首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The melanocortin 1 receptor (MC1R) is a transmembrane Gs-coupled surface protein found on melanocytes that binds melanocyte-stimulating hormone and mediates activation of adenylyl cyclase and generation of the second messenger cyclic AMP (cAMP). MC1R regulates growth and differentiation of melanocytes and protects against carcinogenesis. Persons with loss-of-function polymorphisms of MC1R tend to be UV-sensitive (fair-skinned and with a poor tanning response) and are at high risk for melanoma. Mechanistic studies of the role of MC1R in melanocytic UV responses, however, have been hindered in part because Mc1r-defective primary murine melanocytes have been difficult to culture in vitro. Until now, effective growth of murine melanocytes has depended on cAMP stimulation with adenylyl cyclase-activating or phosphodiesterase-inhibiting agents. However, rescuing cAMP in the setting of defective MC1R signaling would be expected to confound experiments directly testing MC1R function on melanocytic UV responses. In this paper, we report a novel method of culturing primary murine melanocytes in the absence of pharmacologic cAMP stimulation by incorporating conditioned supernatants containing stem cell factor derived from primary keratinocytes. Importantly, this method seems to permit similar pigment expression by cultured melanocytes as that found in the skin of their parental murine strains. This novel approach will allow mechanistic investigation into MC1R’s role in the protection against UV-mediated carcinogenesis and determination of the role of melanin pigment subtypes on UV-mediated melanocyte responses.  相似文献   

2.
3.
4.
Regulatory elements of the melanocortin 1 receptor   总被引:1,自引:0,他引:1  
Rouzaud F  Hearing VJ 《Peptides》2005,26(10):1858-1870
  相似文献   

5.
6.
The melanocortin receptor MC1 is expressed on melanocytes and is an important control point for melanogenesis and other responses. Alpha-MSH, which is considered to be the major ligand at the human melanocortin (MC)1 receptor (hMC1R), is produced from proopiomelanocortin (POMC) in the pituitary and in the skin by melanocytes and keratinocytes. Other POMC peptides are also produced in the skin and their concentrations exceed those of alpha-MSH by several fold. One of the most abundant is ACTH1-17. We have shown that adrenocorticotrophic hormone (ACTH)1-17 is more potent than alpha-MSH in stimulating melanogenesis in human melanocytes and unlike alpha-MSH produces a biphasic dose response curve. In this study we have examined the ability of ACTH1-17 to function as a ligand at the hMC1R. Competitive binding assays with [125I]Nle4 DPhe7 alpha-MSH as labelled ligand were carried out in HEK 293 cells transfected with the hMC1R. ACTH1-17 showed high affinity for the hMC1R with a Ki value of 0.21 +/- 0.03 nM which was slightly higher than that of 0.13 +/- 0.005 nM for alpha-MSH. ACTH1-17 was, however, more potent than alpha-MSH in increasing cAMP and IP3 production in the transfected cells. Our results demonstrate that ACTH1-17 is a potent agonist at the hMC1R. It is therefore possible that ACTH1-17, which is found in the skin in greater concentrations than alpha-MSH, has an important role in the regulation of human melanocytes and other cell types that express the hMC1R.  相似文献   

7.
8.
Activation of the melanocortin 1 receptor (MC1R) by α‐melanocortin (α‐MSH) stimulates eumelanin synthesis and enhances repair of ultraviolet radiation (UV)‐induced DNA damage. We report on the DNA damage response (DDR) of human melanocytes to UV and its enhancement by α‐MSH. α‐MSH up‐regulated the levels of XPC, the enzyme that recognizes DNA damage sites, enhanced the UV‐induced phosphorylation of the DNA damage sensors ataxia telangiectasia and Rad3‐related (ATR) and ataxia telangiectasia mutated (ATM) and their respect‐ive substrates checkpoint kinases 1 and 2, and increased phosphorylated H2AX (γH2AX) formation. These effects required functional MC1R and were absent in melanocytes expressing loss of function (LOF) MC1R. The levels of wild‐type p53‐induced phosphatase 1 (Wip1), which dephosphorylates γH2AX, correlated inversely with γH2AX. We propose that α‐MSH increases UV‐induced γH2AX to facilitate formation of DNA repair complexes and repair of DNA photoproducts, and LOF of MC1R compromises the DDR and genomic stability of melanocytes.  相似文献   

9.
The melanocortin 1 receptor gene (MC1R) expressed in melanocytes is a major determinant of skin pigmentation. It encodes a Gs protein-coupled receptor activated by α-melanocyte stimulating hormone (αMSH). Human MC1R has an inefficient poly(A) site allowing intergenic splicing with its downstream neighbour Tubulin-β-III (TUBB3). Intergenic splicing produces two MC1R isoforms, designated Iso1 and Iso2, bearing the complete seven transmembrane helices from MC1R fused to TUBB3-derived C-terminal extensions, in-frame for Iso1 and out-of-frame for Iso2. It has been reported that exposure to ultraviolet radiation (UVR) might promote an isoform switch from canonical MC1R (MC1R-001) to the MC1R-TUBB3 chimeras, which might lead to novel phenotypes required for tanning. We expressed the Flag epitope-tagged intergenic isoforms in heterologous HEK293T cells and human melanoma cells, for functional characterization. Iso1 was expressed with the expected size. Iso2 yielded a doublet of Mr significantly lower than predicted, and impaired intracellular stability. Although Iso1- and Iso2 bound radiolabelled agonist with the same affinity as MC1R-001, their plasma membrane expression was strongly reduced. Decreased surface expression mostly resulted from aberrant forward trafficking, rather than high rates of endocytosis. Functional coupling of both isoforms to cAMP was lower than wild-type, but ERK activation upon binding of αMSH was unimpaired, suggesting imbalanced signaling from the splice variants. Heterodimerization of differentially labelled MC1R-001 with the splicing isoforms analyzed by co-immunoprecipitation was efficient and caused decreased surface expression of binding sites. Thus, UVR-induced MC1R isoforms might contribute to fine-tune the tanning response by modulating MC1R-001 availability and functional parameters.  相似文献   

10.
The melanocortin 1 receptor (MC1R) is a dimeric G protein-coupled receptor expressed in melanocytes, where it regulates the amount and type of melanins produced and determines the tanning response to ultraviolet radiation. We have studied the mechanisms of MC1R dimerization. Normal dimerization of a deleted mutant lacking the seventh transmembrane fragment and the C-terminal cytosolic extension excluded coiled-coil interactions as the basis of dimerization. Conversely, the electrophoretic pattern of wild type receptor and several Cys → Ala mutants showed that four disulfide bonds are established between the monomers. Disruption of any of these bonds abolished MC1R function, but only the one involving Cys35 was essential for traffic to the plasma membrane. A quadruple Cys35-267-273-275Ala mutant migrating as a monomer in SDS-PAGE in the absence of reducing agents was able to dimerize with WT, suggesting that in addition to disulfide bond formation, dimerization involves non-covalent interactions, likely of domain swap type.  相似文献   

11.
MC1R and the response of melanocytes to ultraviolet radiation   总被引:5,自引:0,他引:5  
The constitutive color of our skin plays a dramatic role in our photoprotection from solar ultraviolet radiation (UVR) that reaches the Earth and in minimizing DNA damage that gives rise to skin cancer. More than 120 genes have been identified and shown to regulate pigmentation, one of the key genes being melanocortin 1 receptor (MC1R) that encodes the melanocortin 1 receptor (MC1R), a seven-transmembrane G protein-coupled receptor expressed on the surface of melanocytes. Modulation of MC1R function regulates melanin synthesis by melanocytes qualitatively and quantitatively. The MC1R is regulated by the physiological agonists alpha-melanocyte-stimulating hormone (alphaMSH) and adrenocorticotropic hormone (ACTH), and antagonist agouti signaling protein (ASP). Activation of the MC1R by binding of an agonist stimulates the synthesis of eumelanin primarily via activation of adenylate cyclase. The significance of cutaneous pigmentation lies in the photoprotective effect of melanin, particularly eumelanin, against sun-induced carcinogenesis. Epidermal melanocytes and keratinocytes respond to UVR by increasing their expression of alphaMSH and ACTH, which up-regulate the expression of MC1R, and consequently enhance the response of melanocytes to melanocortins. Constitutive skin pigmentation dramatically affects the incidence of skin cancer. The pigmentary phenotype characterized by red hair, fair complexion, inability to tan and tendency to freckle is an independent risk factor for all skin cancers, including melanoma. The MC1R gene is highly polymorphic in human populations, and allelic variation at this locus accounts, to a large extent, for the variation in pigmentary phenotypes and skin phototypes (SPT) in humans. Several allelic variants of the MC1R gene are associated with the red hair and fair skin (RHC) phenotype, and carrying one of these variants is thought to diminish the ability of the epidermis to respond to DNA damage elicited by UVR. The MC1R gene is considered a melanoma susceptibility gene, and its significance in determining the risk for skin cancer is of tremendous interest.  相似文献   

12.
The melanocortins (alpha-melanocyte-stimulating hormone and adrenocorticotropin) act on epidermal melanocytes to increase melanogenesis, the eumelanin/pheomelanin ratio and dendricity. These actions are mediated by the heptahelical melanocortin 1 receptor (MC1R), positively coupled to adenylyl cyclase. Gain-of-function mouse Mc1r alleles are associated with a dark, eumelanic coat. Conversely, loss-of-function variants, or overexpression of agouti, a natural melanocortin antagonist, yield yellow, pheomelanic furs. In humans, loss-of-function MC1R variants are associated with fair skin, poor tanning, propensity to freckle and increased skin cancer risk. Therefore, MC1R is a key regulator of mammalian pigmentation. Several observations such as induction of constitutive pigmentation in amelanotic mouse melanoma cells following expression of MC1R indicate that the receptor might display agonist-independent activity. We report a systematic and comparative study of MC1R and Mc1r constitutive activity. We show that expression of MC1R in heterologous systems leads to an agonist-independent increase in cyclic adenosine monophophate (cAMP). Basal signalling is a function of receptor expression and is two to fourfold higher for MC1R than for Mc1r. Moreover, it is observed in human melanoma cells over-expressing the MC1R. Constitutive signalling is abolished or reduced by point mutations of MC1R impairing the response to agonists, and is only doubled by the Lys94Glu mutation, mimicking the constitutively active mouse E(so-3J) allele. Stable or transient expression of wild-type MC1R, but not of loss-of-function mutants, potently stimulates forskolin activation of adenylyl cyclase, a common feature of constitutively active Gs-coupled receptors. Therefore, human MC1R displays a strong agonist-independent constitutive activity.  相似文献   

13.
Malignant transformation of melanocytes leads to melanoma, the most fatal form of skin cancer. Ultraviolet radiation (UVR)-induced DNA photoproducts play an important role in melanomagenesis. Cutaneous melanin content represents a major photoprotective mechanism against UVR-induced DNA damage, and generally correlates inversely with the risk of skin cancer, including melanoma. Melanoma risk is also determined by susceptibility genes, one of which is the melanocortin 1 receptor (MC1R) gene. Certain MC1R alleles are strongly associated with melanoma. We hereby present experimental evidence for the role of two melanoma risk factors, constitutive pigmentation, as assessed by total melanin, eumelanin and pheomelanin contents, and MC1R genotype and function, in determining the induction and repair of DNA photoproducts in cultured human melanocytes after irradiation with increasing doses of UVR. We found that total melanin and eumelanin contents (MC and EC) correlated inversely with the extent of UVR-induced growth arrest, apoptosis and induction of cyclobutane pyrimidine dimers (CPD), but not with hydrogen peroxide release in melanocytes expressing functional MC1R. In comparison, melanocytes with loss-of-function MC1R, regardless of their MC or EC, sustained more UVR-induced apoptosis and CPD, and exhibited reduced CPD repair. Therefore, MC, mainly EC, and MC1R function are independent determinants of UVR-induced DNA damage in melanocytes.  相似文献   

14.
15.
Striking differences are observed in the melanogenic response of normal human melanocytes to UVA and UVB irradiation depending on culture conditions and the presence of keratinocytes. Exposure of melanocytes co‐cultured with keratinocytes to UVB irradiation triggered, already at low doses (5 mJ/cm2), an increase in melanin synthesis whereas in melanocyte mono‐cultures, UVB doses up to 50 mJ/cm2 had no melanogenic effect. Unlike UVB, UVA exposure caused the same melanogenic response in both mono‐ and co‐cultures. Removing certain keratinocyte growth factors from the co‐culture medium abolished the melanogenic response to UVB, but not to UVA exposure. When integrated into the basal layer of a reconstructed human epidermis, human melanocytes similarly reacted to UVA and UVB irradiation as in vivo by increasing their production and transfer of melanin to the neighboring keratinocytes which resulted in a noticeable tanning of the reconstructed epidermis. The presence of a dense stratum corneum, known to scatter and absorb UV light, is responsible for higher minimal UVB and UVA doses required to trigger a melanogenic response in the reconstructed epidermis compared to keratinocyte–melanocyte co‐cultures. Furthermore, an immediate tanning response was observed in the pigmented epidermis following UVA irradiation. From these results we conclude that: (i) keratinocytes play an important role in mediating UVB‐induced pigmentation, (ii) UVA‐induced pigmentation is the result of a rather direct effect on melanocytes and (iii) reconstructed pigmented epidermis is the most appropriate model to study UV‐induced pigmentation in vitro.  相似文献   

16.
The hypothalamic-pituitary-adrenal (HPA) axis maintains basal and stress-related homeostasis in vertebrates. Skin expresses all elements of the HPA axis including corticotropin-releasing hormone (CRH), proopiomelanocortin (POMC), ACTH, β-endorphin (β-END) with corresponding receptors, the glucocorticoidogenic pathway, and the glucocorticoid receptor (GR). To test the hypothesis that cutaneous responses to environmental stressors follow the organizational structure of the central response to stress, the activity of the "cutaneous HPA" axis homolog was investigated after exposure to ultraviolet radiation (UVR) wavelengths of UVA (320-400 nm), UVB (280-320 nm), and UVC (100-280 nm) in human skin organ culture and in co-cultured keratinocytes/melanocytes. The level of stimulation of CRH, POMC, MC1R, MC2R, CYP11A1, and CYP11B1 genes was dependent on UV wavelengths and doses, with the highest effects observed for highly energetic UVC and UVB. ELISA and Western assays showed significant production of CRH, POMC, ACTH, and CYP11A1 proteins and of cortisol, with a decrease in GR expression only after UVB and UVC. However, β-END expression was also stimulated by UVA. Immunocytochemistry localized the deposition of the aforesaid antigens predominantly to the epidermis with additional accumulation of CRH, β-END, and ACTH in the dermis. UVR-stimulated CYP11A1 expression was seen in the basal layer of the epidermis and cells of adjacent dermis. Thus, the capacity to activate or change the spatial distribution of the cutaneous HPA axis elements is dependent on highly energetic wavelengths (UVC and UVB), implying a dependence of a local stress response on their noxious activity with overlapping or alternative mechanisms activated by UVA.  相似文献   

17.
Exposure of cultured human melanocytes to ultraviolet radiation (UV) results in DNA damage. In melanoma, UV‐signature mutations resulting from unrepaired photoproducts are rare, suggesting the possible involvement of oxidative DNA damage in melanocyte malignant transformation. Here we present data demonstrating immediate dose‐dependent generation of hydrogen peroxide in UV‐irradiated melanocytes, which correlated directly with a decrease in catalase activity. Pretreatment of melanocytes with α‐melanocortin (α‐MSH) reduced the UV‐induced generation of 7,8‐dihydro‐8‐oxyguanine (8‐oxodG), a major form of oxidative DNA damage. Pretreatment with α‐MSH also increased the protein levels of catalase and ferritin. The effect of α‐MSH on 8‐oxodG induction was mediated by activation of the melanocortin 1 receptor (MC1R), as it was absent in melanocytes expressing loss‐of‐function MC1R, and blocked by concomitant treatment with an analog of agouti signaling protein (ASIP), ASIP‐YY. This study provides unequivocal evidence for induction of oxidative DNA damage by UV in human melanocytes and reduction of this damage by α‐MSH. Our data unravel some mechanisms by which α‐MSH protects melanocytes from oxidative DNA damage, which partially explain the strong association of loss‐of‐function MC1R with melanoma.  相似文献   

18.
UV-induced pigmentation (suntanning) requires induction of alpha-melanocyte-stimulating hormone (alpha-MSH) secretion by keratinocytes. alpha-MSH and other bioactive peptides are cleavage products of pro-opiomelanocortin (POMC). Here we provide biochemical and genetic evidence demonstrating that UV induction of POMC/MSH in skin is directly controlled by p53. Whereas p53 potently stimulates the POMC promoter in response to UV, the absence of p53, as in knockout mice, is associated with absence of the UV-tanning response. The same pathway produces beta-endorphin, another POMC derivative, which potentially contributes to sun-seeking behaviors. Furthermore, several instances of UV-independent pathologic pigmentation are shown to involve p53 "mimicking" the tanning response. p53 thus functions as a sensor/effector for UV pigmentation, which is a nearly constant environmental exposure. Moreover, this pathway is activated in numerous conditions of pathologic pigmentation and thus mimics the tanning response.  相似文献   

19.
Striking differences are observed in the melanogenic response of normal human melanocytes to UVA and UVB irradiation depending on culture conditions and the presence of keratinocytes. Exposure of melanocytes co-cultured with keratinocytes to UVB irradiation triggered, already at low doses (5 mJ/cm2), an increase in melanin synthesis whereas in melanocyte mono-cultures, UVB doses up to 50 mJ/cm2 had no melanogenic effect. Unlike UVB, UVA exposure caused the same melanogenic response in both mono- and co-cultures. Removing certain keratinocyte growth factors from the co-culture medium abolished the melanogenic response to UVB, but not to UVA exposure. When integrated into the basal layer of a reconstructed human epidermis, human melanocytes similarly reacted to UVA and UVB irradiation as in vivo by increasing their production and transfer of melanin to the neighboring keratinocytes which resulted in a noticeable tanning of the reconstructed epidermis. The presence of a dense stratum corneum, known to scatter and absorb UV light, is responsible for higher minimal UVB and UVA doses required to trigger a melanogenic response in the reconstructed epidermis compared to keratinocyte-melanocyte co-cultures. Furthermore, an immediate tanning response was observed in the pigmented epidermis following UVA irradiation. From these results we conclude that: (i) keratinocytes play an important role in mediating UVB-induced pigmentation, (ii) UVA-induced pigmentation is the result of a rather direct effect on melanocytes and (iii) reconstructed pigmented epidermis is the most appropriate model to study UV-induced pigmentation in vitro.  相似文献   

20.
The aim of this study was to investigate a series of single-nucleotide polymorphisms (SNPs) in the genes MC2R, MC3R, MC4R, MC5R, POMC, and ENPP1 for association with obesity. Twenty-five SNPs (2-7 SNPs/gene) were genotyped in 246 Finns with extreme obesity (BMI > or = 40 kg/m2) and in 481 lean subjects (BMI 20-25 kg/m2). Of the obese subjects, 23% had concomitant type 2 diabetes. SNPs and SNP haplotypes were tested for association with obesity and type 2 diabetes. Allele frequencies differed between obese and lean subjects for two SNPs in the ENPP1 gene, rs1800949 (P = 0.006) and rs943003 (P = 0.0009). These SNPs are part of a haplotype (rs1800949 C-rs943003 A), which was observed more frequently in lean subjects compared to obese subjects (P = 0.0007). Weaker associations were detected between the SNPs rs1541276 in the MC5R, rs1926065 in the MC3R genes and obesity (P = 0.04 and P = 0.03, respectively), and between SNPs rs2236700 in the MC5R, rs2118404 in the POMC, rs943003 in the ENPP1 genes and type 2 diabetes (P = 0.03, P = 0.02 and P = 0.02, respectively); these associations did not, however, remain significant after correction for multiple testing. In conclusion, a previously unexplored ENPP1 haplotype composed of SNPs rs1800949 and rs943003 showed suggestive evidence for association with adult-onset morbid obesity in Finns. In this study, we did not find association between the frequently studied ENPP1 K121Q variant, nor SNPs in the MCR or POMC genes and obesity or type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号