首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The contribution of hyaluronan-dependent pericellular matrix to TGF-β1-driven induction and maintenance of myofibroblasts is not understood. Hyaluronan is an extracellular matrix (ECM) glycosaminoglycan important in cell adhesion, proliferation and migration, and is implicated in myofibroblast formation and maintenance. Reduced turnover of hyaluronan has been linked to differentiation of myofibroblasts and potentiation of lung fibrosis. Fibronectin is a fibril forming adhesive glycoprotein that is also upregulated following induction with TGF-β1. Although they are known to bind each other, the interplay between hyaluronan and fibronectin in the pericellular matrix during myofibroblast induction and matrix assembly is not clear. This study addresses the role of hyaluronan and its interaction with fibrillar matrix components during myofibroblast formation. Hyaluronan and fibronectin were increased and co-localized in the ECM following myofibroblast induction by TGF-β1. Inhibition of hyaluronan synthesis in TGF-β1-induced lung myofibroblasts over a 4 day period with 4-methyl umbelliferone (4-MU) further enhanced myofibroblast morphology, caused increased deposition of fibronectin and type I collagen in the ECM, and increased expression of alpha-smooth muscle actin and hyaluronan synthase 2 (HAS2) mRNA. Hyaluronan oligosaccharides or hyaluronidase treatment, which more effectively disrupted the pericellular matrix, had similar effects. CD44 and β1 integrins co-localized in the cell membrane and along some stress fibers. However, CD44 and hyaluronan were specifically excluded from focal adhesions, and associated primarily with cortical actin. Time-lapse imaging of the immediate effects of hyaluronidase digestion showed that hyaluronan matrix primarily mediates attachment of membrane and cortical actin between focal contacts, suggesting that surface adhesion through hyaluronan and CD44 is distinct from focal adhesion through β1 integrins and fibronectin. Fluorescein-labeled hyaluronan bound regularly along fibronectin fibers and co-localized more with β1 integrin and less with CD44. Therefore, the hyaluronan matrix can interfere with the assembly of fibrillar ECM components, and this interplay regulates the degree of myofibroblast formation. These data also suggest that adhesion through hyaluronan matrix impacts cytoskeletal organization, and is potentially part of a clutch mechanism that regulates stick and slip of myofibroblasts by affecting the adhesion to and organization of fibronectin and collagen.  相似文献   

2.
We previously described an inverse correlation between galectin-9 (Gal-9) expression and metastasis in patients with malignant melanoma and breast cancer. This study verified the ability of Gal-9 to inhibit lung metastasis in experimental mouse models using highly metastatic B16F10 melanoma and Colon26 colon cancer cells. B16F10 cells transfected with a secreted form of Gal-9 lost their metastatic potential. Intravenous Gal-9 administration reduced the number of metastases of both B16F10 and Colon26 cells in the lung, indicating that secreted Gal-9 suppresses metastasis. Analysis of adhesive molecule expression revealed that B16F10 cells highly express CD44, integrin alpha1, alpha 4, alpha V, and beta1, and that Colon26 cells express CD44, integrin alpha2, alpha 5, alpha V, and beta1, suggesting that Gal-9 may inhibit the adhesion of tumor cells to vascular endothelium and the extracellular matrix (ECM) by binding to such adhesive molecules. Indeed, Gal-9 suppressed the binding of hyaluronic acid to CD44 on both B16F10 and Colon26 cells, and also suppressed the binding of vascular cell adhesion molecule-1 to very late antigen-4 on B16F10 cells. Furthermore, Gal-9 inhibited the binding of tumor cells to ECM components, resulting in the suppression of tumor cell migration. The present results suggest that Gal-9 suppresses both attachment and invasion of tumor cells by inhibiting the binding of adhesive molecules on tumor cells to ligands on vascular endothelium and ECM.  相似文献   

3.
The effects vasoactive intestinal peptide (VIP) antagonists were investigated on pancreatic cancer cell lines. (N-Stearyl, Norleucine17) VIP hybrid ((SN)VIPhyb) inhibited 125I-VIP binding to human Capan-2 cells with an IC50 value of 0.01 microM whereas VIP hybrid had an IC50 value of 0.2 microM. By RT-PCR and Northern blot, VPAC1 receptor mRNA was detected in CAPAN-2 cells. One microM (SN)VIPhyb and 10 microM VIPhyb inhibited the ability of 30 nM VIP to elevate cyclic AMP and increase c-fos mRNA. (SN)VIPhyb, 1 microM inhibited the clonal growth of CAPAN-2 cells in vitro. In vivo, (SN)VIPhyb (10 microg/day s.c.) inhibited CAPAN-2 xenograft growth in nude mice. These results indicate that (SN)VIPhyb is a pancreatic cancer VPAC receptor antagonist.  相似文献   

4.
Correlations have been noted between the expression of certain alternatively spliced CD44 isoforms and the metastatic propensity of various histologically distinct tumor cell types. The precise mechanism by which particular CD44 isoforms contribute to the metastatic process is, however, unclear. In the present study we demonstrate that CD44R2, a CD44 isoform highly expressed on activated and transformed hemopoietic cells, can recognize and bind a common determinant present on CD44H and CD44R1. Importantly, CD44H lacked this activity. Pretreatment of TIL1 cells expressing CD44H or CD44R1 with chondroitinase ABC inhibited adhesion to CD44R2, suggesting that the unique inserted region present within the CD44R2 molecule, encoded by exon v10, mediates cell adhesion by potentiating the recognition of chondroitin sulfate moieties presented in association with other CD44 molecules. These data help explain the differential involvement of v10-containing CD44 isoforms in tumor metastasis.  相似文献   

5.
CD44 is a glycosylated adhesion molecule and osteopontin is one of its ligand. CD44 undergoes alternative splicing to produce variant isoforms. Our recent studies have shown an increase in the surface expression of CD44 isoforms (sCD44 and v4–v10 variant CD44) in prostate cancer cells over‐expressing osteopontin (PC3/OPN). Formation of CD44/MMP9 complex on the cell surface is indispensable for MMP9 activity. In this study, we have characterized the expression of variant CD44 using RT‐PCR, surface labeling with NHS–biotin, and immunoblotting. Expression of variant CD44 encompassing v4–v10 and sCD44 at mRNA and protein levels are of the same levels in PC3 and PC3/OPN cells. However, an increase in the surface expression of v6, v10, and sCD44 in PC3/OPN cells suggest that OPN may be a ligand for these isoforms. We then proceeded to determine the role of sCD44 in MMP9 activation. Based on our previous studies in osteoclasts, we hypothesized that phosphorylation of CD44 has a role on its surface expression and subsequent activation of MMP9. We have prepared TAT‐fused CD44 peptides comprising unphosphorylated and constitutively phosphorylated serine residues at positions Ser323 and Ser325. Transduction of phosphopeptides at Ser323 and Ser323/325 into PC3 cells reduced the surface levels of CD44, MMP9 activity, and cell migration; but had no effect on the membrane localization of MMP9. However, MMP9 knock‐down PC3 cells showed reduced CD44 at cellular and surface levels. Thus we conclude that surface expression of CD44 and activation of MMP9 on the cell surface are interdependent. J. Cell. Biochem. 108: 272–284, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is an immunoglobulin superfamily member with a diversity of extracellular ligands that is implicated in the initiation and progression of a variety of malignancies. We sought to characterize the effects of CEACAM6 crosslinking on pancreatic adenocarcinoma cellular interaction with the extracellular matrix (ECM) components fibronectin and vitronectin. Antibody-mediated CEACAM6 crosslinking was performed and the ability of BxPC3 cells, which inherently overexpress CEACAM6, to adhere to fibronectin and vitronectin was quantified. The roles of the archetypal fibronectin (alpha5beta1 integrin) and vitronectin (alphavbeta3 integrin) receptors were determined. The effects of c-Src inhibition were investigated using the Src family kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) and c-Src specific RNA interference. CEACAM6 crosslinking initiates c-Src-dependent cross-talk between CEACAM6 and alphavbeta3 integrin, leading to increased ECM component adhesion. CEACAM6-mediated signaling events may contribute to the invasive and metastatic potential of pancreatic adenocarcinoma cells by promoting their interaction with ECM components.  相似文献   

7.
We have described recently that expression of CD44 exon v10 (CD44v10) is down-regulated upon metastasis of squamous cell carcinoma, whereas it is up-regulated in skin metastases of malignant melanoma. The striking regulation of CD44v10 prompted us to generate a murine CD44v10-specific monoclonal antibody to define expression and possible functions of this particular CD44 variant isoform. In the mouse, expression of exon v10 was restricted to basal layers of the epidermis and squamous epithelium of the oral cavity, the esophagus, the omasum, glandular epithelium of the submandibular and the uterine gland, as well as subpopulations of bone marrow cells and activated lymphocytes. Expression started late during development, e.g., was not observed before day 16 of gestation and there was no evidence for developmental regulation of CD44v10 expression. Functional in vivo studies revealed that anti-CD44v10 had no effect on wound healing but inhibited edema and granuloma formation in delayed type hypersensitivity (DTH). Furthermore, lymphocyte-monocyte interactions could be inhibited by anti-CD44v10. Because a CD44v10 transfected tumour line did not show any distinct pattern of cell-matrix or cell-cell adhesion, the data point toward an involvement of CD44v10 in cell migration, possibly by acting as a target structure for cytokines/chemokines provided by the contacted partner cell. J. Cell. Physiol. 171:305–317, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Ezrin is a membrane cytoskeleton crosslinker protein that is a member of the ERM (ezrin/radixin/moesin) family. Ezrin binds adhesion molecules such as CD43, CD44, ICAM-1, and ICAM-2, which are implicated in cell migration and metastasis. Ezrin is expressed by many tumor cell lines; however, little is known about the function of ezrin in tumorigenesis and metastasis. Here, we investigated expression of ezrin in pancreatic adenocarcinoma cell lines of different metastatic potential. Among 16 pancreatic adenocarcinoma cell lines, several cell lines showed strong expression of ezrin. Two cell lines with high metastatic potential, S2-CP9 and S2-VP10, showed very high levels of ezrin mRNA and protein, whereas other sublines showed lower levels. There was no relationship between the expression levels of ezrin and the differentiation grades of the cell lines. These results suggest that there is a relationship between high expression of ezrin and metastatic potential of pancreatic carcinomas.  相似文献   

9.
Recently, splice variants of CD44 have been described that confer metastatic potential to non-metastasizing rat pancreatic carcinoma and sarcoma cell lines. Using antibodies against variant CD44 (CD44v) sequences, we have examined the expression of variant CD44 glycoproteins on human lymphoid cells and tissues and in colorectal neoplasia. Lymphohematopoietic cells express low levels of CD44v glycoproteins. During the process of lymphocyte activation in vitro and in vivo, expression of CD44v glycoproteins is transiently upregulated. The reaction pattern of various antibodies indicates that these CD44 variants contain the domain encoded by exon v6, which is part of the variant that confers metastatic capability. In human colorectal neoplasia we observed overexpression of CD44 splice variants in all invasive carcinomas. Already at early stages of colorectal tumor progression exon v5 epitopes were overexpressed. Tumor progression was strongly related to expression of CD44 isoforms containing exon v6 encoded domains. The findings establish CD44 variants as tumor progression markers in colorectal cancer.  相似文献   

10.
Recently, splice variants of CD44 have been described that confer metastatic potential to non-metastasizing rat pancreatic carcinoma and sarcoma cell lines. Using antibodies against variant CD44 (CD44v) sequences, we have examined the expression of variant CD44 glycoproteins on human lymphoid cells and tissues and in colorectal neoplasia. Lymphohematopoietic cells express low levels of CD44v glycoproteins. During the process of lymphocyte activation in vitro and in vivo, expression of CD44v glycoproteins is transiently upregulated. The reaction pattern of various antibodies indicates that these CD44 variants contain the domain encoded by exon v6, which is part of the variant that confers metastatic capability. In human colorectal neoplasia we observed overexpression of CD44 splice variants in all invasive carcinomas. Already at early stages of colorectal tumor progression exon v5 epitopes were overexpressed. Tumor progression was strongly related to expression of CD44 isoforms containing exon v6 encoded domains. The findings establish CD44 variants as tumor progression markers in colorectal cancer.  相似文献   

11.
目的探讨细胞粘附分子CD44v6 mRNA及其蛋白表达与胃癌临床病理学行为和患者预后的关系. 方法应用高敏感性催化信号放大系统(catalyzed signal amplification,CSA)原位杂交和免疫组化技术,对17例早期胃癌、21例中期胃癌和57例晚期胃癌组织进行CD44v6 mRNA及其蛋白检测,并结合肿瘤的病理学行为和临床随访资料进行分析.结果在胃癌中,CD44v6 mRNA及其蛋白的表达阳性率分别为85.3%和82.1%.CD44v6 mRNA及其蛋白表达阳性率在晚期胃癌明显高于早、中期胃癌(P<0.05).CD44v6 mRNA表达与蛋白表达水平具有一致性,均与胃癌浆膜浸润,淋巴结转移和患者预后呈正相关(P<0.05).结论 CD44v6 mRNA及其蛋白异常表达与胃癌的临床病理生物学行为密切相关,特别是与胃癌细胞的转移潜能和胃癌患者的不良预后密切相关.CD44v6蛋白水平的表达可以间接反映其mRNA转录水平,并可作为预测胃癌转移潜能和患者预后的一个新的生物学指标.  相似文献   

12.
The human homologue of NG2, the human melanoma proteoglycan (HMP), is expressed on most human melanomas. To investigate the role of this proteoglycan in melanoma progression, we have attempted to identify functionally important molecular ligands for NG2. Immunohistochemical analysis of cell lines that endogenously express NG2/HMP suggests that NG2/HMP associates with CD44 and α4β1 integrin, two molecules previously implicated in melanoma progression. Transfection of rat NG2 into the NG2-negative B16 mouse melanoma cell line also resulted in a highly colocalized pattern of expression between the transfected rat NG2 and the endogenously expressed mouse CD44 and α4β1 integrin molecules. In functional assays, expression of NG2 decreased the adhesion of B16 melanoma cells to CD44 monoclonal antibodies, hyaluronic acid, the C-terminal 40-kDa fibronectin fragment, and the CS1 fibronectin peptide, suggesting that NG2 may negatively modulate CD44- and α4β1-mediated binding events. Expression of NG2 increased the proliferation of melanoma cells in culture and increased tumorigenicity in vivo. Moreover, NG2 expression led to increased lung metastasis of B16F1 and B16F10 melanoma cells in experimental metastasis studies. Together, these studies demonstrate that NG2 is capable of modulating the adhesion, proliferation, and metastatic potential of melanoma cells. J. Cell. Physiol. 177:299–312, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
14.
BACKGROUND: We investigated in vitro whether IL-1beta and TGF-beta1 affect pancreatic cancer cell growth, adhesion to the extracellular matrix and Matrigel invasion. MATERIALS AND METHODS: Adhesion to fibronectin, laminin and type I collagen, and Matrigel invasion after stimulation with saline, IL-1beta and TGF-beta1 were evaluated using three primary and three metastatic pancreatic cancer cell lines. RESULTS: Extracellular matrix adhesion of control cells varied independently of the metastatic characteristics of the studied cell lines, whereas Matrigel invasion of control cells was partly correlated with the in vivo metastatic potential. IL-1beta did not influence extracellular matrix adhesion, whereas it significantly enhanced the invasiveness of three of the six cell lines. TGF-beta1 affected the adhesion of one cell line, and exerted contrasting effects on Matrigel invasion of different cell lines. CONCLUSIONS: IL-1beta enhances the invasive capacity of pancreatic cancer cells, whereas TGF-beta1 has paradoxical effects on pancreatic cancer cells; this makes it difficult to interfere with TGF-beta1 signaling in pancreatic cancer treatment.  相似文献   

15.
CD44 is the major hyaluronan cell surface receptor and functions as an adhesion molecule in many different cell types, including human breast epithelial cells. The coexpression of certain CD44 variants (CD44v), such as CD44v (v10/ex14), with CD44s (standard form) appears to be closely associated with human breast tumor metastasis. In this study we have established a stable transfection of CD44v (v10/ex14) cDNA into nontumorigenic human breast epithelial cells (HBL100) which contain endogenous CD44s. Our results indicate that coexpression of both CD44v (v10/ex14) and CD44s alters the following important biological properties of these cells: 1) there is a significant reduction in hyaluronic acid (HA)-mediated cell adhesion; 2) there is an increased migration capability in collagen-matrix gel; and 3) these cells constitutively produce certain angiogenic factors and effectively promote tumorigenesis in athymic nude mice. These findings suggest that coexpression of CD44v (v10/ex14) and CD44s may trigger the onset of cell transformation required for breast cancer development. J. Cell. Physiol. 171:152–160, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.

Background

Extracellular matrix (ECM) remodeling is predominantly mediated by fibroblasts using intracellular and extracellular pathways. Although it is well known that extracellular degradation of the ECM by proteases derived from cancer cells facilitates cellular invasion, the intracellular degradation of ECM components by cancer cells has not been clarified. The aim of this study was to characterize collagen internalization, which is the initial step of the intracellular degradation pathway in pancreatic cancer cells, in light of epithelial–mesenchymal transition (EMT).

Methodology/Principal Findings

We analyzed the function of collagen internalization in two pancreatic cancer cell lines, SUIT-2 and KP-2, and pancreatic stellate cells (PSCs) using Oregon Green 488-gelatin. PSCs had a strong ability for collagen uptake, and the pancreatic cancer cells also internalized collagen although less efficiently. The collagen internalization abilities of SUIT-2 and KP-2 cells were promoted by EMT induced by human recombinant transforming growth factor β1 (P<0.05). Expression of Endo180, a collagen uptake receptor, was high in mesenchymal pancreatic cancer cell lines, as determined by EMT marker expression (P<0.01). Quantitative RT-PCR and western blot analyses showed that Endo180 expression was also increased by EMT induction in SUIT-2 and KP-2 cells. Endo180 knockdown by RNA interference attenuated the collagen uptake (P<0.01) and invasive abilities (P<0.05) of SUIT-2 and KP-2 cells.

Conclusions/Significance

Pancreatic cancer cells are capable of collagen internalization, which is enhanced by EMT. This ECM clearance system may be a novel mechanism for cellular invasion and a potential therapeutic target in pancreatic cancer.  相似文献   

17.
Liver metastasis is a major cause of mortality from colorectal cancer (CRC). However, mechanisms underlying this process are largely unknown. Osteopontin (OPN) is a secreted phosphorylated glycoprotein that is involved in tumor migration and metastasis. The role of OPN in cancer is currently unclear. In this study, OPN mRNA was examined in tissues from CRC, adjacent normal mucosa, and liver metastatic lesions using quantitative real-time PCR analysis. The protein expression of OPN and its receptors (integrin αv and CD44 v6) was detected by using an immunohistochemical (IHC) method. The role of OPN in liver metastasis was studied in established colon cancer Colo-205 and SW-480 cell lines transfected with sense- or antisense-OPN eukaryotic expression plasmids by flow cytometry and cell adhesion assay. Florescence redistribution after photobleaching (FRAP) was used to study gap functional intercellular communication (GJIC) among OPN-transfected cells. It was found that OPN was highly expressed in metastatic hepatic lesions from CRC compared to primary CRC tissue and adjacent normal mucosa. The expression of OPN mRNA in tumor tissues was significantly related with the CRC stages. OPN expression was also detected in normal hepatocytes surrounding CRC metastatic lesions. Two known receptors of OPN, integrin αv and CD44v6 proteins, were strongly expressed in hepatocytes from normal liver. CRC cells with forced OPN expression exhibited increased heterotypic adhesion with endothelial cells and weakened intercellular communication. OPN plays a significant role in CRC metastasis to liver through interaction with its receptors in hepatocytes, decreased homotypic adhesion, and enhanced heterotypic adhesion.  相似文献   

18.
Melanoma brain metastasis (MBM) is frequent and has a very poor prognosis with no current predictive factors or therapeutic molecular targets. Our study unravels the molecular alterations of cell‐surface glycoprotein CD44 variants during melanoma progression to MBM. High expression of CD44 splicing variant 6 (CD44v6) in primary melanoma (PRM) and regional lymph node metastases from AJCC Stage IIIC patients significantly predicts MBM development. The expression of CD44v6 also enhances the migration of MBM cells by hyaluronic acid and hepatocyte growth factor exposure. Additionally, CD44v6‐positive MBM migration is reduced by blocking with a CD44v6‐specific monoclonal antibody or knocking down CD44v6 by siRNA. ESRP1 and ESRP2 splicing factors correlate with CD44v6 expression in PRM, and ESRP1 knockdown significantly decreases CD44v6 expression. However, an epigenetic silencing of ESRP1 is observed in metastatic melanoma, specifically in MBM. In advanced melanomas, CD44v6 expression correlates with PTBP1 and U2AF2 splicing factors, and PTBP1 knockdown significantly decreases CD44v6 expression. Overall, these findings open a new avenue for understanding the high affinity of melanoma to progress to MBM, suggesting CD44v6 as a potential MBM‐specific factor with theranostic utility for stratifying patients.  相似文献   

19.
The CD44 gene contains 10 variable exons (v1-v10) that can be alternatively spliced to generate hundreds of different CD44 protein isoforms, several of which have been implicated in the metastatic spread of tumour cells. Here, we describe a cryptic splice site, in intron 6 of the human CD44 gene, used during mRNA processing. This cryptic splice site is used in conjunction with variable exon 3, or independently from it in the form of a pseudo-exon of 49 bp, which generates a stop codon by frame shift in the contiguous variable exon downstream. This pseudo-exon has been found inserted immediately 3' to any other variable exon from v4 to v10, in the final CD44 mRNA. The implication of this cryptic splice site in haltering CD44 protein translation is questioned in the context of Nonsense Mediated Decay and the overall regulation of CD44 expression.  相似文献   

20.

Introduction

Organ-specific composition of extracellular matrix proteins (ECM) is a determinant of metastatic host organ involvement. The chemokine CXCL12 and its receptor CXCR4 play important roles in the colonization of human breast cancer cells to their metastatic target organs. In this study, we investigated the effects of chemokine stimulation on adhesion and migration of different human breast cancer cell lines in vivo and in vitro with particular focus on the liver as a major metastatic site in breast cancer.

Methods

Time lapse microscopy, in vitro adhesion and migration assays were performed under CXCL12 stimulation. Activation of small GTPases showed chemokine receptor signalling dependence from ECM components. The initial events of hepatic colonisation of MDA-MB-231 and MDA-MB-468 cells were investigated by intravital microscopy of the liver in a rat model and under shRNA inhibition of CXCR4.

Results

In vitro, stimulation with CXCL12 induced increased chemotactic cell motility (p<0.05). This effect was dependent on adhesive substrates (type I collagen, fibronectin and laminin) and induced different responses in small GTPases, such as RhoA and Rac-1 activation, and changes in cell morphology. In addition, binding to various ECM components caused redistribution of chemokine receptors at tumour cell surfaces. In vivo, blocking CXCR4 decreased extravasation of highly metastatic MDA-MB-231 cells (p<0.05), but initial cell adhesion within the liver sinusoids was not affected. In contrast, the less metastatic MDA-MB-468 cells showed reduced cell adhesion but similar migration within the hepatic microcirculation. Conclusion: Chemokine-induced extravasation of breast cancer cells along specific ECM components appears to be an important regulator but not a rate-limiting factor of their metastatic organ colonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号