplasmic proteins that cause neurodegenerative disease, such as tau (Alzheimer disease), α-synuclein (Parkinson disease), and huntingtin (Huntington disease), and the risk of these diseases is age-dependent [1]. Thus, it is tempting to suggest that the dramatic age-related risks for these diseases could be largely due to decreased neuronal capacity of degrading these toxic proteins. Neurodegenerative pathology and age-related metabolic abonormalities might be related—some of the metabolic disturbances that occur in humans with age could be due to the accumulation of such toxic proteins. High levels of these proteins are seen in many people who do not have, or who have not yet developed, neurodegenerative diseases, as many of them start to accumulate decades before any sign of disease. These proteins might alter metabolism and appetite either directly by affecting target neurons, or by influencing hormonal and neurotransmitter inputs into such neurons.  相似文献   

13.
14.
Opioids are the most effective analgesics for the treatment of moderate to severe pain. However, chronic opioid treatment can cause both hyperalgesia and analgesic tolerance, which limit their clinical efficacy. In this study, we determined the role of pre- and postsynaptic NMDA receptors (NMDARs) in controlling increased glutamatergic input in the spinal cord induced by chronic systemic morphine administration. Whole-cell voltage clamp recordings of excitatory postsynaptic currents (EPSCs) were performed on dorsal horn neurons in rat spinal cord slices. Chronic morphine significantly increased the amplitude of monosynaptic EPSCs evoked from the dorsal root and the frequency of spontaneous EPSCs, and these changes were largely attenuated by blocking NMDARs and by inhibiting PKC, but not PKA. Also, blocking NR2A- or NR2B-containing NMDARs significantly reduced the frequency of spontaneous EPSCs and the amplitude of evoked EPSCs in morphine-treated rats. Strikingly, morphine treatment largely decreased the amplitude of evoked NMDAR-EPSCs and NMDAR currents of dorsal horn neurons elicited by puff NMDA application. The reduction in postsynaptic NMDAR currents caused by morphine was prevented by resiniferatoxin pretreatment to ablate TRPV1-expressing primary afferents. Furthermore, intrathecal injection of the NMDAR antagonist significantly attenuated the development of analgesic tolerance and the reduction in nociceptive thresholds induced by chronic morphine. Collectively, our findings indicate that chronic opioid treatment potentiates presynaptic, but impairs postsynaptic, NMDAR activity in the spinal cord. PKC-mediated increases in NMDAR activity at nociceptive primary afferent terminals in the spinal cord contribute critically to the development of opioid hyperalgesia and analgesic tolerance.  相似文献   

15.
Most excitatory synaptic terminals in the brain impinge on dendritic spines. We and others have recently shown that dynamic microtubules (MTs) enter spines from the dendritic shaft. However, a direct role for MTs in long-lasting spine plasticity has yet to be demonstrated and it remains unclear whether MT-spine invasions are directly influenced by synaptic activity. Lasting changes in spine morphology and synaptic strength can be triggered by activation of synaptic NMDA receptors (NMDARs) and are associated with learning and memory processes. To determine whether MTs are involved in NMDAR-dependent spine plasticity, we imaged MT dynamics and spine morphology in live mouse hippocampal pyramidal neurons before and after acute activation of synaptic NMDARs. Synaptic NMDAR activation promoted MT-spine invasions and lasting increases in spine size, with invaded spines exhibiting significantly faster and more growth than non-invaded spines. Even individual MT invasions triggered rapid increases in spine size that persisted longer following NMDAR activation. Inhibition of either NMDARs or dynamic MTs blocked NMDAR-dependent spine growth. Together these results demonstrate for the first time that MT-spine invasions are positively regulated by signaling through synaptic NMDARs, and contribute to long-lasting structural changes in targeted spines.  相似文献   

16.
The hypothalamic arcuate nucleus is a complex structure containing both orexigenic and anorexigenic neurons, coordinately regulated by leptin and energy state. In their recent Nature Neuroscience study, Aponte et al. (2011) use optogenetic technology to provide a glimpse into the consequences of exclusive activation of either NPY/AgRP or POMC neurons.  相似文献   

17.
Fasting-induced suppression of the hypothalamic-pituitary-thyroid (HPT) axis is an adaptive response to decrease energy expenditure during food deprivation. Previous studies demonstrate that leptin communicates nutritional status to the HPT axis through thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus. Leptin targets TRH neurons either directly or indirectly via the arcuate nucleus through pro-opiomelanocortin (POMC) and agouti-related peptide/neuropeptide Y (AgRP/NPY) neurons. To evaluate the role of these pathways in vivo, we developed double knockout mice that lack both the melanocortin 4 receptor (MC4R) and NPY. We show that NPY is required for fasting-induced suppression of Trh expression in the PVN. However, both MC4R and NPY are required for activation of hepatic pathways that metabolize T4 during the fasting response. Thus, these signaling pathways play a key role in the communication of fasting signals to reduce thyroid hormone levels both centrally and through a peripheral hepatic circuit.  相似文献   

18.
Hypothalamic proopiomelanocortin (POMC) neurons are controlled by many central signals, including serotonin. Serotonin increases POMC activity and reduces feeding behavior via serotonion [5-hydroxytryptamine (5-HT)] receptors by modulating K(+) currents. A potential K(+) current is the M-current, a noninactivating, subthreshold outward K(+) current. Previously, we found that M-current activity was highly reduced in fasted vs. fed states in neuropeptide Y neurons. Because POMC neurons also respond to energy states, we hypothesized that fasting may alter the M-current and/or its modulation by serotonergic input to POMC neurons. Using visualized-patch recording in neurons from fed male enhanced green fluorescent protein-POMC transgenic mice, we established that POMC neurons expressed a robust M-current (102.1 ± 6.7 pA) that was antagonized by the selective KCNQ channel blocker XE-991 (40 μM). However, the XE-991-sensitive current in POMC neurons did not differ between fed and fasted states. To determine if serotonin suppresses the M-current via the 5-HT(2C) receptor, we examined the effects of the 5-HT(2A)/5-HT(2C) receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) on the M-current. Indeed, DOI attenuated the M-current by 34.5 ± 6.9% and 42.0 ± 5.3% in POMC neurons from fed and fasted male mice, respectively. In addition, the 5-HT(1B)/5-HT(2C) receptor agonist m-chlorophenylpiperazine attenuated the M-current by 42.4 ± 5.4% in POMC neurons from fed male mice. Moreover, the selective 5-HT(2C) receptor antagonist RS-102221 abrogated the actions of DOI in suppressing the M-current. Collectively, these data suggest that although M-current expression does not differ between fed and fasted states in POMC neurons, serotonin inhibits the M-current via activation of 5-HT(2C) receptors to increase POMC neuronal excitability and, subsequently, reduce food intake.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号