首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Brassica self-incompatibility (SI) is controlled by SLG and SRK expressed in the stigma and by SP11/SCR expressed in the anther. We determined the sequences of the S domains of 36 SRK alleles, 13 SLG alleles, and 14 SP11 alleles from Brassica oleracea and B. rapa. We found three S haplotypes lacking SLG genes in B. rapa, confirming that SLG is not essential for the SI recognition system. Together with reported sequences, the nucleotide diversities per synonymous and nonsynonymous site (pi(S) and pi(N)) at the SRK, SLG, and SP11 loci within B. oleracea were computed. The ratios of pi(N):pi(S) for SP11 and the hypervariable region of SRK were significantly >1, suggesting operation of diversifying selection to maintain the diversity of these regions. In the phylogenetic trees of 12 SP11 sequences and their linked SRK alleles, the tree topology was not significantly different between SP11 and SRK, suggesting a tight linkage of male and female SI determinants during the evolutionary course of these haplotypes. Genetic exchanges between SLG and SRK seem to be frequent; three such recent exchanges were detected. The evolution of S haplotypes and the effect of gene conversion on self-incompatibility are discussed.  相似文献   

2.
A recent investigation found evidence that the transition of Arabidopsis thaliana from ancestral self-incompatibility (SI) to full self-compatibility occurred very recently and suggested that this occurred through a selective fixation of a nonfunctional allele (PsiSCR1) at the SCR gene, which determines pollen specificity in the incompatibility response. The main evidence is the lack of polymorphism at the SCR locus in A. thaliana. However, the nearby SRK gene, which determines stigma specificity in self-incompatible Brassicaceae species, has extremely high sequence diversity, with 3 very divergent SRK haplotypes, 2 of them present in multiple strains. Such high diversity is extremely unusual in this species, and it suggests the possibility that multiple, different SRK haplotypes may have been preserved from A. thaliana's self-incompatible ancestor. To study the evolution of S-haplotypes in the A. thaliana lineage, we searched the 2 most closely related Arabidopsis species Arabidopsis lyrata and Arabidopsis halleri, in which most populations have retained SI, and found SRK sequences corresponding to all 3 A. thaliana haplogroup sequences. Our molecular evolutionary analyses of these 3 S-haplotypes provide an independent estimate of the timing of the breakdown of SI and again exclude an ancient transition to selfing in A. thaliana. Comparing sequences of each of the 3 haplogroups between species, we find that 2 of the 3 SRK sequences (haplogroups A and B) are similar throughout their length, suggesting that little or no recombination with other SRK alleles has occurred since these species diverged. The diversity difference between the SCR and SRK loci in A. thaliana, however, suggests crossing-over, either within SRK or between the SCR and SRK loci. If the loss of SI involved fixation of the PsiSCR1 sequence, the exchange must have occurred during its fixation. Divergence between the species is much lower at the S-locus, compared with reference loci, and we discuss two contributory possibilities. Introgression may have occurred between A. lyrata and A. halleri and between their ancestral lineage and A. thaliana, at least for some period after their split. In addition, the coalescence times of sequences of individual S-haplogroups are expected to be less than those of alleles at non-S-loci.  相似文献   

3.
4.
We study the segregation of variants of a putative self-incompatibility gene in Arabidopsis lyrata. This gene encodes a sequence that is homologous to the protein encoded by the SRK gene involved in self-incompatibility in Brassica species. We show by diallel pollinations of plants in several full-sib families that seven different sequences of the gene in A. lyrata are linked to different S-alleles, and segregation analysis in further sibships shows that four other sequences behave as allelic to these. The family data on incompatibility provide evidence for dominance classes among the S-alleles, as expected for a sporophytic SI system. We observe no division into pollen-dominant and pollen-recessive classes of alleles as has been found in Brassica, but our alleles fall into at least three dominance classes in both pollen and stigma expression. The diversity among sequences of the A. lyrata putative S-alleles is greater than among the published Brassica SRK sequences, and, unlike Brassica, the alleles do not cluster into groups with similar dominance.  相似文献   

5.
We have studied diversity in Arabidopsis lyrata of sequences orthologous to the ARK3 gene of A. thaliana. Our main goal was to test for recombination in the S-locus region. In A. thaliana, the single-copy ARK3 gene is closely linked to the non-functional copies of the self-incompatibility loci, and the ortholog in A. lyrata (a self-incompatible species) is in the homologous genome region and is known as Aly8. It is thus of interest to test whether Aly8 sequence diversity is elevated due to close linkage to the highly polymorphic incompatibility locus, as is theoretically predicted. However, Aly8 is not a single-copy gene, and the presence of paralogs could also lead to the appearance of elevated diversity. We established a typing approach based on different lengths of Aly8 PCR products and show that most A. lyrata haplotypes have a single copy, but some have two gene copies, both closely linked to the incompatibility locus, one being a pseudogene. We determined the phase of multiple haplotypes in families of plants from Icelandic and other populations. Different Aly8 sequence types are associated with different SRK alleles, while haplotypes with the same SRK sequences tend to have the same Aly8 sequence. There is evidence of some exchange of sequences between different Aly8 sequences, making it difficult to determine which ones are allelic or to estimate the diversity. However, the homogeneity of the Aly8 sequences of each S-haplotype suggests that recombination between the loci has been very infrequent over the evolutionary history of these populations. Overall, the results suggest that recombination rarely occurs in the interval between the S-loci and Aly8 and that linkage to the S-loci can probably account for the observed high Aly8 diversity.  相似文献   

6.
We describe analyses of almost full-length sequences (including both the kinase domain and the S-domain) of the putative SRK incompatibility gene of the self-incompatible plant Arabidopsis lyrata. In A. lyrata, the SRK S-domain controls the pistil recognition specificity, as in self-incompatible Brassica species. In alleles from plants derived from natural A. lyrata populations, nonsynonymous and synonymous site diversity values are very high in both domains; even in exons 3 to 7 of the kinase domain, which probably have no recognition functions, 39% of the amino acids are polymorphic. Within populations, diversity between alleles is high, as expected for an incompatibility locus, which should be under frequency-dependent selection within populations, whereas within the different putative allelic classes polymorphism is very low, as predicted from theoretical models when recombination is rare. Nonsynonymous site variability declines in the kinase domain with increasing distance from the S-domain border, although synonymous diversity remains high, and the introns are unalignable. A decline in nonsynonymous diversity is expected due to selective constraints in the kinase domain, in combination with recombination (allowing diversity to decrease at sites distant from those under balancing selection). However, it is unclear whether recombination occurs in the SRK locus, and interpretation of the observed diversity pattern is complicated by apparent gene conversion with a paralogous gene (or genes). Patterns of linkage disequilibrium in our SRK sequences do not support the conclusion that recombination occurs, which was suggested from previous analyses based on Brassica SLG sequences.  相似文献   

7.
Loss of self-incompatibility (SI) in Arabidopsis thaliana was accompanied by inactivation of genes required for SI, including S-LOCUS RECEPTOR KINASE (SRK) and S-LOCUS CYSTEINE-RICH PROTEIN (SCR), coadapted genes that constitute the SI specificity-determining S haplotype. Arabidopsis accessions are polymorphic for PsiSRK and PsiSCR, but it is unknown if the species harbors structurally different S haplotypes, either representing relics of ancestral functional and structurally heteromorphic S haplotypes or resulting from decay concomitant with or subsequent to the switch to self-fertility. We cloned and sequenced the S haplotype from C24, in which self-fertility is due solely to S locus inactivation, and show that this haplotype was produced by interhaplotypic recombination. The highly divergent organization and sequence of the C24 and Columbia-0 (Col-0) S haplotypes demonstrate that the A. thaliana S locus underwent extensive structural remodeling in conjunction with a relaxation of selective pressures that once preserved the integrity and linkage of coadapted SRK and SCR alleles. Additional evidence for this process was obtained by assaying 70 accessions for the presence of C24- or Col-0-specific sequences. Furthermore, analysis of SRK and SCR polymorphisms in these accessions argues against the occurrence of a selective sweep of a particular allele of SCR, as previously proposed.  相似文献   

8.
Fujimoto R  Okazaki K  Fukai E  Kusaba M  Nishio T 《Genetics》2006,173(2):1157-1167
The determinants of recognition specificity of self-incompatibility in Brassica are SRK in the stigma and SP11/SCR in the pollen, both of which are encoded in the S locus. The nucleotide sequence analyses of many SRK and SP11/SCR alleles have identified several interspecific pairs of S haplotypes having highly similar sequences between B. oleracea and B. rapa. These interspecific pairs of S haplotypes are considered to be derived from common ancestors and to have maintained the same recognition specificity after speciation. In this study, the genome structures of three interspecific pairs of S haplotypes were compared by sequencing SRK, SP11/SCR, and their flanking regions. Regions between SRK and SP11/SCR in B. oleracea were demonstrated to be much longer than those of B. rapa and several retrotransposon-like sequences were identified in the S locus in B. oleracea. Among the seven retrotransposon-like sequences, six sequences were found to belong to the ty3 gypsy group. The gag sequences of the retrotransposon-like sequences were phylogenetically different from each other. In Southern blot analysis using retrotransposon-like sequences as probes, the B. oleracea genome showed more signals than the B. rapa genome did. These findings suggest a role for the S locus and genome evolution in self-incompatible plant species.  相似文献   

9.
Self-incompatibility (SI) in Brassica is controlled by a single locus, termed the S locus. There is evidence that two of the S locus genes, SLG, which encodes a secreted glycoprotein, and SRK, which encodes a putative receptor kinase, are required for SI on the stigma side. The current model postulates that a pollen ligand recognizing the SLG/SRK receptors is encoded in the genomic region defined by the SLG and SRK genes. A fosmid contig of approximately 65 kb spanning the SLG-910 and SRK-910 genes was isolated from the Brassica napus W1 line. A new gene, SLL3, was identified using a novel approach combining cDNA subtraction and direct selection. This gene encodes a putative secreted small peptide and exists as multiple copies in the Brassica genome. Sequencing analysis of the 65-kb contig revealed seven additional genes and a transposon. None of these seven genes exhibited features expected of S genes on the pollen side. An approximately 88-kb contig of the A14 S region also was isolated from the B. napus T2 line and sequenced. Comparison of the two S regions revealed that (1) the gene organization downstream of SLG in both S haplotypes is highly colinear; (2) the distance between SLG-A14 and SRK-A14 genes is much larger than that between SLG-910 and SRK-910, with the intervening region filled with retroelements and haplotype-specific genes; and (3) the gene organization downstream of SRK in the two haplotypes is divergent. These observations lead us to propose that the SLG downstream region might be one border of the S locus and that the accumulation of heteromorphic sequences, such as retroelements as well as haplotype-unique genes, may act as a mechanism to suppress recombination between SLG and SRK.  相似文献   

10.
Self-incompatibility in Brassica is controlled by a single multi-allelic locus (the S locus) which harbors at least two highly polymorphic genes, SLG and SRK. SRK is a putative transmembrane receptor kinase and its amino acid sequence of the extracellular domain of SRK (the S domain) exhibits high homology to that of SLG. The amino acid sequences of the SLGs of S8 and S46 haplotypes of B. rapa are very similar and those of S23 and S29 haplotypes of B. oleracea were also found to be almost identical. In both cases, SLG and the S domain of SRK of the same haplotype were less similar. This seems to contradict the idea that SLG and SRK of the same haplotype have the same self-recognition specificity. In the transmembrane-kinase domain, the SRK alleles of the S8 and S46 haplotypes had almost identical nucleotide sequences in spite of their lower homology in the S domain. Such a cluster of nucleotide substitutions is probably due to recombination or related events, although recombination in the S locus is thought to be suppressed. Based on our observations, the recognition mechanism and the evolution of self-incompatibility in Brassica are discussed.  相似文献   

11.
Self-incompatibility (SI) is reported to play a key role in the evolution of species as it promotes their outcrossing through the recognition and rejection of self-pollen grains. In Brassica, two S-locus genes expressed in the stigma, S-locus glycoprotein (SLG) gene and S-locus receptor kinase (SRK) gene, and one expressed in the pollen, S-locus protein 11 (SP11) gene, were linked as an S haplotype. In order to analyze the evolutionary relationships of S haplotypes in Brassica, a total of 39 SRK, 37 SLG, and 58 SP11 sequences of Brassica oleracea, Brassica rapa and Brassica napus were aligned. Two phylogenetic trees with similar pattern were constructed based on the nucleotide sequences of SRK/SLG and SP11, respectively. Class I and class II alleles were clustered into two distinct groups, and alleles from different species, including all the interspecific pairs of S haplotypes, were closely related to each other. The S-locus genes identified in B. napus were intermingled in phylogenetic trees. All these observations showed that class I and class II S haplotypes diverged ahead of the species differentiation in Brassica. The evolution and the genetic diversity of S haplotypes in Brassica were discussed. Moreover, the relationships between S haplotypes and SI phenotypes in Brassica, especially in B. napus, were also discussed.  相似文献   

12.
13.
Guo YL  Zhao X  Lanz C  Weigel D 《Plant physiology》2011,157(2):937-946
The S locus, a single polymorphic locus, is responsible for self-incompatibility (SI) in the Brassicaceae family and many related plant families. Despite its importance, our knowledge of S-locus evolution is largely restricted to the causal genes encoding the S-locus receptor kinase (SRK) receptor and S-locus cysteine-rich protein (SCR) ligand of the SI system. Here, we present high-quality sequences of the genomic region of six S-locus haplotypes: Arabidopsis (Arabidopsis thaliana; one haplotype), Arabidopsis lyrata (four haplotypes), and Capsella rubella (one haplotype). We compared these with reference S-locus haplotypes of the self-compatible Arabidopsis and its SI congener A. lyrata. We subsequently reconstructed the likely genomic organization of the S locus in the most recent common ancestor of Arabidopsis and Capsella. As previously reported, the two SI-determining genes, SCR and SRK, showed a pattern of coevolution. In addition, consistent with previous studies, we found that duplication, gene conversion, and positive selection have been important factors in the evolution of these two genes and appear to contribute to the generation of new recognition specificities. Intriguingly, the inactive pseudo-S-locus haplotype in the self-compatible species C. rubella is likely to be an old S-locus haplotype that only very recently became fixed when C. rubella split off from its SI ancestor, Capsella grandiflora.  相似文献   

14.
The S locus receptor kinase and the S locus glycoproteins are encoded by genes located at the S locus, which controls the self-incompatibility response in Brassica. In class II self-incompatibility haplotypes, S locus glycoproteins can be encoded by two different genes, SLGA and SLGB. In this study, we analyzed the sequences of these genes in several independently isolated plants, all of which carry the same S haplotype (S(2)). Two groups of S(2) haplotypes could be distinguished depending on whether SRK was associated with SLGA or SLGB. Surprisingly, SRK alleles from the two groups could be distinguished at the sequence level, suggesting that recombination rarely occurs between haplotypes of the two groups. An analysis of the distribution of polymorphisms along the S domain of SRK showed that hypervariable domains I and II tend to be conserved within haplotypes but to be highly variable between haplotypes. This is consistent with these domains playing a role in the determination of haplotype specificity.  相似文献   

15.
Diversity and locus specificity of chicken MHC B class I sequences   总被引:6,自引:0,他引:6  
The major histocompatibility complex B (MHC B) region in a standard haplotype of Leghorn chickens contains two closely linked class I loci, B-FI and B-FIV. Few sequences of B-FI alleles are available, and therefore alleles of the two loci have not been compared with regard to sequence diversity or locus specificity. Here, we report eight new B-F alpha 1/alpha 2-coding sequences from broiler chicken MHC B haplotypes, and a unique recombinant between the two B-F loci. The new sequences were combined with existing B-F sequences from Leghorn and broiler haplotypes for analysis. On the basis of phylogenetic analysis and conserved sequence motifs, B-F sequences separated into two groups (Groups A and B), corresponding to B-FIV and B-FI locus, respectively. Every broiler haplotype had one B-F sequence in Group A and the second B-F sequence, if it existed, clustered in Group B. Group B (presumptive B-FI locus) sequences identified in broiler haplotypes resembled the human MHC class I HLA-C locus in their distinctive pattern of allelic polymorphism. Compared with B-FIV, B-FI alleles were less polymorphic and possessed a conserved locus-specific motif in the alpha1 helix, but nevertheless demonstrated evidence of diversifying selection. One B-FI alpha 1/alpha 2-coding nucleotide sequence was completely conserved in four different broiler haplotypes, but each allele differed in the exon encoding the alpha 3 domain.  相似文献   

16.
Diversity and diversification of HLA-A,B,C alleles   总被引:20,自引:0,他引:20  
The nucleotide sequences encoding 14 HLA-A,B,C and 5 ChLA-A,B,C molecules have been determined. Combining these sequences with published data has enabled the polymorphism in 40 HLA-A,B,C and 9 ChLA-A,B,C alleles to be analyzed. Diversity is generated through assortment of point mutations by recombinational mechanisms including gene and allelic conversions. The distribution and frequency of silent and replacement substitutions indicate that there has been positive selection for allelic diversity in the 5' part of the gene (exons 1 to 3) and for allelic homogenization and locus specificity in the 3' part of the gene (exons 4 to 8). These differences may correlate with the lengths of converted sequences in the two parts of the gene and frequency of the CpG dinucleotide. Locus-specific divergence of HLA-A,B, and C demonstrates that recombinational events involving alleles of a locus have been more important than conversion between loci. This contrasts with the predominance of gene conversion events in the evolution of mutants of the H-2Kb gene. However, a striking example of gene conversion involving HLA-B and C alleles of an oriental haplotype has been found. Comparison of human and chimpanzee alleles reveals extensive sharing of polymorphisms, confirming that diversification is a slow process, and that much of contemporary polymorphism originated in ancestral primate species before the emergence of Homo sapiens. There is less polymorphism at the HLA-A locus compared to HLA-B, with greater similarity also being seen between HLA-A and ChLA-A alleles than between HLA-B and ChLA-B alleles. Although greater diversity is seen in the 5' "variable" exons of HLA-B compared to HLA-A, there is increased heterogeneity in the 3' "conserved" exons of HLA-A compared to HLA-B.  相似文献   

17.
Mating systems in plants are known to be highly labile traits, with frequent transitions from outcrossing to selfing. The genetic basis for breakdown in self-incompatibility (SI) systems has been studied, but data on variation in selfing rates in species for which the molecular basis of SI is known are rare. This study surveyed such variation in Arabidopsis lyrata (Brassicaceae), which is often considered an obligately outcrossing species, to examine the causes and genetic consequences of changes in its breeding system. Based on controlled self-pollinations in the greenhouse, three populations from the Great Lakes region of North America included a minority of self-compatible (SC) individuals, while two showed larger proportions of SC individuals and all populations contained some individuals capable of setting selfed seeds. Loss of SI was not associated with particular haplotypes at the S-locus (as estimated by alleles amplified at the SRK locus, the gene controlling female specificity) and all populations contained similar numbers of SRK alleles, suggesting that some other genetic factor is responsible for modifying the SI reaction. The loss of SI has resulted in an effective shift in the mating system, as the two populations with a high frequency of SC individuals showed significantly lower microsatellite-based multilocus outcrossing rates and higher inbreeding coefficients than the other populations. Based on microsatellites, observed heterozygosities and genetic diversity were also significantly depressed in these populations. These findings provide the unique opportunity to examine in detail the consequences of mating system changes within a species with a well-characterized SI system.  相似文献   

18.
不结球白菜自交不亲和S单元型的鉴定研究   总被引:1,自引:0,他引:1  
依据甘蓝SRK基因保守序列设计SRK特异引物并进行验证,通过PCR-RFLP法分析16份不结球白菜自交系材料的SRK基因的多态性,根据其差异鉴定不结球白菜S单元型及自交不亲和性.结果表明:16个不结球白菜自交系SRK基因共产生6种不同的带型,其中有1个是强自交不亲和系,4个是弱自交不亲和系,且与田间测定的亲和指数相符,说明利用SRK基因的多态性鉴定不结球白菜纯合自交系的自交不亲和性和S单元型是可行的.同时对部分材料的SRK基因的核苷酸序列进行分析验证,表明相同类型SRK基因序列一致性较高,且SRK基因存在明显的单核苷酸多态性,为进一步自交不亲和性的研究奠定了基础.  相似文献   

19.
In homomorphic plant self-incompatibility (SI) systems, large numbers of alleles may be maintained at a single Mendelian locus. Most estimators of the number of alleles present in natural populations are designed for gametophytic self-incompatibility systems (GSI) in which the recognition phenotype of the pollen is determined by its own haploid genotype. In sporophytic systems (SSI), the recognition phenotype of the pollen is determined by the diploid genotype of its parent, and dominance differs among alleles. We describe research aimed at estimates of S-allele numbers in a natural population of Arabidopsis lyrata (Brassicaceae), whose SSI system has recently been described. Using a combination of pollination studies and PCR-based identification of alleles at a locus equivalent to the Brassica SRK gene, we identified and sequenced 11 putative alleles in a sample of 20 individuals from different maternal seed sets. The pollination results indicate that we have not amplified all alleles that must be present. Extensive partial incompatibility, nonreciprocal compatibility differences, and evidence of weakened expression of SI in some genotypes, prevent us from determining the exact number of missing alleles based only on cross-pollination data. Although we show that none of the theoretical models currently proposed is completely appropriate for estimating the number of alleles in this system, we estimate that there are between 13 and 16 different S-alleles in our sample, probably between 16 and 25 alleles in the population, and discuss the relative frequency of alleles in relation to dominance.  相似文献   

20.
As a starting point for a phylogenetic study of self-incompatibility (SI) in crucifers and to elucidate the genetic basis of transitions between outcrossing and self-fertilizing mating systems in this family, we investigated the SI system of Arabidopsis lyrata. A. lyrata is an outcrossing close relative of the self-fertile A. thaliana and is thought to have diverged from A. thaliana approximately 5 million years ago and from Brassica spp 15 to 20 million years ago. Analysis of two S (sterility) locus haplotypes demonstrates that the A. lyrata S locus contains tightly linked orthologs of the S locus receptor kinase (SRK) gene and the S locus cysteine-rich protein (SCR) gene, which are the determinants of SI specificity in stigma and pollen, respectively, but lacks an S locus glycoprotein gene. As described previously in Brassica, the S haplotypes of A. lyrata differ by the rearranged order of their genes and by their variable physical sizes. Comparative mapping of the A. lyrata and Brassica S loci indicates that the S locus of crucifers is a dynamic locus that has undergone several duplication events since the Arabidopsis--Brassica split and was translocated as a unit between two distant chromosomal locations during diversification of the two taxa. Furthermore, comparative analysis of the S locus region of A. lyrata and its homeolog in self-fertile A. thaliana identified orthologs of the SRK and SCR genes and demonstrated that self-compatibility in this species is associated with inactivation of SI specificity genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号