首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
A 3600-bp RNA-directed RNA polymerase (RdRP)-specific cDNA comprising an open reading frame (ORF) of 1114 amino acids was isolated from tomato. The putative protein encoded by this ORF does not share homology with any characterized proteins. Antibodies that were raised against synthetic peptides whose sequences have been deduced from the ORF were shown to specifically detect the 127-kD tomato RdRP protein. The immunoresponse to the antibodies correlated with the enzymatic activity profile of the RdRP after chromatography on Q-, poly(A)-, and poly(U)-Sepharose, hydroxyapatite, and Sephadex G-200 columns. DNA gel blot analysis revealed a single copy of the RdRP gene in tomato. RdRP homologs from petunia, Arabidopsis, tobacco, and wheat were identified by using polymerase chain reaction. A sequence comparison indicated that sequences homologous to RdRP are also present in the yeast Schizosaccharomyces pombe and in the nematode Caenorhabditis elegans. The previously described induction of RdRP activity upon viroid infection is shown to be correlated with an increased steady state level of the corresponding mRNA. The possible involvement of this heretofore functionally elusive plant RNA polymerase in homology-dependent gene silencing is discussed.  相似文献   

5.
Adeno-associated virus RNA transcription in vivo   总被引:16,自引:0,他引:16  
  相似文献   

6.
7.
Previous studies have shown that drugs which bind in the DNA minor groove reduce the curvature of bent DNA. In this article, we examined the effects of these drugs on the nucleosome assembly of DNA molecules that display different degrees of intrinsic curvature. DAPI (4,6-diamidino-2-phenylindole) inhibited the assembly of a histone octamer onto a 192-base pair circular DNA fragment from Caenorhabditis elegans and destabilized a nucleosome that was previously assembled on this segment. The inhibitory effect was highly selective since it was not seen with nonbent molecules, bent molecules with noncircular shapes, or total genomic DNA. This marked template specificity was attributed to the binding of the ligand to multiple oligo A-tracts distributed over the length of the fragment. A likely mechanism for the effect is that the bound ligand prevents the further compression of the DNA into the minor groove which is required for assembly of DNA into nucleosomes. To further characterize the effects of the drug on chromatin formation, a nucleosome was assembled onto a 322-base pair DNA fragment that contained the circular element and a flanking nonbent segment of DNA. The position of the nucleosome along the fragment was then determined using a variety of nuclease probes including exonuclease III, micrococcal nuclease, DNase I, and restriction enzymes. The results of these studies revealed that the nucleosome was preferentially positioned along the circular element in the absence of DAPI but assembled onto the nonbent flanking sequence in the presence of the drug. DAPI also induced the directional movement of the nucleosome from the circular element onto the nonbent flanking sequence when a nucleosome preassembled onto this template was exposed to the drug under physiologically relevant conditions.  相似文献   

8.
9.
10.
In vivo disruption of Xenopus U3 snRNA affects ribosomal RNA processing.   总被引:48,自引:10,他引:38       下载免费PDF全文
R Savino  S A Gerbi 《The EMBO journal》1990,9(7):2299-2308
DNA oligonucleotide complementary to sequences in the 5' third of U3 snRNA were injected into Xenopus oocyte nuclei to disrupt endogenous U3 snRNA. The effect of this treatment on rRNA processing was examined. We found that some toads have a single rRNA processing pathway, whereas in other toads, two rRNA processing pathways can coexist in a single oocyte. U3 snRNA disruption in toads with the single rRNA processing pathway caused a reduction in 20S and '32S' pre-rRNA. In addition, in toads with two rRNA processing pathways, an increase in '36S' pre-rRNA of the second pathway is observed. This is the first in vivo demonstration that U3 snRNA plays a role in rRNA processing. Cleavage site #3 is at the boundary of ITS 1 and 5.8S and links all of the affected rRNA intermediates: 20S and '32S' are the products of site #3 cleavage in the first pathway and '36S' is the substrate for cleavage at site #3 in the second pathway. We postulate that U3 snRNP folds pre-rRNA into a conformation dictating correct cleavage at processing site #3.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
In vivo recognition of an RNA aptamer by its transcription factor target   总被引:2,自引:0,他引:2  
Cassiday LA  Maher LJ 《Biochemistry》2001,40(8):2433-2438
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号