首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There is general agreement that the connexin43 gap junction protein is a substrate for phosphorylation by protein kinase C but there is no similar consensus regarding the action of protein kinase A. Our previous studies demonstrated that channels formed by connexin43 were reversibly gated in response to microinjected protein kinase A and protein kinase C, but we did not determine whether these effects involved direct action on the connexin43 protein. Using a combination of in vivo metabolic labeling and in vitro phosphorylation of recombinant protein and synthetic peptides, we now find that connexin43 is a relatively poor substrate for purified protein kinase A compared to protein kinase C, but that phosphorylation can be accelerated by 8-Br-cAMP (8-bromoadenosine 3,5-cyclic monophosphate) which also enhances connexin43 synthesis but at a much slower rate than phosphorylation. Phosphorylation of a critical amino acid, Ser364, by protein kinase A, appears to be necessary for subsequent multiple phosphorylations by protein kinase C. However, protein kinase C can phosphorylate connexin43 at a reduced level in the absence of prior phosphorylation. The results suggest that the correct regulation of channels formed by connexin43 may require sequential phosphorylations of this protein by protein kinase A and protein kinase C.  相似文献   

2.
The assembly of gap junctions (GJs) is a process coordinated by growth factors, kinases, and other signaling molecules. GJ assembly can be enhanced via the elevation of cAMP and subsequent stimulation of connexon trafficking to the plasma membrane. To study the positive regulation of GJ assembly, fibroblasts derived from connexin (Cx)43 knockout (KO) and wild-type (WT) mice were transfected with WT Cx43 (WTCx43) or mutant Cx43. GJ assembly between untransfected WT fibroblasts or stably transfected WTCx43/KO fibroblasts was increased two- to fivefold by 8Br-cAMP, and this increase could be blocked by inhibition of cAMP-dependent protein kinase (PKA) or truncation of the Cx43 COOH terminus (CT). Although serine 364 (S364) of the Cx43 CT was determined to be a major site of phosphorylation, the molar ratio of Cx43 phosphorylation was not increased by 8Br-cAMP. Importantly, GJ assembly between either S364ECx43/KO or S364ECx43/WT fibroblasts was stimulated by 8Br-cAMP, but that between S364ACx43/KO or S364PCx43/KO fibroblasts was not stimulated, indicating that phosphorylation or a negative charge at S364 is required for enhancement of GJ assembly by cAMP. Furthermore, GJ assembly between S364ACx43/WT fibroblasts could be stimulated by 8Br-cAMP, but could not be between S364PCx43/WT fibroblasts. Thus, S364PCx43 interferes with enhanced GJ assembly when coexpressed with WTCx43.  相似文献   

3.
Several phorbol esters are potent activators of protein kinase C. They down-regulate gap junctional intercellular communication and induce phosphorylation of connexin43, but the sensitivity and extent of responses vary much between systems. We asked whether the total protein kinase C enzyme activity or the protein kinase C isoenzyme constitution was of importance for such variations. Some fibroblastic culture systems were compared. It was concluded that the total protein kinase C enzyme activity did not determine the sensitivity to phorbol esters. Furthermore, the use of isotype-specific inhibitors of protein kinase C indicated that protein kinase C alpha, delta, and epsilon may be involved to different extents in different fibroblastic systems in the response to phorbol esters.  相似文献   

4.
Regulation of connexin43 function by activated tyrosine protein kinases   总被引:1,自引:0,他引:1  
Gap junctions are specialized membrane structures that are involved in the normal functioning of numerous mammalian tissues and implicated in several human disease processes. This mini-review focuses on the regulation of gap junctions through phosphorylation of connexin43 induced by the v-Src or epidermal growth factor receptor tyrosine kinases. These tyrosine kinases markedly disrupt gap junctional communication in mammalian cells. Here, we describe work correlating the alteration of connexin43 function with the ability of the v-Src tyrosine kinase to phosphorylate connexin43 directly on two distinct tyrosine sites in mammalian cells (Y247 and Y265). We also present evidence that proline-rich regions and phosphotyrosine sites of connexin43 may mediate interactions with the SH3 and SH2 domains of v-Src. In contrast to v-Src, the activated epidermal growth factor receptor acts indirectly through activated MAP kinase which may stimulate phosphorylation of connexin43 exclusively on serine. This phosphorylation event is complex because MAP kinase phosphorylates three serine sites in connexin43 (S255, S279, and S282). These findings suggest novel interactions between connexin43, the v-Src tyrosine kinase, and activated MAP kinase that set the stage for future investigations into the regulation of gap junctions by protein phosphorylation.  相似文献   

5.
6.
Cx43 is a widely expressed gap junction protein that mediates communication between many cell types. In general, tumor cells display less intercellular communication than their nontransformed precursors. The Src tyrosine kinase has been implicated in progression of a wide variety of cancers. Src can phosphorylate Cx43, and this event is associated with the suppression of gap junction communication. However, Src activates multiple signaling pathways that can also affect intercellular communication. For example, serine kinases including PKC and MAPK are downstream effectors of Src that can also phosphorylate Cx43 and disrupt gap junctional communication. In addition, Src can affect the expression of other proteins that may affect intercellular communication. Indeed, disruption of gap junctions by Src appears to be complex. It has become clear that Src can affect Cx43 activity by multiple mechanisms. Here, we review how Src may orchestrate events that regulate intercellular communication mediated by Cx43.  相似文献   

7.
It has been shown that cholesterol modulates activity of protein kinase C (PKC), and PKC phosphorylates connexin 43 (Cx43) to regulate its function, respectively. However, it is not known whether cholesterol modulates function of Cx43 through regulating activity of PKC. In the present study, we demonstrated that cholesterol enrichment reduced the dye transfer ability of Cx43 in cultured H9c2 cells. Western blot analysis indicated that cholesterol enrichment enhanced the phosphorylated state of Cx43. Immunofluorescent images showed that cholesterol enrichment made the Cx43 distribution from condensed to diffused manner in the interface between the cells. In cholesterol enriched cells, PKC antagonists partially restored the dye transfer ability among the cells, downregulated the phosphorylation of Cx43 and redistributed Cx43 from the diffused manner to the condensed manner in the cell interface. In addition, reduction of cholesterol level suppressed PKC activity to phosphorylate Cx43 and restored Cx43 function in PKC agonist-treated cells. Furthermore, we demonstrated that cholesterol enrichment upregulated the phosphorylated state of Cx43 at Ser368, while PKC antagonists reversed the effect. Taken together, cholesterol level in the cells plays important roles in regulating Cx43 function through activation of the PKC signaling pathway.  相似文献   

8.
Connexin 43 (Cx43), the gap junction protein involved in cell‐to‐cell coupling in the heart, is also present in the subsarcolemmal fraction of cardiomyocyte mitochondria. It has been described to regulate mitochondrial potassium influx and respiration and to be important for ischaemic preconditioning protection, although the molecular effectors involved are not fully characterized. In this study, we looked for potential partners of mitochondrial Cx43 in an attempt to identify new molecular pathways for cardioprotection. Mass spectrometry analysis of native immunoprecipitated mitochondrial extracts showed that Cx43 interacts with several proteins related with mitochondrial function and metabolism. Among them, we selected for further analysis only those present in the subsarcolemmal mitochondrial fraction and known to be related with the respiratory chain. Apoptosis‐inducing factor (AIF) and the beta‐subunit of the electron‐transfer protein (ETFB), two proteins unrelated to date with Cx43, fulfilled these conditions, and their interaction with Cx43 was proven by direct and reverse co‐immunoprecipitation. Furthermore, a previously unknown molecular interaction between AIF and ETFB was established, and protein content and sub‐cellular localization appeared to be independent from the presence of Cx43. Our results identify new protein–protein interactions between AIF‐Cx43, ETFB‐Cx43 and AIF‐ETFB as possible players in the regulation of the mitochondrial redox state.  相似文献   

9.
蛋白激酶C对大鼠支气管平滑肌KV通道的影响   总被引:11,自引:5,他引:11  
Liu XS  Xu YJ  Zhang ZX  Ni W  Chen SX 《生理学报》2003,55(2):135-141
用全细胞膜片钳、Western印迹法和逆转录—PCR技术,观察蛋白激酶C(protein kinase C,PKC)对大鼠支气管平滑肌细胞(bronchial smooth muscle cells,BSMCs)电压依赖性延迟整流钾通道(Kv)活性及其亚型Kvl.5表达的影响。结果为:(1)PKC激活剂豆蔻酰佛波醇乙酯(phorbol 12-myristate 13-acetate,PMA)显著抑制急性分离大鼠BSMCs的Kv通道电流,该效应被PKC阻断剂Ro31—8220显著抑制;(2)PMA显著抑制体外培养大鼠BSMCs的Kvl.5 mRNA和蛋白质的表达,该效应被Ro31—8220显著抑制。上述观察结果提示,PKC活化可抑制大鼠BSMCs的Kv通道电流活性,下调Kvl.5亚型的表达水平。  相似文献   

10.
Neuronal protein GAP-43 performs multiple functions in axon guidance, synaptic plasticity and regulation of neuronal death and survival. However, the molecular mechanisms of its action in these processes are poorly understood. We have shown that in axon terminals GAP-43 is a substrate for calcium-activated cysteine protease m-calpain, which participates in repulsion of axonal growth cones and induction of neuronal death. In pre-synaptic terminals in vivo, in synaptosomes, and in vitro, m-calpain cleaved GAP-43 in a small region near Ser41, on either side of this residue. In contrast, micro-calpain cleaved GAP-43 in vitro at several other sites, besides Ser41. Phosphorylation of Ser41 by protein kinase C or GAP-43 binding to calmodulin strongly suppressed GAP-43 proteolysis by m-calpain. A GAP-43 fragment, lacking about forty N-terminal residues (named GAP-43-3), was produced by m-calpain-mediated cleavage of GAP-43 and inhibited m-calpain, but not micro-calpain. This fragment prevented complete cleavage of intact GAP-43 by m-calpain as a negative feedback. GAP-43-3 also blocked m-calpain activity against casein, a model calpain substrate. This implies that GAP-43-3, which is present in axon terminals in high amount, can play important role in regulation of m-calpain activity in neurons. We suggest that GAP-43-3 and another (N-terminal) GAP-43 fragment produced by m-calpain participate in modulation of neuronal response to repulsive and apoptotic signals.  相似文献   

11.
Connexin‐43 (Cx43) containing giant liposomes (GL) were prepared by a baculovirus expression–liposome fusion method. Recombinant budded viruses expressing Cx43 were prepared and then fused with GLs containing DOPG/DOPC at pH 4.5. Connexon formation on the GL membrane was observed by transmission electron microscope. Hydrophilic fluorescent dye transfers were observed through a Cx43‐mediated pathway not only between Sf9 (Spodoptera frugiperda) cells with Cx43 but also from giant Cx43 liposomes to Cx43‐expressing U2OS cells (human osteosarcoma cell). The functional connexin‐containing liposome is expected to be useful for cellular cytosolic delivery systems. The original orientation and function of Cx43 was maintained after integration into the liposomes. The liposome fusion method will create new opportunities as a tool for analysis of channel membrane proteins. Biotechnol. Bioeng. 2010;107: 836–843. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
Pei JM  Chen M  Wang YM  Wen J  Zhu YL 《生理学报》2003,55(1):91-95
为观察U50,488H(选择性κ-阿片受体激动剂)对大鼠腹主动态的佶张作用,并探讨其机制,实验采用离体血管灌流实验,测定血管张力的改变。结果显示:(1)U50,488H对大鼠腹主动脉具有明显的舒张作用;(2)U50,488H对大鼠腹主动脉的舒张效应部分依赖于内皮细胞的存在;(3)优降糖和格列甲嗪可明显抑制U50,488H对大鼠腹主动脉的佶张作用;(4)U50,488H的舒张血管效应与M受体、β受体、前列腺素及NO无关。结果表明,U50,488H是一种有效的扩血管物质,其舒张血管的效应具有内皮依赖性,且与KATP通道有密切关系。  相似文献   

13.
14.
Astrocytes are extensively coupled through gap junctions (GJs) that are composed of channels mostly constituted by connexin43 (Cx43). This astroglial gap junctional intercellular communication (GJIC) allows propagation of ions and signaling molecules critical for neuronal activity and survival. It is drastically inhibited by a short-term exposure to endothelin-1 (ET-1) or to sphingosine-1-phosphate (S1P), both compounds being inflammatory mediators acting through activation of GTP-binding protein-coupled receptors (GPCRs). Previously, we have identified the GTPases G(i/o) and Rho as key actors in the process of S1P-induced inhibition. Here, we asked whether similar mechanisms underlied the effects of ET-1 and S1P by investigating changes in the phosphorylation status of Cx43 and in the molecular associations of Cx43 with zonula occludens (ZO) proteins and occludin. We showed that the inhibitory effect of ET-1 on GJIC was entirely dependent on the activation of G(i/o) but not on Rho and Rho-associated kinase. Both ET-1 and S1P induced dephosphorylation of Cx43 located at GJs through a process mediated by G(i/o) and calcineurin. Thanks to co-immunoprecipitation approaches, we found that a population of Cx43 (likely junctional Cx43) was associated to ZO-1-ZO-2-occludin multiprotein complexes and that acute treatments of astrocytes with ET-1 or S1P induced a G(i/o)-dependent increase in the amount of Cx43 linked to these complexes. As a whole, this study identifies a new mechanism of GJIC regulation in which two GPCR agonists dynamically alter interactions of Cx43 with its molecular partners.  相似文献   

15.
16.
The ω‐3 fatty acids exert as an antioxidant via the G protein‐coupled receptor 120 (GPR120). Icosapent ethyl, a purified eicosapentaenoic acid, showed a marked reduction in sudden cardiac death. Connexin43 is sensitive to redox status. We assessed whether icosapent ethyl attenuates fatal arrhythmias after myocardial infarction, a status of high oxidative stress, through increased connexin43 expression and whether the GPR120 signalling is involved in the protection. Male Wistar rats after ligating coronary artery were assigned to either vehicle or icosapent ethyl for 4 weeks. The postinfarction period was associated with increased oxidative‐nitrosative stress. In concert, myocardial connexin43 levels revealed a significant decrease in vehicle‐treated infarcted rats compared with sham. These changes of oxidative‐nitrosative stress and connexin43 levels were blunted after icosapent ethyl administration. Provocative arrhythmias in the infarcted rats treated with icosapent ethyl were significantly improved than vehicle. Icosapent ethyl significantly increased GPR120 compared to vehicle after infarction. The effects of icosapent ethyl on superoxide and connexin43 were similar to GPR120 agonist GW9508. Besides, the effects of icosapent ethyl on oxidative‐nitrosative stress and connexin43 phosphorylation were abolished by administering AH‐7614, an inhibitor of GPR120. SIN‐1 abolished the Cx43 phosphorylation of icosapent ethyl without affecting GPR120 levels. Taken together, chronic use of icosapent ethyl after infarction is associated with up‐regulation of connexin43 phosphorylation through a GPR120‐dependent antioxidant pathway and thus plays a beneficial effect on arrhythmogenic response to programmed electrical stimulation.  相似文献   

17.
Summary Lens epithelial cells are physiologically coupled to each other and to the lens fibers by an extensive network of intercellular gap junctions. In the rat, the epithelial-epithelial junctions appear to contain connexin43, a member of the connexin family of gap junction proteins. Limitations on the use of rodent lenses for the study of gap junction formation and regulation led us to examine the expression of connexin43 in embryonic chick lenses. We report here that chick connexin43 is remarkably similar to its rat counterpart in primary amino acid sequence and in several key structural features as deduced by molecular cDNA cloning. The cross-reactivity of an anti-rat connexin43 serum with chick connexin43 permitted definitive immunocytochemical localization of chick connexin43 to lens epithelial gap junctional plaques and examination of the biosynthesis of connexin43 by metabolic radiolabeling and immunoprecipitation. We show that chick lens cells synthesize connexin43 as a single, 42-kD species that is efficiently posttranslationally converted to a 45-kD form. Metabolic labeling of connexin43 with32P-orthophosphate combined with dephosphorylation experiments reveals that this shift in apparent molecular weight is due solely to phosphorylation. These results indicate that embryonic chick lens is an appropriate system for the study of connexin43 biosynthesis and demonstrate for the first time that connexin43 is a phosphoprotein.  相似文献   

18.
19.
Gap junction channels are made of a family proteins called connexins. The best-studied type of connexin, Connexin43 (Cx43), is phosphorylated at several sites in its C-terminus. The tumor-promoting phorbol ester TPA strongly inhibits Cx43 gap junction channels. In this study we have investigated mechanisms involved in TPA-induced phosphorylation of Cx43 and inhibition of gap junction channels. The data show that TPA-induced inhibition of gap junction intercellular communication (GJIC) is dependent on both PKC and the MAP kinase pathway. The data suggest that PKC-induced activation of MAP kinase partly involves Src-independent trans-activation of the EGF receptor, and that TPA-induced shift in SDS-PAGE gel mobility of Cx43 is caused by MAP kinase phosphorylation, whereas phosphorylation of S368 by PKC does not alter gel migration of Cx43. We also show that TPA, in addition to phosphorylation of S368, also induces phosphorylation of S255 and S262, in a MAP kinase-dependent manner. The data add to our understanding of the molecular mechanisms involved in the interplay between signaling pathways in regulation of GJIC.  相似文献   

20.
The trafficking of large-conductance Ca2+-activated K+ channels (K(Ca)) in chick ciliary ganglion neurons is regulated by growth factors. Here we show that a canonical p38 cascade inhibits K(Ca) trafficking in ciliary ganglion neurons. Two different p38 inhibitors (SB202190 or SB203580) or over-expression of dominant-negative forms of several components of the p38 cascade increased K(Ca) in ciliary neurons. Inhibition of protein synthesis or Golgi processing had no effect on this phenomenon, suggesting that p38 is acting at a distal step of the trafficking pathway. Depolymerization of filamentous actin (F-actin) increased functional expression of K(Ca), whereas stabilization of F-actin inhibited the effect of SB202190 on K(Ca) trafficking. SB202190 also caused an immunochemically detectable increase in K(Ca) on the plasma membrane. Inhibition of p38 decreased the extent of cortical F-actin in ciliary neurons. Macroscopic K(Ca) is suppressed by transforming growth factor (TGF) beta3. Application of TGFbeta3 increased the phosphorylation of p38 in ciliary neurons and increased cortical F-actin. Thus, the p38 signaling cascade endogenously suppresses development of functional K(Ca), in part by stabilizing an F-actin barrier that prevents plasma membrane insertion of functional channel complexes. This cascade also appears to mediate inhibitory effects of TGFbeta3 on the expression of K(Ca).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号