首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low M(r) phosphotyrosine-protein phosphatase is involved in the regulation of several tyrosine kinase growth factor receptors. The best characterized action of this enzyme is on the signaling pathways activated by platelet-derived growth factor, where it plays multiple roles. In this study we identify tyrosine-phosphorylated caveolin as a new potential substrate for low M(r) phosphotyrosine-protein phosphatase. Caveolin is tyrosine-phosphorylated in vivo by Src kinases, recruits into caveolae, and hence regulates the activities of several proteins involved in cellular signaling cascades. Our results demonstrate that caveolin and low M(r) phosphotyrosine-protein phosphatase coimmunoprecipitate from cell lysates, and that a fraction of the enzyme localizes in caveolae. Furthermore, in a cell line sensitive to insulin, the overexpression of the C12S dominant negative mutant of low M(r) phosphotyrosine-protein phosphatase (a form lacking activity but able to bind substrates) causes the enhancement of tyrosine-phosphorylated caveolin. Insulin stimulation of these cells induces a strong increase of caveolin phosphorylation. The localization of low M(r) phosphotyrosine-protein phosphatase in caveolae, the in vivo interaction between this enzyme and caveolin, and the capacity of this enzyme to rapidly dephosphorylate phosphocaveolin, all indicate that tyrosine-phosphorylated caveolin is a relevant substrate for this phosphatase.  相似文献   

2.
Low molecular weight protein-tyrosine phosphatase (LMW-PTP) is an enzyme involved in mitogenic signaling and cytoskeletal rearrangement after platelet-derived growth factor (PDGF) stimulation. Recently, we demonstrated that LMW-PTP is regulated by a redox mechanism involving the two cysteine residues of the catalytic site, which turn reversibly from reduced to oxidized state after PDGF stimulation. Since recent findings showed a decrease of intracellular reactive oxygen species in contact inhibited cells and a lower tyrosine phosphorylation level in dense cultures in comparison to sparse ones, we studied if the level of endogenous LMW-PTP is regulated by growth inhibition conditions, such as cell confluence and differentiation. Results show that both cell confluence and cell differentiation up-regulate LMW-PTP expression in C2C12 and PC12 cells. We demonstrate that during myogenesis LMW-PTP is regulated at translational level and that the protein accumulates at the plasma membrane. Furthermore, we showed that both myogenesis and cell-cell contact lead to a dramatic decrease of tyrosine phosphorylation level of PDGF receptor. In addition, we observed an increased association of the receptor with LMW-PTP during myogenesis. Herein, we demonstrate that myogenesis decreases the intracellular level of reactive oxygen species, as observed in dense cultures. As a consequence, LMW-PTP turns from oxidized to reduced form during muscle differentiation, increasing its activity in growth inhibition conditions such as differentiation. These data suggest that LMW-PTP plays a crucial role in physiological processes, which require cell growth arrest such as confluence and differentiation.  相似文献   

3.
SHP-2 is a ubiquitously expressed Src homology-2-containing cytosolic tyrosine phosphatase that binds to and becomes tyrosine-phosphorylated by the activated platelet-derived growth factor receptor-beta (PDGFR-beta). Removal of the binding site on the receptor, by mutation of Tyr1009 to Phe1009 (denoted Y1009F), led to loss of PDGF-stimulated phosphatase activity in cells expressing the mutated receptor, and these cells failed to form membrane edge ruffles and to migrate toward PDGF. Furthermore, treatment with phosphatase inhibitors phenylarsine oxide (PAO) and orthovanadate led to loss of PDGF-stimulated phosphatase activity and attenuated PDGF-stimulated migration of wild type PDGFR-beta cells. Treatment of wild type PDGFR-beta cells with combinations of PAO or orthovanadate and phosphatidylinositol 3-kinase inhibitors wortmannin or LY294002 resulted in a synergistic inhibition of PDGFR-beta-mediated cell migration. PDGF stimulation of wild type PDGFR-beta cells led to induction of p125 focal adhesion kinase (FAK) activity at low concentrations of the growth factor and a decrease at higher concentrations. In the mutant Y1009F cells and in wild type PDGFR-beta cells treated with PAO and orthovanadate, FAK activity was not increased in response to PDGF. These results suggest that SHP-2 activity is involved in regulation of FAK activity and thereby of cell migration through PDGFR-beta, independently of phosphatidylinositol 3-kinase.  相似文献   

4.
Fibroblast growth factor receptor (class IV) shares a certain degree of similarity with class III members like platelet-derived growth factor and macrophage-colony-stimulating factor receptors, which, once activated, are substrates of low M(r) phosphotyrosine protein phosphatase. Up until now no phosphotyrosine phosphatase has been shown to act on this receptor in vivo. Here we demonstrate that low M(r) phosphotyrosine protein phosphatase is able to reduce receptor tyrosine phosphorylation and cell proliferation in response to basic fibroblast growth factor. Contrary to what was previously observed for platelet-derived growth factor, during cell stimulation with basic fibroblast growth factor, no enzyme redistribution among cellular compartments is observed.  相似文献   

5.
Enhanced expression of both integrin alpha v beta 3 and platelet-derived growth factor receptor (PDGFr) has been described in glioblastoma tumors. We therefore explored the possibility that integrin alpha v beta 3 cooperates with PDGFr to promote cell migration in glioblastoma cells, and extended the study to identify the Src family members that are activated on PDGF stimulation. Glioblastoma cells utilize integrins alpha v beta 3 and alpha v beta 5 to mediate vitronectin attachment. We found that physiologic PDGF stimulation (83 pm, 10 min) of vitronectin-adherent cells promoted the specific recruitment of integrin alpha v beta 3-containing focal adhesions to the cell cortex and alpha v beta 3-mediated cell motility. Analysis of PDGFr immunoprecipitates indicated an association of the PDGFr beta with integrin alpha v beta 3, but not integrin alpha v beta 5. Cells plated onto collagen or laminin, which engage different integrins, exhibited significantly less migration on PDGF stimulation, indicating a cooperation of alpha v beta 3 and the PDGFr beta in glioblastoma cells that promotes migration. Further analysis of the cells plated onto vitronectin indicated that PDGF stimulation caused an increase in Src kinase activity, which was associated with integrin alpha v beta 3. In the vitronectin-adherent cells, Lyn was associated preferentially with alpha v beta 3 both in the presence and absence of PDGF stimulation. In contrast, Fyn was associated with both alpha v beta 3 and alpha v beta 5. Moreover, PDGF stimulation increased the activity of Lyn, but not Fyn, in vitronectin-adherent cells, and the activity of Fyn, but not Lyn, in laminin-adherent cells. Using cells attached to mAb anti-alpha v beta 3 or mAb anti-integrin alpha 6, we confirmed the activation of specific members of the Src kinase family with PDGF stimulation. Down-regulation of Lyn expression by siRNA significantly inhibited the cell migration mediated by integrin alpha v beta 3 in PDGF-stimulated cells, demonstrating the PDGFr beta cooperates with integrin alpha v beta 3 in promoting the motility of vitronectin-adherent glioblastoma cells through a Lyn kinase-mediated pathway. Notably, the data indicate that engagement of different integrins alters the identity of the Src family members that are activated on stimulation with PDGF.  相似文献   

6.
Berthet V  Rigot V  Nejjari M  Marvaldi J  Luis J 《FEBS letters》2004,557(1-3):159-163
We previously showed that the post-translational cleavage of alphav subunit is essential for integrin-dependent signalling and cell adhesion. Here, we report that blocking alphav subunit cleavage by expression of alpha1-PDX, a convertase inhibitor, modified the capacity of cells to change shape, via a remodelling of the actin cytoskeleton upon cell attachment. These changes are associated with cell scattering and with a dramatic increase in cell migration to vitronectin. The alphav subunit cleavage is thus essential for integrin function and has a considerable impact on integrin-dependent events, especially those leading to cell migration.  相似文献   

7.
We examined the effects of basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) on the migration of vascular adventitial fibroblasts (VAFs) isolated from rat aortic adventitiae. Both bFGF and PDGF significantly stimulated VAF migration in vitro. An antibody to rat beta(3) integrin reduced bFGF-stimulated migration in a dose dependent manner. Moreover, VAF migration was inhibited in the presence of cyclic RGD (cRGD) peptide. However, PDGF-directed migration was blocked only by equivalent cRGD peptide but not by antibody to beta(3) integrin. These data suggest that alpha(v)beta(3) integrin mediates VAF migration stimulated by bFGF and that chemoattractant directed migration may be through distinct integrins.  相似文献   

8.
In this study we have investigated the down-regulation of epidermal growth factor (EGF) receptor signaling by protein-tyrosine phosphatases (PTPs) in COS1 cells. The 45-kDa variant of the PTP TCPTP (TC45) exits the nucleus upon EGF receptor activation and recognizes the EGF receptor as a cellular substrate. We report that TC45 inhibits the EGF-dependent activation of the c-Jun N-terminal kinase, but does not alter the activation of extracellular signal-regulated kinase 2. These data demonstrate that TC45 can regulate selectively mitogen-activated protein kinase signaling pathways emanating from the EGF receptor. In EGF receptor-mediated signaling, the protein kinase PKB/Akt and the mitogen-activated protein kinase c-Jun N-terminal kinase, but not extracellular signal-regulated kinase 2, function downstream of phosphatidylinositol 3-kinase (PI 3-kinase). We have found that TC45 and the TC45-D182A mutant, which is capable of forming stable complexes with TC45 substrates, inhibit almost completely the EGF-dependent activation of PI 3-kinase and PKB/Akt. TC45 and TC45-D182A act upstream of PI 3-kinase, most likely by inhibiting the recruitment of the p85 regulatory subunit of PI 3-kinase by the EGF receptor. Recent studies have indicated that the EGF receptor can be activated in the absence of EGF following integrin ligation. We find that the integrin-mediated activation of PKB/Akt in COS1 cells is abrogated by the specific EGF receptor protein-tyrosine kinase inhibitor tyrphostin AG1478, and that TC45 and TC45-D182A can inhibit activation of PKB/Akt following the attachment of COS1 cells to fibronectin. Thus, TC45 may serve as a negative regulator of growth factor or integrin-induced, EGF receptor-mediated PI 3-kinase signaling.  相似文献   

9.
Low molecular weight protein tyrosine phosphatase (LMW-PTP) is an enzyme involved in platelet-derived growth factor (PDGF)-induced mitogenesis and cytoskeleton rearrangement because it is able to bind and dephosphorylate the activated receptor. LMW-PTP presents two cysteines in positions 12 and 17, both belonging to the catalytic pocket; this is a unique feature of LMW-PTP among all protein tyrosine phosphatases. Our previous results demonstrated that in vitro LMW-PTP is oxidized by either H(2)O(2) or nitric oxide with the formation of a disulfide bond between Cys-12 and Cys-17. This oxidation leads to reversible enzyme inactivation because treatment with reductants permits catalytic activity rescue. In the present study we investigated the in vivo inactivation of LMW-PTP by either extracellularly or intracellularly generated H(2)O(2), evaluating its action directly on its natural substrate, PDGF receptor. LMW-PTP is oxidized and inactivated by exogenous oxidative stress and recovers its activity after oxidant removal. LMW-PTP is oxidized also during PDGF signaling, very likely upon PDGF-induced H(2)O(2) production, and recovers its activity within 40 min. Our results strongly suggest that reversibility of in vivo LMW-PTP oxidation is glutathione-dependent. In addition, we propose an intriguing and peculiar role of Cys-17 in the formation of a S-S intramolecular bond, which protects the catalytic Cys-12 from further and irreversible oxidation. On the basis of our results we propose that the presence of an additional cysteine near the catalytic cysteine could confer to LMW-PTP the ability to rapidly recover its activity and finely regulate PDGF receptor activation during both extracellularly and intracellularly generated oxidative stress.  相似文献   

10.
The heat shock protein HSP90 serves as a chaperone for receptor protein kinases, steroid receptors, and other intracellular signaling molecules. Targeting HSP90 with ansamycin antibiotics disrupts the normal processing of clients of the HSP90 complex. The platelet-derived growth factor receptor alpha (PDGFRalpha) is a tyrosine kinase receptor up-regulated and activated in several malignancies. Here we show that the PDGFRalpha forms a complex with HSP90 and the co-chaperone cdc37 in ovarian, glioblastoma, and lung cancer cells. Treatment of cancer cell lines expressing the PDGFRalpha with the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) promotes degradation of the receptor. Likewise, phospho-Akt, a downstream target, is degraded after treatment with 17-AAG. In contrast, PDGFRalpha expression is not affected by 17-AAG in normal human smooth muscle cells or 3T3 fibroblasts. PDGFRalpha degradation by 17-AAG is inhibited by the proteasome inhibitor MG132. High molecular weight, ubiquitinated forms of the receptor are detected in cells treated with 17-AAG and MG132. Degradation of the receptor is also inhibited by a specific neutralizing antibody to the PDGFRalpha but not by a neutralizing antibody to PDGF or by imatinib mesylate (Gleevec). Ultimately, PDGFRalpha-mediated cell proliferation is inhibited by 17-AAG. These results show that 17-AAG promotes PDGFRalpha degradation selectively in transformed cells. Thus, not only mutated tyrosine kinases but also overexpressed receptors in cancer cells can be targeted by 17-AAG.  相似文献   

11.
Ligand stimulation of the platelet-derived growth factor (PDGF) beta-receptor leads to activation of its intrinsic tyrosine kinase and autophosphorylation of the intracellular part of the receptor. The autophosphorylated tyrosine residues mediate interactions with downstream signal transduction molecules and thereby initiate different signalling pathways. A pathway leading to activation of the GTP-binding protein Ras involves the adaptor molecule GRB2. Here we show that Tyr-716, a novel autophosphorylation site in the PDGF beta-receptor kinase insert, mediates direct binding of GRB2 in vitro and in vivo. In a panel of mutant PDGF beta-receptors, in which Tyr-716 and the previously known autophosphorylation sites were individually mutated, only PDGFR beta Y716F failed to bind GRB2. Furthermore, a synthetic phosphorylated peptide containing Tyr-716 bound GRB2, and this peptide specifically interrupted the interaction between GRB2 and the wild-type receptor. In addition, the Y716(P) peptide significantly decreased the amount of GTP bound to Ras in response to PDGF in permeabilized fibroblasts as well as in porcine aortic endothelial cells expressing transfected PDGF beta-receptors. The mutant PDGFR beta Y716F still mediated activation of mitogen-activated protein kinases and an increased DNA synthesis in response to PDGF, indicating that multiple signal transduction pathways transduce mitogenic signals from the activated PDGF beta-receptor.  相似文献   

12.
Platelet derived growth factor (PDGF) has been partially purified from porcine platelets. Purification steps included heparin-agarose chromatography of the material released by thrombin-stimulated washed porcine platelets and Blue-Sepharose chromatography. Preparative isoelectric focusing showed that isoelectric point of porcine PDGF is at pH 10.0–11.0 and elution experiments from sodium dodecyl sulfate (SDS) polyacrymlam de gels indicated that its molecular weight is close to 30 kD. The immunoglobulin fraction prepared from anti-human PDGF serum inhibited the mitogenic activity of porcine PDGF. These experiments suggest a homology of porcine and human PDGF. Porcine platelet factor 4 and porcine platelet basic protein were devoid of significant mitogenic activity.  相似文献   

13.
The mitotic effects of epidermal growth factor (EGF) were investigated in two cultured fibroblast lines, BALB/c-3T3 and C3H 10T1/2 cells. EGF (30 ng/ml) added to quiescent 3T3 cells in medium containing either platelet-poor plasma or 10(-5) M insulin caused only minimal increases in the percentage of cells stimulated to initiate DNA synthesis. In contrast, EGF acted synergistically with either insulin or plasma to stimulate DNA synthesis in quiescent cultures of 10T1/2 cells, although the maximum effects of EGF were measured at concentrations several-fold greater than those found in either serum or plasma. In either 3T3 or 10T1/2 cells a transient preexposure to platelet-derived growth factor (PDGF) caused over a 10-fold increase in the sensitivity to the mitogenic effects of EGF. It is therefore possible that a primary action of PDGF is to increase the sensitivity of fibroblasts to EGF, independent of whether EGF alone is found to be mitogenic.  相似文献   

14.
Platelet-derived growth factor-BB (PDGF-BB) is a potent mitogen and chemoattractant for vascular smooth muscle cells (VSMC). To understand its mitogenic and chemotactic signaling events, we studied the role of cytosolic phospholipase A(2) (cPLA(2)) and the Jak/STAT pathway. PDGF-BB induced the expression and activity of cPLA(2) in a time-dependent manner in VSMC. Arachidonyl trifluoromethyl ketone, a potent and specific inhibitor of cPLA(2), significantly reduced PDGF-BB-induced arachidonic acid release and DNA synthesis. PDGF-BB stimulated tyrosine phosphorylation of Jak-2 in a time-dependent manner. In addition, PDGF-BB activated STAT-3 as determined by its tyrosine phosphorylation, DNA-binding activity, and reporter gene expression, and these responses were suppressed by AG490, a selective inhibitor of Jak-2. AG490 and a dominant-negative mutant of STAT-3 also attenuated PDGF-BB-induced expression of cPLA(2,) arachidonic acid release, and DNA synthesis in VSMC. Together, these results suggest that induction of expression of cPLA(2) and arachidonic acid release are involved in VSMC growth in response to PDGF-BB and that these events are mediated by Jak-2-dependent STAT-3 activation.  相似文献   

15.
Analysis of C3H10T1/2 murine fibroblasts overexpressing wild type and dominant negative variants of c-Src has demonstrated a requirement for c-Src in EGF-induced mitogenesis. Correlating with the ability of c-Src variants to potentiate or inhibit EGF-dependent DNA synthesis is the phosphotyrosine content of multiple cellular proteins, including p190- RhoGAP, a protein thought to regulate growth factor-induced actin cytoskeleton remodeling by modulating the activity of the small GTP binding protein, Rho. Because the in vivo phosphotyrosine content of p190 varies with the level of active c-Src and not with EGF treatment, p190 is considered to be a preferred substrate of c-Src. To determine whether tyrosyl phosphorylation of p190 (by c-Src) could influence EGF- dependent actin remodeling, we used conventional and confocal immunofluorescence microscopy to examine the intracellular distribution of p190, actin, and p120RasGAP in EGF-stimulated or unstimulated 10T1/2 Neo control cells and cells that stably overexpress wild-type (K+) or kinase-defective (K-) c-Src. We found that in all cell lines, EGF induced a rapid and transient condensation of p190 and RasGAP into cytoplasmic, arclike structures. However, in K+ cells the rate of appearance and number of cells exhibiting arcs increased when compared with control cells. Conversely, K- cells exhibited delayed arc formation and a reduction in number of cells forming arcs. EGF-induced actin stress fiber disassembly and reassembly occurred with the same kinetics and frequency as did p190 and RasGAP rearrangements in all three cell lines. These results, together with the documented Rho-GAP activity intrinsic to p190 and the ability of Rho to modulate actin stress fiber formation, suggest that c-Src regulates EGF-dependent actin cytoskeleton reorganization through phosphorylation of p190.  相似文献   

16.
17.
In this paper we describe the construction of five mutants of a bovine liver low M(r) phosphotyrosine protein phosphatase (PTPase) expressed as a fusion protein with the maltose binding protein in E. coli. Almost no changes in the kinetic parameters were observed in the fusion protein with respect to the native PTPase. Using oligonucleotide-directed mutagenesis Cys-17, Cys-62 and Cys-145 were converted to Ser while Cys-12 was converted to both Ser and Ala. The kinetic properties of the mutants, using p-nitrophenyl phosphate as substrate, were compared with those of the normal protein fused with the maltose binding protein of E. coli; both of the Cys-12 mutants showed a complete loss of enzymatic activity while the specific activity of the Cys-17 mutant was greatly decreased (200-fold). The Cys-62 mutant showed a 2.5-fold decrease in specific activity, while the Cys-145 mutant remained almost unchanged. These data confirm the involvement of Cys-12 and Cys-17 in the catalytic site and suggest that Cys-62 and Cys-145 mutations may destabilise the structure of the enzyme.  相似文献   

18.
Talin1 is a large cytoskeletal protein that links integrins to actin filaments through two distinct integrin binding sites, one present in the talin head domain (IBS1) necessary for integrin activation and a second (IBS2) that we have previously mapped to talin residues 1984-2113 (fragment J) of the talin rod domain (1 Tremuth, L., Kreis, S., Melchior, C., Hoebeke, J., Ronde, P., Plancon, S., Takeda, K., and Kieffer, N. (2004) J. Biol. Chem. 279, 22258-22266), but whose functional role is still elusive. Using a bioinformatics and cell biology approach, we have determined the minimal structure of IBS2 and show that this integrin binding site corresponds to 23 residues located in alpha helix 50 of the talin rod domain (residues 2077-2099). Alanine mutation of 2 highly conserved residues (L2094A/I2095A) within this alpha helix, which disrupted the alpha-helical structure of IBS2 as demonstrated by infrared spectroscopy and limited trypsin proteolysis, was sufficient to prevent in vivo talin fragment J targeting to alphaIIbbeta3 integrin in focal adhesions and to inhibit in vitro this association as shown by an alphaIIbbeta3 pulldown assay. Moreover, expression of a full-length mouse green fluorescent protein-talin LI/AA mutant in mouse talin1(-/-) cells was unable to rescue the inability of these cells to assemble focal adhesions (in contrast to green fluorescent protein-talin wild type) despite the presence of IBS1. Our data provide the first direct evidence that IBS2 in the talin rod is essential to link integrins to the cytoskeleton.  相似文献   

19.
Vascular endothelial growth factor (VEGF) is fundamental in vertebrates for correct development of blood vessels. However, there are only few data about the presence of VEGF in invertebrates. In this study the role of VEGF in neovessel formation is investigated in Hirudo medicinalis. The leech is able to respond to administration of human VEGF by formation of new vessels. The response of H. medicinalis to this growth factor is explained by the presence of two specific VEGF-like receptors (Flt-1/VEGFR-1 and Flk-1/VEGFR-2) as demonstrated by immunohistochemistry and biochemical analysis. The VEGF-like produced by this annelid following surgical stimulation determines not only blood vessel formation, proliferation of vascular endothelial cells but also an increase of cytoplasmic calcium levels. The administration of specific VEGF receptor antibodies can inhibit angiogenesis in leeches previously stimulated with VEGF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号