首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Steady state crypt cell kinetics have been simulated using matrix algebra. The model crypt cell population is distributed through two proliferation compartments (P1 and P2) and a quiescent state (Q). Under steady state conditions half the daughter cells produced on completion of P1 enter G1 of P2 and half enter G1 of P1. Both P2 daughter cells enter Q. Cells in Q are non-dividing but retain the potential to divide. On completion of Q, cells lose the potential to divide and move up onto the villi. The model has been developed by simultaneously simulating the following biological data: (1) the per cent labeled mitosis (PML) curve, (2) the number of labeled cells per crypt as a function of time following an injection of 3H-thymidine, and (3) the total number of cells per crypt.  相似文献   

2.
The perturbed cellular kinetics of the duodenal crypt following a single injection of hydroxyurea (HU) have been simulated using matrix algebra. Following the direct effects of HU (S-phase cytotoxicity and a G1/S block) the crypt cell kinetics undergo several alterations. Previously documented alterations include: (1) a temporary partial synchronization of the surviving cells, (2) a shortening of the cell-cycle transit time, and (3) recruitment of normally non-proliferating cells into active proliferation. These conclusions have been extended by constructing several different complex but theoretically possible recovery models and the validity of each of these models has been evaluated by simulating the following biological data: the number of cells in the S and M-phase of the cell cycle, total viable cells per crypt, and the per cent labeled mitosis and the number of labeled cells following 3H-TdR injections at 9 and 21 hr after HU treatment. The model which showed visually the best overall agreement with all sets of the data was chosen as "most probable' and leads to the following interpretations. Immediately after the end of the HU block (i.e. 5 hr after HU injection) the modal cell-cycle transit time is reduced to 8 hr. By 17 hr after HU, the modal transit time is increased to 10 hr. Repopulation of the proliferating compartment, i.e. restoration of the proliferating compartment back to the control value, occurs between 12 and 17 hr after HU injection and probably consists of both recycling of the proliferating cells (i.e. they do not progress up into the non-proliferating compartment) and recruitment of the non-proliferating cells into active proliferation. Also, the rate at which the non-proliferating cells move onto the villi is reduced temporarily. The overall recovery process results in a crypt which temporarily is larger than control and produces villi cells at a rate which is faster than the control. The time when the crypt size and villus cell production rate return to normal cannot be established using the available data.  相似文献   

3.
Epithelial cell kinetics were investigated in the descending colon of the rat. The number of cells per crypt was found to be approximately 625, with 33 cells per cell column and 19 cell columns per crypt circumference. The growth fraction of the colonic crypt was 0.42, and proliferating cells were situated largely in the lower half of the crypt. The cell cycle time was 50.5 h, with values for the G1, S and G2 phases of 40.0, 7.6 and 2.9 h respectively. Cell migration studies showed that it took 60-72 h for a cell to migrate from the upper border of the proliferative cell compartment in the crypt to the luminal surface of the colon. Data were also obtained from continuous labelling with tritiated thymidine and from studying the circadian rhythm of proliferative activity, which suggest that the cells in the bottom of the crypt may constitute a separate, more slowly cycling (stem)cell compartment.  相似文献   

4.
The inducibility of DNA synthesis after treatment with cyclohexamide (CHM) during mitosis and the G1 phase of WI38 cells has been studied in the heterokaryons following fusion with HeLa cells in S phase. Synchronized mitotic cells treated for up to 5 h with CHM were not delayed in the initiation of DNA synthesis in the heterokaryons. The G1 cells treated with CHM for 3-24 h were slow in responding to inducers of DNA synthesis generated by HeLa cells in the heterokaryons. The results suggest that there is a specific point in early G1 that regulates the entry of cells into a cycling state. In the presence of CHM, mitotic cells divide, but the daughter cells fail to enter G1 leading to DNA synthesis, and CHM treatment of G1 cells results in their transient entry into a G0 state.  相似文献   

5.
A method for determining the number of intestinal mucosal crypts, S cells, and total proliferative cells, on a weight basis has been presented. The number of crypts was obtained (following injection of tritiated thymidine) by dividing the disintegrations per minute (dpm) per mg intestine by the dpm per crypt. Multiplication of the number of crypts per mg by the number of labeled cells per crypt (determined radioautographically) resulted in the number of S cells per mg intestine. Division of the number of S cells per mg by the fraction of proliferative cells in S (obtained by cell cycle analysis) resulted in the number of proliferative cells per mg intestine. Values for duodenum, jejunum, and ileum of male C57BL/6 mice are given.  相似文献   

6.
The development of a pure quiescent (Q) tumour cell population can be induced in three mouse mammary tumour lines (66, 67 and 68H) by nutrient deprivation. When these Q cells were removed from nutrient-deprived cultures and replated in fresh medium at a lower cell concentration within 72 hr of entering quiescence virtually all of the Q cells could re-enter the proliferating (P) state. This recruitment was characterized by an increase in cell volume, an increase in total cellular RNA, and a resumption of cell division. The length of the Q to P transition varied among the three cell lines and the depth of the quiescent state depended on the amount of time the cells had been quiescent. Once re-entry into the P compartment was completed, cell-cycle times, as estimated by the culture doubling time, were the same as the cells that had not entered the Q state, however, after 72 hr in quiescence, not all of the 66 cells could reattach after trypsinization and of those that could reattach approximately equal to 50% were incapable of either increasing their RNA levels to that of proliferating G1 cells or entering S. Clonogenicity of the nutrient-deprived Q cells in these lines decreases exponentially from time the cells enter quiescence with approximate half-times of 32, 34, and 96 hr for the 66, 68H and 67 cells, respectively. Since clonogenicity was already declining at a time when all the Q cells could re-enter the P compartment, the ability of a Q cell to form a colony is not determined solely by its capacity to re-enter the proliferating compartment.  相似文献   

7.
R.F. Brooks  D.C. Bennett  J.A. Smith 《Cell》1980,19(2):493-504
Although a single transition in the cell cycle is both sufficient and necessary to account for the distribution of differences in the intermitotic times of sister cells, two random transitions seem necessary to account for the responses of quiescent cells to stimulation by growth factors. We propose that serum-depleted quiescent cells “rest” in an indeterminate state (Q) which they leave at random upon stimulation and initiate a lengthy process (L). Upon completion of L the cells enter another indeterminate state (A) which they also leave at random and shortly thereafter initiate S phase and subsequently divide. On leaving A they also re-enter Q, and, again at random, initiate L. This sequence, Q → L → A, is maintained in steady state proliferation, and because of the random exit from Q and A, overlaps to varying degrees with the conventional cell cycle (M-G1-S-G2-M). The hypothesis provides a qualitative account of various problematic features of the lag between stimulation and entry into S phase. It also provides a good quantitative account of the distribution of sibling differences, the correlation coefficient for sibling intermitotic times and the distribution of intermitotic times in steady state growing cultures. There are striking similarities between the hypothetical cycle and the centriole cycle.  相似文献   

8.
9.
The cell cycle status of developing Dictyostelium cells remains unresolved because previous studies have led to conflicting interpretations. We propose a new model of cell cycle events during development. We observe mitosis of about 50% of the cells between 12 and 18 hours of development. Cellular DNA content profiles obtained by flow cytometry and quantification of extra-chromosomal and chromosomal DNA suggest that the daughter cells have half the chromosomal DNA of vegetative cells. Furthermore, little chromosomal DNA synthesis occurs during development, indicating that no S phase occurs. The DNA content in cells sorted by fluorescent tissue-specific reporters indicates that prespore cells divide before prestalk cells and later encapsulate as G1-arrested spores. Consistent with this, germinating spores have one copy of their chromosomes, as judged by fluorescence in situ hybridization and they replicate their chromosomes before mitosis of the emergent amoebae. The DNA content of mature stalk cells suggests that they also attain a G1 state prior to terminal differentiation. As prestalk cells appear to be in G2 up to 22 hours of development, our data suggest that they divide just prior to stalk formation. Our results suggest tissue-specific regulation of G1 phase cell cycle arrest prior to terminal differentiation in Dictyostelium.  相似文献   

10.
Feulgen cytophotometry and autoradiography were used to study DNA content and DNA synthesis in starved and starved-refed Tetrahymena pyriformis GL-C. It was found that (1) the cell population shows a limited increase in cell number during starvation and this increase is restricted to the first 7 h of starvation; (2) at the end of starvation, there is a portion of the cell population whose DNA content is similar to that for standard G2 cells; (3) a significant portion of the dividing cells at the first division following refeeding in the presence of [3H]TdR are unlabeled; (4) these unlabeled cells are among the first to divide and, upon division, generally enter into a cell cycle either lacking a G1 phase or with a shortened G1 phase.  相似文献   

11.
We isolated fairly stable lysogenic-like bacteria from a lysogenic state established between an amber mutant for the maturation protein gene of RNA phage Q beta (Q beta am 205) and its nonpermissive host BE110. These bacteria contained few mature phages intracellularly (less than 10(-3) plaque forming unit per cell), continued to grow with a potentiality to produce Q beta am 205 spontaneously, and showed an immunity-like response against homologous phage infection. These characteristics were maintained by growth in liquid medium containing anti-Q beta serum. We designated these cells as pseudolysogenic bacteria. The relative amounts of RNA genomes in these pseudolysogenic cells (about 10(2) infectious RNA strands per cell) indicated that the RNA genomes could replicate in nonpermissive cells and be distributed in daughter cells synchronizing well with cell division.  相似文献   

12.
The frequency distribution of cells through the mitotic cycle in lower and upper portions of jejunal crypts of the rat was examined by the 3H-14C-thymidine double labelling technique. Isolated crypts were cut perpendicular to the longitudinal axis so that the percentage of cells in the lower portion varied from 16 to 74%. The lower and upper portion of the same crypt were squashed separately on one microscope slide and the number of 3H- and 14C-only labelled cells were scored to determine the flow rate into and out of S for the two portions. The mitotic cycle and its phases of the crypt epithelial cells were also determined. For lower portions of crypts which contained less than 40% of the total cell number in that crypt the flow rate into S was about 1-7 times that of the flow rate out of S indicating that nearly every mitosis in this region produced two proliferative daughter cells. As the proportion of cells in the lower part of the crypt increased the quotient of the flow rate into S divided by the flow rate out of S decreased, and approached the steady state value of 1-0 in lower portions containing 60-74% of the cells. For upper portions of crypts which contained less than 40% of the total crypt cells the flow rate into S was about 0-2 times that of the flow rate out of S, indicating that in this region mitoses predominantly produced non-proliferative daughter cells. The results obtained were in good agreement with the model of crypt cell proliferation proposed by Cairnie, Lamerton & Steel (1965b).  相似文献   

13.
Filter elution was used to compare X-ray-induced DNA single- and double-strand breaks in proliferating (P) and quiescent (Q) cells of the 66 and 67 mouse mammary tumor lines. There was no difference either between cell type or between growth states in the amount of single-strand breaks as defined by elution at pH 12.2. In contrast, Q cells appeared to sustain a much larger amount of double-strand break damage per Gray than P cells, when the damage was measured by elution at either pH 7.2 or pH 9.6. Experiments which combined centrifugal elutriation with pH 7.2 elution demonstrated that G1-P cells were similar to Q (greater than or equal to 95% G1) cells in the induction of elution-detectable double-strand breaks, while the S-phase enriched fractions sustained less damage than G1-P, Q, or asynchronous P populations. Studies in which P populations were pulse labeled with [14C]thymidine confirmed this finding. Mathematical analysis of the elution kinetics of irradiated P, Q, and S-phase cells supports a model in which the complex elution profiles observed for P cells could be explained as the sum of the one-component exponential elution profiles of G1- and S-phase subpopulations. Also, the correlation between damage measured by pH 7.2 elution and cell survival was tested by examining the dose response for stimulated 66 cells (St4), which like Q cells are greater than or equal to 95% in G1 but are more resistant to X-ray-induced cytotoxicity than are the 66 Q cells. However, the induction of double-strand breaks in St4 cells was identical to that in Q cells. Thus we conclude that there is not necessarily a correlation between the amount of elution-detectable X-ray-induced double-strand breaks and cell survival.  相似文献   

14.
V A Gushchin 《Tsitologiia》1976,18(12):1455-1463
Changes in shape of the second wave of the labeled mitoses curve previously observed by Rowinski and Sawicki (1972) for three crypt zones of three different parts of guinea-pig ascending colon are explained by the complicated branching structure of the G1-phase. This structure is assumed to be the same for different crypt zones and for different sections of the intestine. Changes in shape of the second wave of the labeled mitoses curve are explained by the changes in distribution of proliferating cell stream between the alternative directions at the points of branching of the G1-phase, depending on the crypt zone, the intestine section, the cell state, and on the state of intestine.  相似文献   

15.
Three mouse mammary tumour lines (66, 67, and 68H) derived from a single mouse mammary tumour were investigated for their growth kinetics and development of quiescent cells in unfed monolayer cultures. All three lines develop pure quiescent populations when grown in unfed plateau cultures. A dramatic cell-cycle redistribution accompanied the proliferating (P) to quiescent (Q) transition, with the percentage of cells having a G1 DNA content increasing from 50% in the P state to greater than 97% in the Q state. As the cultures progressed from exponential to plateau growth, a decrease of greater than or equal to 50% in cellular RNA was observed in all three lines. This property enables the clear identification of P v. Q cells by flow cytometry using the two-step acridine orange assay. Autoradiographic data verified that these plateau cells were quiescent since less than 2.5% of the cells incorporated [3H]TdR when labelled for approximately two doubling times. Further comparison of the P and Q cells showed that: (a) the Coulter volume of Q cells was approximately half that of P cells in all three lines; (b) viability, as measured by dye exclusion was greater than 95% in all cultures regardless of their proliferative state; and (c) colony-forming ability decreased as the cells entered the quiescent state. In each of these cell lines the development of Q-cell populations was marked by similar changes in all measured parameters. These quiescent tumour cells provide a relatively simple model to evaluate what, if any, important differences exist between the response of P v. Q cells to various therapeutic agents.  相似文献   

16.
Murine Mammary Tumour Cells In Vitro. Ii. Recruitment of Quiescent Cells   总被引:1,自引:0,他引:1  
Abstract The development of a pure quiescent (Q) tumour cell population can be induced in three mouse mammary tumour lines (66, 67 and 68H) by nutrient deprivation. When these Q cells were removed from nutrient-deprived cultures and replated in fresh medium at a lower cell concentration within 72 hr of entering quiescence virtually all of the Q cells could re-enter the proliferating (P) state. This recruitment was characterized by an increase in cell volume, an increase in total cellular RNA, and a resumption of cell division. the length of the Q to P transition varied among the three cell lines and the depth of the quiescent state depended on the amount of time the cells had been quiescent. Once re-entry into the P compartment was completed, cell-cycle times, as estimated by the culture doubling time, were the same as the cells that had not entered the Q state. however, after 72 hr in quiescence, not all of the 66 cells could reattach after trypsinization and of those that could reattach 50% were incapable of either increasing their RNA levels to that of proliferating G1 cells or entering S. Clonogenicity of the nutrient-deprived Q cells in these lines decreases exponentially from time the cells enter quiescence with approximate half-times of 32, 34, and 96 hr for the 66, 68H and 67 cells, respectively. Slnce clonogenicity was already declining at a time when all the Q cells could re-enter the P compartment, the ability of a Q cell to form a colony is not determined solely by its capacity to re-enter the proliferating compartment.  相似文献   

17.
We examined whether protein kinase D1 (PKD1), the founding member of a new protein kinase family, plays a critical role in intestinal epithelial cell proliferation. Our results demonstrate that PKD1 activation is sustained, whereas that of PKD2 is transient in intestinal epithelial IEC-18 stimulated with the G(q)-coupled receptor agonists angiotensin II or vasopressin. PKD1 gene silencing utilizing small interfering RNAs dramatically reduced DNA synthesis and cell proliferation in IEC-18 cells stimulated with G(q)-coupled receptor agonists. To clarify the role of PKD1 in intestinal epithelial cell proliferation in vivo, we generated transgenic mice that express elevated PKD1 protein in the intestinal epithelium. Transgenic PKD1 exhibited constitutive catalytic activity and phosphorylation at the activation loop residues Ser(744) and Ser(748) and on the autophosphorylation site, Ser(916). To examine whether PKD1 expression stimulates intestinal cell proliferation, we determined the rate of crypt cell DNA synthesis by detection of 5-bromo-2-deoxyuridine incorporated into the nuclei of crypt cells of the ileum. Our results demonstrate a significant increase (p < 0.005) in DNA-synthesizing cells in the crypts of two independent lines of PKD1 transgenic mice as compared with non-transgenic littermates. Morphometric analysis showed a significant increase in the length and in the total number of cells per crypt in the transgenic PKD1 mice as compared with the non-transgenic littermates (p < 0.01). Thus, transgenic PKD1 signaling increases the number of cells per crypt by stimulating the rate of crypt cell proliferation. Collectively, our results indicate that PKD1 plays a role in promoting cell proliferation in intestinal epithelial cells both in vitro and in vivo.  相似文献   

18.
Cell kinetics in the jejunal crypt of the male Wistar rat were studied using autoradiographic techniques with tritiated thymidine and a stathmokinetic technique with vincristine. The migration rate measured by following the movement of the 50% peak on the labelling index distribution curve with time after injection of tritiated thymidine gave a value of 1-43 +/- 0-14 (SE) cell positions per hour, compared with a value from a cumulative birth rate of 1-78 cell positions per hour. Tht crypt column length was 32-9 +/- 0-2 cells and the column count was 22-3 +/- 0-2. This measurement gave a total crypt population of 734 cells, compared with an estimate of 650 +/- l from direct observation of squashed, microdissected crypts. In each crypt 22-5 +/- 0-5 mitoses were present, and the crypt cell production rate was 32 cells per crypt per hour; this latter value was confirmed using two independent techniques. The crypt growth fraction calculated from the durations of phases of the cell cycle and the labelling index was 0-62. A value of 0-61 was found from the labelling index distribution curve. As assessed from crypt squashes, there were 403 proliferating cells per crypt.  相似文献   

19.
Six human colon carcinoma cell lines were induced to enter stationary phase of growth by nutrient deprivation and cell crowding. Growth kinetics parameters (cell number, flow cytometric analysis of DNA distribution, and labelling and mitotic indices) were measured sequentially for all lines during the various stages of in vitro growth. Our results demonstrated that a substantial fraction of cells (9-18%) were located in G2 phase when they changed from an exponential to a stationary mode of growth. Moreover, a large number of cells in stationary phase of growth had an S-phase DNA content, as determined by flow cytometry, but failed to incorporate radioactive DNA precursors (up to 15-fold difference). To substantiate these findings, cells in stationary phase of growth were induced to enter exponential growth by re-seeding in fresh medium at a lower density. Subsequently observed changes in DNA-compartment distribution, and in labelling and mitotic indices were those expected from cells that had been arrested at different stages of the cycle during their previous stationary phase. Thus, the non-proliferating quiescent state (Q), traditionally located 'somewhere' in G1 phase, appears to be composed also of cells that can be arrested at other stages of the cycle (Qs and QG2). Although the proportion of such cells is rather small, their contribution to the growth kinetics behaviour of human in vivo tumours will become apparent following 'recruiting' or 'synchronizing' clinical manoeuvres and will prevent the formation of a clear-cut wave of synchronized cells.  相似文献   

20.
Human cyclin A is required for mitosis until mid prophase.   总被引:12,自引:0,他引:12  
We have used microinjection and time-lapse video microscopy to study the role of cyclin A in mitosis. We have injected purified, active cyclin A/cyclin-dependent kinase 2 (CDK2) into synchronized cells at specific points in the cell cycle and assayed its effect on cell division. We find that cyclin A/CDK2 will drive G2 phase cells into mitosis within 30 min of microinjection, up to 4 h before control cells enter mitosis. Often this premature mitosis is abnormal; the chromosomes do not completely condense and daughter cells fuse. Remarkably, microinjecting cyclin A/CDK2 into S phase cells has no effect on progress through the following G2 phase or mitosis. In complementary experiments we have microinjected the amino terminus of p21(Cip1/Waf1/Sdi1) (p21N) into cells to inhibit cyclin A/CDK2 activity. We find that p21N will prevent S phase or G2 phase cells from entering mitosis, and will cause early prophase cells to return to interphase. These results suggest that cyclin A/CDK2 is a rate-limiting component required for entry into mitosis, and for progress through mitosis until late prophase. They also suggest that cyclin A/CDK2 may be the target of the recently described prophase checkpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号