首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Backbone cyclization (BC) and N-methylation have been shown to enhance the activity and/or selectivity of biologically active peptides and improve metabolic stability and intestinal permeability. In this study, we describe the synthesis, structure-activity relationship (SAR) and intestinal metabolic stability of a backbone cyclic peptide library, BL3020, based on the linear alpha-Melanocyte stimulating hormone analog Phe-D-Phe-Arg-Trp-Gly. The drug lead, BL3020-1, selected from the BL3020 library (compound 1) has been shown to inhibit weight gain in mice following oral administration. Another member of the BL3020 library, BL3020-17, showed improved biological activity towards the mMC4R, in comparison to BL3020-1, although neither were selective for MC4R or MC5R. N-methylation, which restrains conformational freedom while increasing metabolic stability beyond that which is imparted by BC, was used to find analogs with increased selectivity. N-methylated backbone cyclic libraries were synthesized based on the BL3020 library. SAR studies showed that all the N-methylated backbone cyclic peptides demonstrated reduced biological activity and selectivity for all the analyzed receptors. N-methylation of active backbone cyclic peptides destabilized the active conformation or stabilized an inactive conformation, rendering the peptides biologically inactive. N-methylation of backbone cyclic peptides maintained stability to degradation by intestinal enzymes.  相似文献   

2.
Peptide cyclization is an important tool for overcoming the limitations of linear peptides as drugs. Backbone cyclization (BC) has advantages over side chain (SC) cyclization because it combines N-alkylation for extra peptide stability. However, the appropriate building blocks for BC are not yet commercially available. This problem can be overcome by preparing SC cyclic peptide analogs of the most active BC peptide using commercially available building blocks. We have recently developed BC peptides that inhibit the HIV-1 integrase enzyme (IN) activity and HIV-1 replication in infected cells. Here we used this system as a model for systematically comparing the BC and SC cyclization modes using biophysical, biochemical and structural methods. The most potent SC cyclic peptide was active almost as the BC peptide and inhibited IN activity in vitro and blocked IN activity in cells even after 6 days. We conclude that both cyclization types have their respective advantages: The BC peptide is more active and stable, probably due to the N-alkylation, while SC cyclic peptides are easier to synthesize. Due to the high costs and efforts involved in preparing BC peptides, SC may be a more approachable method in many cases. We suggest that both methods are interchangeable.  相似文献   

3.
There are many natural peptides with multiple N-methylamino acids that exhibit potent attractive biological activities. N-methylation of a peptide bond(s) is also one of the standard approaches in medicinal chemistry of bioactive peptides, to improve the potency and physicochemical properties, especially membrane permeability. In this study, we investigated a facile synthesis process of N-methylated peptides via simultaneous N-methylation of several peptide bonds in the presence of peptide bonds that were not to be methylated. As a model study, we investigated the synthesis of the antiproliferative depsipeptide, IB-01212. We used a pseudoproline to protect the non-methylated peptide bond during a simultaneous N-methylation with MeI–Ag2O. Using further manipulations including a dimerization/cyclization process, IB-01212 and its derivatives were successfully synthesized. A preliminary structure–activity relationship study demonstrated that the symmetric structure contributed to the potent cytotoxic activity of IB-01212.  相似文献   

4.
Studies utilizing NMR spectroscopy have shown that adenosine cyclic 3',5'-phosphate dependent protein kinase (A-kinase) probably binds Leu-Arg-Arg-Ala-Ser-Leu-Gly (peptide 1) in one of two extended coil conformations (A or B). The relative reactivities of a series of N-methylated peptides based on the structure of peptide 1 might, therefore, be related to how well each can assume the A or B conformation. From estimates of the magnitude of steric interactions that would be induced by N-methylation of an amide in peptide 1 that is locked in either conformation, the ability of each peptide to form that conformation was predicted. The ability of A-kinase to catalyze phosphorylation of the N-methylated peptides correlated well with the ability of each peptide to form conformation A, but not conformation B. In accord with these findings, the reactivity of an unreactive N-methylated peptide was partially restored by a second change, which allowed the peptide to assume conformation A. These results suggest that, when bound in the enzymatic active site, peptide 1 has a conformation that resembles structure A much more closely than structure B.  相似文献   

5.
Cyclic peptides are attractive candidates for synthetic affinity ligands due to their favorable properties, such as resistance to proteolysis, and higher affinity and specificity relative to linear peptides. Here we describe the discovery, synthesis and characterization of novel cyclic peptide affinity ligands that bind the Fc portion of human Immunoglobulin G (IgG; hFc). We generated an mRNA display library of cyclic pentapeptides wherein peptide cyclization was achieved with high yield and selectivity, using a solid‐phase crosslinking reaction between two primary amine groups, mediated by a homobifunctional linker. Subsequently, a pool of cyclic peptide binders to hFc was isolated from this library and chromatographic resins incorporating the selected cyclic peptides were prepared by on‐resin solid‐phase peptide synthesis and cyclization. Significantly, this approach results in resins that are resistant to harsh basic conditions of column cleaning and regeneration. Further studies identified a specific cyclic peptide—cyclo[Link‐M‐WFRHY‐K]—as a robust affinity ligand for purification of IgG from complex mixtures. The cyclo[Link‐M‐WFRHY‐K] resin bound selectively to the Fc fragment of IgG, with no binding to the Fab fragment, and also bound immunoglobulins from a variety of mammalian species. Notably, while the recovery of IgG using the cyclo[Link‐M‐WFRHY‐K] resin was comparable to a Protein A resin, elution of IgG could be achieved under milder conditions (pH 4 vs. pH 2.5). Thus, cyclo[Link‐M‐WFRHY‐K] is an attractive candidate for developing a cost‐effective and robust chromatographic resin to purify monoclonal antibodies (mAbs). Finally, our approach can be extended to efficiently generate and evaluate cyclic peptide affinity ligands for other targets of interest. Biotechnol. Bioeng. 2013; 110: 857–870. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Oren Z  Shai Y 《Biochemistry》2000,39(20):6103-6114
The amphipathic alpha-helical structure is considered to be a prerequisite for the lytic activity of a large group of cytolytic peptides. However, despite numerous studies on the contribution of various parameters to their structure and activity, the importance of linearity has not been examined. In the present study we functionally and structurally characterized a linear amphipathic alpha-helical peptide (wt peptide), its diastereomer, and cyclic analogues of both. Using analogues with the same sequence of hydrophobic and positively charged amino acids, but with different propensities to form a helical structure, we were able to examine the contribution of linearity to helix formation, bilogical function, and membrane binding and permeation. Importantly, we found that cyclization increases the selectivity between bacteria and human erythrocytes by substantially reducing the hemolytic activity of the cyclic peptides compared with the linear peptides. Moreover, whereas the wt peptide was highly active toward gram(+) bacteria, its cyclic counterpart is active toward both gram(+) and gram(-) bacteria. These findings are correlated with an impaired ability of the cyclic analogues to bind and permeate zwitterionic phospholipid membranes compared with their linear counterparts and an increase in the binding and permeating activity of the cyclic wt peptide toward negatively charged membranes. Furthermore, cyclization abolished the oligomerization of the linear wt peptide in solution and in SDS, suggesting an additional factor that may account for the difference in the spectrum of antibacterial activity between the linear and the cyclic wt peptides. Interestingly, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy revealed that, despite cyclization and incorporation of 33% D-amino acids along the peptide backbone, the membrane environment can impose a predominantly helical structure on the peptides, which is required for their bilogical function. Overall, our results indicate that linearity is not a prerequisite for lytic activity of amphipathic alpha-helical peptides but rather affects the selectivity between gram(+) and gram(-) bacteria and between mammalian cells and bacteria. In addition, the combination of incorporating of D-amino acids into lytic peptides and their cyclization open the way for developing a new group of antimicrobial peptides with improved properties for treating infectious diseases.  相似文献   

7.
Peptides in solution currently exist under several conformations; an equilibrium which varies with solvent polarity. Despite or because of this structure versatility, peptides can be selective biological tools: they can adapt to a target, vary conformation with solvents and so on. These capacities are crucial for cargo carriers. One promising way of using peptides in biotechnologies is to decipher their medium-sequence-structure-function relationships and one approach is molecular modelling. Only few "in silico" methods of peptide design are described in the literature. Most are used in support of experimental screening of peptide libraries. However, the way they are made does not teach us much for future researches. In this paper, we describe an "in silico" method (PepDesign) which starts by analysing the native interaction of a peptide with a target molecule in order to define which points are important. From there, a modelling protocol for the design of 'better' peptides is set. The PepDesign procedure calculates new peptides fulfilling the hypothesis, tests the conformational space of these peptides in interaction with the target by angular dynamics and goes up to the selection of the best peptide based on the analysis of complex structure properties. Experimental biological assays are finally used to test the selected peptides, hence to validate the approach. Applications of PepDesign are wide because the procedure will remain similar irrespective of the target which can be a protein, a drug or a nucleic acid. In this paper, we describe the design of peptides which binds to the fusogenic helical form of the C-terminal domain of the Abeta peptide (Abeta29-42).  相似文献   

8.
A head-to-tail macrocyclization protocol for the preparation of cysteine-free cyclic peptides was investigated. The o-aminoanilide linker constructed in the peptide sequence by a standard Fmoc-based peptide synthesis procedure was subjected to nitrite-mediated activation under acidic conditions toward N-acyl benzotriazole as the active ester species. The subsequent cyclization smoothly proceeded by neutralization in the presence of additives such as 1-hydroxybenzotriazole (HOBt) and 1-hydroxy-7-azabenzotriazole (HOAt) to afford the expected cyclic pentapeptide, a CXCR4 antagonist. The cyclization efficiencies were dependent on the precursor open-chain sequence. The application of this step-wise activation-cyclization protocol to microflow reaction systems is also described.  相似文献   

9.
Cyclization of bioactive peptides, utilizing functional groups serving as natural pharmacophors, is often accompanied with loss of activity. The backbone cyclization approach was developed to overcome this limitation and enhance pharmacological properties. Backbone cyclic peptides are prepared by the incorporation of special building units, capable of forming amide, disulfide and coordinative bonds. Urea bridge is often used for the preparation of cyclic peptides by connecting two amine functionalized side chains. Here we present urea backbone cyclization as an additional method for the preparation of backbone cyclic peptide libraries. A straightforward method for the synthesis of crystalline Fmoc‐Nα [ω‐amino(Alloc)‐alkyl] glycine building units is presented. A set of urea backbone cyclic Glycogen Synthase Kinase 3 analogs was prepared and assessed for protein kinase B inhibition as anticancer leads. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The C-terminal thioesterase (TE) domains from nonribosomal peptide synthetases (NRPSs) catalyze the final step in the biosynthesis of diverse biologically active molecules. In many systems, the thioesterase domain is involved in macrocyclization of a linear precursor presented as an acyl-S-enzyme intermediate. The excised thioesterase domain from the tyrocidine NRPS has been shown to catalyze the cyclization of a peptide thioester substrate which mimics its natural acyl-S-enzyme substrate. In this work we explore the generality of cyclization catalyzed by isolated TE domains. Using synthetic peptide thioester substrates from 6 to 14 residues in length, we show that the excised TE domain from the tyrocidine NRPS can be used to generate an array of sizes of cyclic peptides with comparable kinetic efficiency. We also studied the excised TE domains from the NRPSs which biosynthesize the symmetric cyclic decapeptide gramicidin S and the cyclic lipoheptapeptide surfactin A. Both TE domains exhibit expected cyclization activity: the TE domain from the gramicidin S NRPS catalyzes head-to-tail cyclization of a decapeptide thioester to form gramicidin S, and the TE domain from the surfactin NRPS catalyzes stereospecific cyclization to form a macrolactone analogue of surfactin. With an eye toward generating libraries of cyclic molecules by TE catalysis, we report the solid-phase synthesis and TE-mediated cyclization of a small pool of linear peptide thioesters. These studies provide evidence for the general utility of TE catalysis as a means to synthesize a wide range of macrocyclic compounds.  相似文献   

11.
Conformationally constrained cyclic peptides are known to be better vaccines because of their ability to mimic the native structure of a protein against which an immune response is sought. To test the hypothesis of using conformationally constrained, disease-associated, MHC-derived peptides as vaccines for the prevention of type I diabetes, a 22 amino acid nonobese diabetic(NOD) mouse MHC class II-derived synthetic peptide was cyclized by the formation of end-to-end disulfide bonds and used to prevent diabetes and insulitis in NOD mice. The peptide was synthesized by Fmoc chemistry and cyclized using two methods: a commercially available cyclizing resin (Ekathiox) and air oxidation. When a 10 m excess of resin was used, the Ekathiox yielded a substantial amount of cyclic peptide with few or no side reactions. The kinetics of cyclization by air oxidation at different temperatures indicated that increasing both temperature and pH decreased the cyclization time significantly. Air oxidation at pH 10 at 37-55 degrees C yielded the desired product within 2 h.  相似文献   

12.
In the present paper we describe the synthesis, purification, single crystal x-ray analysis, and solution conformational characterization of the cyclic tetrapeptide cyclo-(L-Pro-beta-Ala-L-Pro-beta-Ala). This peptide was synthesized by classical solution methods and the cyclization of the free tetrapeptide was accomplished in good yields in diluted methylene chloride solution using N,N-dicyclohexyl-carbodiimide (DCCI). The compound crystallizes in the orthorombic space group P2(1)2(1)2(1) from ethyl acetate. All peptide bonds are trans. The molecular conformation is stabilized by two intramolecular hydrogen bonds between the CO and NH groups of the two beta-alanine residues. These hydrogen bonds take place in a C7 structure in which both proline residues occupy the 2 position of an inverse gamma-turn. The two beta-alanine residues have a typical folded conformation (around the C alpha-C beta bond) observed in other cyclic peptides containing this residue. A detailed 1H-nmr analysis in CD3CN solution has been carried out. The molecule assumes a twofold symmetry in solution with a molecular conformation consistent with that observed in the solid state.  相似文献   

13.
Peptides in solution currently exist under several conformations; an equilibrium which varies with solvent polarity. Despite or because of this structure versatility, peptides can be selective biological tools: they can adapt to a target, vary conformation with solvents and so on. These capacities are crucial for cargo carriers. One promising way of using peptides in biotechnologies is to decipher their medium-sequence-structure-function relationships and one approach is molecular modelling. Only few “in silico” methods of peptide design are described in the literature. Most are used in support of experimental screening of peptide libraries. However, the way they are made does not teach us much for future researches. In this paper, we describe an “in silico” method (PepDesign) which starts by analysing the native interaction of a peptide with a target molecule in order to define which points are important. From there, a modelling protocol for the design of ‘better’ peptides is set. The PepDesign procedure calculates new peptides fulfilling the hypothesis, tests the conformational space of these peptides in interaction with the target by angular dynamics and goes up to the selection of the best peptide based on the analysis of complex structure properties. Experimental biological assays are finally used to test the selected peptides, hence to validate the approach. Applications of PepDesign are wide because the procedure will remain similar irrespective of the target which can be a protein, a drug or a nucleic acid. In this paper, we describe the design of peptides which binds to the fusogenic helical form of the C-terminal domain of the Aβ peptide (Aβ29-42).  相似文献   

14.
The development of synthetic methodologies for cyclic peptides is driven by the discovery of cyclic peptide drug scaffolds such as the plant-derived cyclotides, sunflower trypsin inhibitor 1 (SFTI-1) and the development of cyclized conotoxins. Currently, the native chemical ligation reaction between an N-terminal cysteine and C-terminal thioester group remains the most robust method to obtain a head-to-tail cyclized peptide. Peptidyl thioesters are effectively generated by Boc SPPS. However, their generation is challenging using Fmoc SPPS because thioester linkers are not stable to repeated piperidine exposure during deprotection. Herein we describe a Fmoc-based protocol for synthesizing cyclic peptides adapted for microwave assisted solid phase peptide synthesis. The protocol relies on the linker Di-Fmoc-3,4-diaminobenzoic acid, and we demonstrate the use of Gly, Ser, Arg and Ile as C-terminal amino acids (using HBTU and HATU as coupling reagents). Following synthesis, an N-acylurea moiety is generated at the C-terminal of the peptide; the resin bound acylurea peptide is then deprotected and cleaved from the resin. The fully deprotected peptide undergoes thiolysis in aqueous buffer, generating the thioester in situ. Ultimately, the head-to-tail cyclized peptide is obtained via native chemical ligation. Two naturally occurring cyclic peptides, the prototypical Möbius cyclotide kalata B1 and SFTI-1 were synthesized efficiently, avoiding potential branching at the diamino linker, using the optimized protocol. In addition, we demonstrate the possibility to use the approach for the synthesis of long and synthetically challenging linear sequences, by the ligation of two truncated fragments of a 50-residue long plant defensin.  相似文献   

15.
As part of a search for peptides that have specificity for selected protein kinases, the possibility that adenosine cyclic 3',5'-phosphate dependent protein kinase (A-kinase) recognizes the hydrogen-bonding potential of its peptide substrates was investigated. A-Kinase catalyzes the phosphorylation of five N alpha-methylated and four depsipeptide derivatives of Leu-Arg-Arg-Ala-Ser-Leu-Gly (peptide 1) at rates that differ by at least 7 orders of magnitude. These peptide 1 analogues each lack the ability to donate a hydrogen bond at selected positions in the peptide chain. If a particular amide hydrogen of a peptide amide is involved in hydrogen bonding, which is important for enzyme recognition, the prediction is that peptides which contain an ester or a N-methylated bond at that position in peptide 1 will be comparatively poor substrates. In contrast, if a depsipeptide has a reactivity comparable to that of peptide 1 but the analogous N-methylated peptide has a poor reactivity with A-kinase, the result might indicate that the N-methyl group causes unfavorable steric effects. The depsipeptide that lacks a Leu6 amide proton is a good substrate for A-kinase, but the corresponding N-methylated peptide is phosphorylated far less efficiently. This result and others presented in this paper suggest that although enzyme-substrate hydrogen bonding may play some role in A-kinase catalysis of phosphoryl group transfer, other explanations are necessary to account for the relative reactivities of N alpha-methylated and depsi-containing peptide 1 analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
beta-(25-35) is a synthetic derivative of beta-amyloid, the peptide that is believed to cause Alzheimer's disease. As it is highly toxic and forms fibrillar aggregates typical of beta-amyloid, it is suitable as a model for testing inhibitors of aggregation and toxicity. We demonstrate that N-methylated derivatives of beta-(25-35), which in isolation are soluble and non-toxic, can prevent the aggregation and inhibit the resulting toxicity of the wild type peptide. N-Methylation can block hydrogen bonding on the outer edge of the assembling amyloid. The peptides are assayed by Congo red and thioflavin T binding, electron microscopy, and a 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) toxicity assay on PC12 cells. One peptide (Gly(25) N-methylated) has properties similar to the wild type, whereas five have varying effects on prefolded fibrils and fibril assembly. In particular, beta-(25-35) with Gly(33) N-methylated is able to completely prevent fibril assembly and to reduce the toxicity of prefolded amyloid. With Leu(34) N-methylated, the fibril morphology is altered and the toxicity reduced. We suggest that the use of N-methylated derivatives of amyloidogenic peptides and proteins could provide a general solution to the problem of amyloid deposition and toxicity.  相似文献   

17.
Owing to their exceptional stability and favourable pharmacokinetic properties, plant-derived cyclic peptides have recently attracted significant attention in the field of peptide-based drug design. This article describes the three major classes of ribosomally-synthesised plant peptides – the cyclotides, the PawS-derived peptides and the orbitides – and reviews their applications as leads or scaffolds in drug design. These ribosomally-produced peptides have a range of biological activities, including anti-HIV, cytotoxic and immunomodulatory activity. In addition, recent interest has focused on their use as scaffolds to stabilise bioactive peptide sequences, thereby enhancing their biopharmaceutical properties. There are now more than 30 published papers on such ‘grafting’ applications, most of which have been reported only in the last few years, and several such studies have reported in vivo activity of orally delivered cyclic peptides. In this article, we describe approaches to the synthesis of cyclic peptides and their pharmaceutically-grafted derivatives as well as outlining their biosynthetic routes. Finally, we describe possible bioproduction routes for pharmaceutically active cyclic peptides, involving plants and plant suspension cultures.  相似文献   

18.
Hundreds of ribosomally synthesized cyclopeptides have been isolated from all domains of life, the vast majority having been reported in the last 15 years. Studies of cyclic peptides have highlighted their exceptional potential both as stable drug scaffolds and as biomedicines in their own right. Despite this, computational techniques for cyclopeptide identification are still in their infancy, with many such peptides remaining uncharacterized. Tandem mass spectrometry has occupied a niche role in cyclopeptide identification, taking over from traditional techniques such as nuclear magnetic resonance spectroscopy (NMR). MS/MS studies require only picogram quantities of peptide (compared to milligrams for NMR studies) and are applicable to complex samples, abolishing the requirement for time-consuming chromatographic purification. While database search tools such as Sequest and Mascot have become standard tools for the MS/MS identification of linear peptides, they are not applicable to cyclopeptides, due to the parent mass shift resulting from cyclization and different fragmentation patterns of cyclic peptides. In this paper, we describe the development of a novel database search methodology to aid in the identification of cyclopeptides by mass spectrometry and evaluate its utility in identifying two peptide rings from Helianthus annuus, a bacterial cannibalism factor from Bacillus subtilis, and a θ-defensin from Rhesus macaque.  相似文献   

19.
Recent advances in chemical biology and the advantages presented by in vivo screening have highlighted the need for a robust and flexible biologically synthesized small-molecule library. Herein we describe a method for the biosynthesis of cyclic peptide libraries of up to 10(8) members in Escherichia coli using split-intein circular ligation of peptides and proteins (SICLOPPS). The method utilizes split-intein chemistry to cyclize randomized peptide sequences. The cyclic peptide library can potentially be of any size and the peptide itself may contain unlimited random residues. However, the library size is limited by the transformation efficiency of E. coli and random residues are generally limited to five, but additional amino acids can be used in the cyclic peptide backbone, varying the structure and ring size of the cyclic peptide. SICLOPPS libraries have been combined with a bacterial reverse two-hybrid system in our labs and used in the identification of inhibitors of several protein-protein interactions. This protocol is expected to take around 3-4 weeks to implement.  相似文献   

20.
The field of proteinomimetics utilizes peptide-based molecules to mimic native protein functions. We describe a novel general method for mimicking proteins by small cyclic peptides for the purpose of drug design, and demonstrate its applicability on bovine pancreatic trypsin inhibitor (BPTI). These unique cyclic peptides, which both embody discontinuous residues of proteins in their bio-active conformation and ensure an induced fit, may overcome some of the pharmacological drawbacks attributed to proteins and peptides. This method, which we call the backbone cyclic (BC) proteinomimetic approach, combines backbone cyclization of peptides with a suitable selection method, cycloscan. Following this procedure, we have prepared a bicyclic nonapeptide, which mimics the binding region of BPTI. The X-ray crystal structure of the complex trypsin:mimetic, as well as kinetic studies, show that the BPTI mimetic binds to the specificity pocket of trypsin in a similar manner to BPTI. Inhibition measurements of various constructs revealed that backbone cyclization imposed the conformation crucial to binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号