首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growing pea stem tissue, when isolated from an external supply of water, undegoes stress relaxation because of continued loosening of the cell wall. A theoretical analysis is presented to show that such stress relaxation should result in an exponential decrease in turgor pressure down to the yield threshold (Y), with a rate constant given by ε where is the metabolically maintained irreversible extensibility of the cell wall and ε is the volumetric elastic modulus of the cell. This theory represents a new method to determine in growing tissues.

Stress relaxation was measured in pea (Pisum sativus L.) stem segments using the pressure microprobe technique. From the rate of stress relaxation, of segments pretreated with water was calculated to be 0.08 per megapascal per hour while that of auxin-pretreated tissue was 0.24 per megapascal per hour. These values agreed closely with estimates of made by a steady-state technique. The yield threshold (0.29 megapascal) was not affected by auxin. Technical difficulties with measuring by stress relaxation may arise due to an internal water reserve or due to changes in subsequent to excision. These difficulties are discussed and evaluated.

A theoretical analysis is also presented to show that the tissue hydraulic conductance may be estimated from the T½ of tissue swelling. Experimentally, pea stems had a swelling T½ of 2.0 minutes, corresponding to a relative hydraulic conductance of about 2.0 per megapascal per hour. This value is at least 8 times larger than . From these data and from computer modeling, it appears that the radial gradient in water potential which sustains water uptake in growing pea segments is small (0.04 megapascal). This means that hydraulic conductance does not substantially restrict growth. The results also demonstrate that the stimulation of growth by auxin can be entirely accounted for by the change in .

  相似文献   

2.
Growth-induced Water Potentials in Plant Cells and Tissues   总被引:32,自引:20,他引:12       下载免费PDF全文
Molz FJ 《Plant physiology》1978,62(3):423-429
A physical analysis of water movement through elongating soybean (Glycine max L. Merr.) hypocotyls was made to determine why significant water potentials persist in growing tissues even though the external water potentials were zero and transpiration is virtually zero. The analysis was based on a water transport theory modified for growth and assumed that water for growing cells would move through and along the cells in proportion to the conductivity of the various pathways.

Water potentials calculated for individual cells were nearly in local equilibrium with the water potentials of the immediate cell surroundings during growth. However, water potentials calculated for growing tissue were 1.2 to 3.3 bars below the water potential of the vascular supply in those cells farthest from the xylem. Only cells closest to the xylem had water potentials close to that of the vascular supply. Gradients in water potential were steepest close to the xylem because all of the growth-sustaining water had to move through this part of the tissue. Average water potentials calculated for the entire growing region were −0.9 to −2.2 bars depending on the tissue diffusivity.

For comparison with the calculations, average water potentials were measured in elongating soybean hypocotyls using isopiestic thermocouple psychrometers for intact and excised tissue. In plants having virtually no transpiration and growing in Vermiculite with a water potential of −0.1 bar, rapidly growing hypocotyl tissue had water potentials of −1.7 to −2.1 bars when intact and −2.5 bars when excised. In mature, nongrowing hypocotyl tissue, average water potentials were −0.4 bar regardless of whether the tissue was intact or excised.

The close correspondence between predicted and measured water potentials in growing tissue indicates that significant gradients in water potential are required to move growth-associated water through and around cells over macroscopic distances. The presence of such gradients during growth indicates that cells must have different cell wall and/or osmotic properties at different positions in the tissue in order for organized growth to occur. The mathematical development used in this study represents the philosophy that would have to be followed for the application of contemporary growth theory when significant tissue water potential gradients are present.

  相似文献   

3.
Water relations of growing segments of maize (Zea mays L.) coleoptiles were investigated with osmotic methods using either mannitol (MAN) or polyethylene glycol 6000 (PEG) as external osmotica. Segments were incubated in MAN or PEG solutions at 0 to - 15 bar water potential (Ψo) and the effects were compared on elongation growth, osmotic shrinkage, cell sap osmolality (OC), and osmotic pressure (πi). The nonpenetrating osmoticum PEG affects πi in agreement with Boyle-Mariotte's law, i.e. the segments behave in principle as ideal osmometers. There is no osmotic adjustment in the Ψo range permitting growth (0 to −5 bar) nor in the Ψo range inducing osmotic shrinkage (−5 to −10 bar). Promoting growth by auxin (IAA) has no effect on the osmotic behavior of the tissue toward PEG. In contrast to PEG, MAN produces an apparent increase in πi accompanied by anomalous effects on segment elongation and shrinkage leading to a lower value for Ψo which establishes a growth rate of zero and to an apparent recovery from osmotic shrinkage after 2 hours of incubation. These effects can be quantitatively attributed to uptake of MAN into the tissue. MAN is taken up into the apoplastic space and the symplast as revealed by a large temperature-dependent component of MAN uptake. It is concluded that MAN, in contrast to PEG, is unsuitable as an extemal osmoticum for the quantitative determination of water relations of growing maize coleoptiles.  相似文献   

4.
The guillotine thermocouple psychrometer allows auxin action on cell enlargement to be investigated in intact plants. Because the technique measures all the physical parameters affecting enlargement in the same plants, close comparisons can be made of the changes brought about by this growth regulator. In etiolated seedlings of soybean (Glycine max L. Merr.), auxin was supplied endogenously by the intact plant or was depleted by removing the apical portion of the stem. We observed that, when stem growth was rapid in the intact plant, the water potential of the growing region was lower than in the nongrowing region but, as growth slowed during auxin depletion, the water potential rose until it became essentially the same as in the nongrowing region. This indicated that gradients in water potential had been induced by the demand for water during rapid growth but had decreased as growth decreased in the auxin-depleted cells. The turgor appeared to rise slightly as growth slowed which is in the wrong direction to account for the growth change unless compensating changes occurred in wall properties and/or synthesis. As growth ceased in the auxin-depleted tissue, the threshold turgor rose until it became nearly the same as the cell turgor, which indicates that auxin affected this wall parameter. The osmotic potential increased slightly, probably because of a dilution of the cell contents by the residual growth occurring after the stem apex (and cotyledons) had been removed. The hydraulic conductance for water was unaffected by auxin status whether it was measured in the whole enlarging region or in individual cortical cells from the region. It was concluded that auxin acts mainly on the metabolism of the cell walls manifested by the change in growth rate and threshold turgor. The other changes were passive responses to the changed growth rate.Abbreviations and Symbols G relative growth rate - L conductance of tissue - Lp hydraulic conductivity of cell - m extensibility of cell walls - T threshold turgor - t1/2 halftime for turgor relaxation - V volume of water - bulk elastic modulus - o water potential of nongrowing tissue - (o w) growth-induced water potential - p turgor - (p T) growth-active turgor - s osmotic potential - w water potential of growing tissue This work was supported by a grant from the Science and Technology Agency of Japan to S.M. and grants from the DuPont Company and the Department of Energy DE-FG02-87ER13776 to J.S.B. We thank Dr. Douglas Miller for help with the statistics.  相似文献   

5.
Water potentials induced by growth in soybean hypocotyls   总被引:17,自引:11,他引:6       下载免费PDF全文
Gradients in water potential form the driving force for the movement of water for cell enlargement. In stems, they are oriented radially around the vascular system but should also be present along the stem. To test this possibility, growth, water potential, osmotic potential, and turgor were determined at intervals along the length of dark-grown soybean (Glycine max L. Merr., cv. Wayne) hypocotyls. Transpiration was negligible in the dark, humid conditions, so that all water uptake was for growth. Elongation occurred in the terminal 1.5 centimeters of the hypocotyl. Water potential was −3.5 bars in the elongating region but −0.5 bar in the mature region, both in intact plants and detached tissue. There was a gradual transition between these values that was related to the growth profile along the hypocotyl. Tissue osmotic potentials generally paralleled tissue water potentials, so that turgor was the same throughout the length of the hypocotyl. If the elongating zone was excised, growth ceased immediately. If the elongating zone was excised along with mature tissue, however, growth continued, which confirmed the presence of a water-potential gradient that caused longitudinal water movement from the mature zone to the elongating zone. When the plants were grown in vermiculite having low water potentials, tissue water potentials and osmotic potentials both decreased, so that water potential gradients and turgor remained undiminished. It is concluded that growth-induced water potentials reflect the local activity for cell enlargement and are supported by appropriate osmotic potentials.  相似文献   

6.
Wright JP  Fisher DB 《Plant physiology》1983,73(4):1042-1047
Severed aphid stylets were used to follow the kinetics of sieve tube turgor and osmotic pressure (π) responses following step changes in water potential applied to the cambial surface of willow (Salix exigua Nutt.) bark strips. The kinetics of the turgor response were monitored with a pressure transducer. In separate experiments, the kinetics of the π response were followed by freezing point determinations on stylet exudate. The sieve tube volumetric elastic modulus in the bark strips was about 21 bars, but may be higher in intact stems. The membrane hydraulic conductivity was about 5 × 10−3 centimeters per second per bar; several factors make it difficult to estimate its value accurately. Differences in the turgor pressure (P) and π responses, as well as the relatively more rapid initial turgor response to a water potential (ψ) change, suggested a time-dependent component in sieve tube wall elasticity.

Our observations were generally not supportive of the idea that sieve tubes might osmoregulate. However, the bark strip system may not be suitable for addressing that question.

Separate measurements of ψ, P, and π demonstrate that the relationship predicted by the fundamental cell water potential equation, ψ = P − π, is applicable within experimental error (± 0.4 bar) to sieve tube water relations.

  相似文献   

7.
We developed a new method to measure the solute concentration in the apoplast of stem tissue involving pressurizing the roots of intact seedlings (Glycine max [L.] Merr. or Pisum sativum L.), collecting a small amount of exudate from the surface of the stem under saturating humidities, and determining the osmotic potential of the solution with a micro-osmometer capable of measuring small volumes (0.5 microliter). In the elongating region, the apoplast concentrations were very low (equivalent to osmotic potentials of −0.03 to −0.04 megapascal) and negligible compared to the water potential of the apoplast (−0.15 to −0.30 megapascal) measured directly by isopiestic psychrometry in intact plants. Most of the apoplast water potential consisted of a negative pressure that could be measured with a pressure chamber (−0.15 to −0.28 megapascal). Tests showed that earlier methods involving infiltration of intercellular spaces or pressurizing cut segments caused solute to be released to the apoplast and resulted in spuriously high concentrations. These results indicate that, although a small amount of solute is present in the apoplast, the major component is a tension that is part of a growth-induced gradient in water potential in the enlarging tissue. The gradient originates from the extension of the cell walls, which prevents turgor from reaching its maximum and creates a growth-induced water potential that causes water to move from the xylem at a rate that satisfies the rate of enlargement. The magnitude of the gradient implies that growing tissue contains a large resistance to water movement.  相似文献   

8.
Theory predicts that, for growing plant cells isolated from a supply of water, stress relaxation of the cell wall should decrease cell turgor pressure (P) until the yield threshold for cell expansion is reached. This prediction was tested by direct P measurements of pea (Pisum sativum L.) stem cortical cells before and after excision of the growing region and isolation of the growing tissue from an external water supply. Cell P was measured with the micro-pressure probe under conditions which eliminated transpiration. Psychrometric measurements of water potential confirmed the pressureprobe measurements. Following excision, P of the growing cells decreased in 1 h by an average of 1.8 bar to a mean plateau value of 2.8 bar, and remained constant thereafter. Treatment with 10-5 M indole-3-acetic acid or 10-5 M fusicoccin (known growth stimulants) accelerated the rate of P relaxation, whereas various treatments which inhibit growth slowed down or completely stopped P relaxation in apical segments. In contrast, P of basal (nongrowing) segments gradually increased because of absorption of solutes from the cell-wall free space of the tissue. Such solute absorption also occurred in apical segments, but wall relaxation held P at the yield threshold in those segments which were isolated from an external water supply. These results provide a new and rapid method for measuring the yield threshold and they show that P in intact growing pea stems exceeds the yield threshold by about 2 bar. Wall relaxation is shown here to affect the water potential and turgor pressure of excised growing segments. In addition, solute release and absorption upon excision may influence the water potential and turgor pressure of nongrowing excised plant tissues.Abbreviations and symbols IAA indole-3-acetic acid - P turgor pressure - SE standard error of the mean - water potential  相似文献   

9.
J. S. Boyer  Gloria Wu 《Planta》1978,139(3):227-237
The ability of water to enter the cells of growing hypocotyl tissue was determined in etiolated soybean (Glycine max (L.) Merr.) seedlings. Water uptake was restricted to that for cell enlargement, and the seedlings were kept intact insofar as possible. Tissue water potentials ( w) were measured at thermodynamic equilibrium with an isopiestic thermocouple psychrometer. wwas below the water potential of the environment by as much as 3.1 bars when the tissue was enlarging rapidly. However, w was similar to the water potential of the environment when cell enlargement was not occurring. The low w in enlarging tissue indicates that there was a low conductivity for water entering the cells.The ability of water to enter the enlarging cells was defined as the apparent hydraulic conductivity of the tissue (Lp). Despite the low Lp of growing cells, Lp decreased further as cell enlargement decreased when intact hypocotyl tissue was deprived of endogenous auxin (indole-3-acetic acid) by removal of the hypocotyl hook. Cell enlargement resumed and Lp increased when auxin was resupplied exogenously. The auxin-induced increase in Lp was correlated with the magnitude of the growth enhancement caused by auxin, and it was observed during the earliest phase of the growth response to auxin. The increase in Lp appeared to be caused by an increase in the hydraulic conductivity of the cell protoplasm, since other factors contributing to Lp remained constant. The rapidity of the response is consistent with a cellular site of action at the plasmalemma, although other sites are not precluded.Because the experiments involved only short times, auxin-induced changes in cell enlargement could not be attributed to changes in cell osmotic potentials. Neither could they be attributed to changes in turgor, which increased when the rate of enlargement decreased. Rather, auxin appeared to act by altering the extensibility of the cell walls and by simultaneously altering the ability of water to enter the growing cells under a given water potential gradient. The hydraulic conductivity and extensibility of the cell walls appeared to contribute about equally to the control of the growth rate of the hypocotyls.  相似文献   

10.
Water movement across plant tissues occurs along two paths: from cell-to-cell and in the apoplasm. We examined the contribution of these two paths to the kinetics of water transport across the parenchymatous midrib tissue of the maize (Zea mays L.) leaf. Water relations parameters (hydraulic conductivity, Lp; cell elastic coefficient, ε; half-time of water exchange for individual cells, T½) of individual parenchyma cells determined with the pressure probe varied in different regions of the midrib. In the adaxial region, Lp = (0.3 ± 0.3)·10−5 centimeters per second per bar, ε = 103 ± 72 bar, and T½ = 7.9 ± 4.8 seconds (n = seven cells); whereas, in the abaxial region, Lp = (2.5 ± 0.9)·10−5 centimeters per second per bar, ε = 41 ± 9 bar, and T½ = 1.3 ± 0.5 seconds (n = 7). This zonal variation in Lp, ε, and T½ indicates that tissue inhomogeneities exist for these parameters and could have an effect on the kinetics of water transport across the tissue.

The diffusivity of the tissue to water (Dt) obtained from the sorption kinetics of rehydrating tissue was Dt = (1.1 ± 0.4)·10−6 square centimeters per second (n = 6). The diffusivity of the cell-to-cell path (Dc) calculated from pressure probe data ranged from Dc = 0.4·10−6 square centimeters per second in the adaxial region to Dc = 6.1·10−6 square centimeters per second in the abaxial region of the tissue. Dt Dc suggests substantial cell-to-cell transport of water occurred during rehydration. However, the tissue diffusivity calculated from the kinetics of pressure-propagation across the tissue (Dt′) was Dt′ = (33.1 ± 8.0)·10−6 square centimeters per second (n = 8) and more than 1 order of magnitude larger than Dt. Also, the hydraulic conductance of the midrib tissue (Lpm per square centimeter of surface) estimated from pressure-induced flows across several parenchyma cell layers was Lpm = (8.9 ± 5.6)·10−5 centimeters per second per bar (n = 5) and much larger than Lp.

These results indicate that the preferential path for water transport across the midrib tissue depends on the nature of the driving forces present within the tissue. Under osmotic conditions, the cell-to-cell path dominates, whereas under hydrostatic conditions water moves primarily in the apoplasm.

  相似文献   

11.
A new method is described for continuously measuring cell turgor pressure (P), hydraulic conductivity (Lp), and volumetric elastic modulus (ε) in higher plant cells, using a pressure probe. This technique permits volume changes, ΔV, and turgor pressure changes, ΔP, to be determined with an accuracy of 10−5 to 10−6 μl and 3 to 5·10−2 bar, respectively.

The main principle of the new method is the same as the pressure probe developed by Zimmermann and Steudle in which pressure is transmitted to a pressure transducer by means of an oil-filled capillary introduced into the cell. In order to use the pressure probe for small tissue cells, the effective compressible volume of the apparatus has to be sufficiently small in comparison to the volume of the cell itself. This is achieved by accurately fixing the oil/cell sap boundary in the very tip of the microcapillary by means of an electronic feedback mechanism, so that the effective volume of the apparatus is reduced to about 2 to 10% of the cell volume. In this way also, errors arising from compressibility of the apparatus and temperature fluctuations can be excluded.

Measurements on tissues cells of Capsicum annuum fruits yield ε values of 2 to 25 bar. Furthermore, ε can be shown to be a function of both cell turgor pressure and cell volume; ε increases with increasing turgor pressure and is higher in larger cells.

  相似文献   

12.
Cell lines of tomato (Lycopersicon esculentum Mill., cv. VFNT-Cherry) have been isolated, which are capable of growing in media containing polyethylene glycol (PEG) 6000 with water potentials as low as −15 or −22 bar. After prolonged exposure to media containing PEG, these cell populations have reduced abilities to grow in the absence of PEG. Upon resuspension in PEG-free medium, the cells swell and begin to release metabolites, including protein. Measurement by plasmometry of the osmotic potential of cells selected in medium with −22 bar water potential indicates that they maintain, at the end of the growth cycle, an osmotic potential of approximately −26 bar. This is compared to an osmotic potential of −9 bar for nonselected cells in medium without PEG, having an initial water potential of −4 bar. Thus, considerable osmotic adjustment occurs as a result of exposure to external low water potential. The results also indicate that PEG does not contribute significantly to osmotic adjustment of the cells.  相似文献   

13.
A method of measuring the water potential of stored potato tubers (Solanum tuberosum L.) was needed to investigate the relationship of bacterial soft rot in tubers to water potential. Pressure chamber measurements, while useful for tubers with functional stolons, cannot be made on stored tubers. Measurements could be made on excised tissue pieces in a hygrometer chamber and with hygrometers implanted into tubers. We report here our evaluation of these hygrometric methods using a comparison with the pressure chamber on tubers harvested with stolons intact.

In tubers of high water potential, measurements on excised tissue were as much as 0.5 megapascals lower than the pressure chamber, probably due to turgor-driven expansion of the sample when freed from constraints imposed by surrounding tissue. Good agreement (±0.05 megapascals) was found between the implanted hygrometer and the pressure chamber at potentials higher than −0.5 megapascals. At lower water potentials, both hygrometer measurements were higher than the pressure chamber. Respirational heating of the tissue contributed to the increase in the excised tissue samples, but not with the implanted hygrometers because of the hygrometer design. The osmotic pressure balanced the pressure chamber measurement of potential at −0.7 megapascals, but was too small to do so at lower potentials. At most, 25% of this discrepancy can be accounted for by dilution by apoplastic water. We believe that the pressure chamber measurement is too low at low water potentials and that the error is associated with air bubbles in the xylem. At low potentials air emerged from xylem vessels along with sap, and fewer xylem emitted sap as potentials decreased.

  相似文献   

14.
Relationship of water potential to growth of leaves   总被引:33,自引:9,他引:24       下载免费PDF全文
Boyer JS 《Plant physiology》1968,43(7):1056-1062
A thermocouple psychrometer that measures water potentials of intact leaves was used to study the water potentials at which leaves grow. Water potentials and water uptake during recovery from water deficits were measured simultaneously with leaves of sunflower (Helianthus annuus L.), tomato (Lycopersicon esculentum Mill.), papaya (Carica papaya L.), and Abutilon striatum Dickson. Recovery occurred in 2 phases. The first was associated with elimination of water deficits; the second with cell enlargement. The second phase was characterized by a steady rate of water uptake and a relatively constant leaf water potential. Enlargement was 70% irreversible and could be inhibited by puromycin and actinomycin D. During this time, leaves growing with their petioles in contact with pure water remained at a water potential of —1.5 to —2.5 bars regardless of the length of the experiment. It was not possible to obtain growing leaf tissue with a water potential of zero. It was concluded that leaves are not in equilibrium with the potential of the water which is absorbed during growth. The nonequilibrium is brought about by a resistance to water flow which requires a potential difference of 1.5 to 2.5 bars in order to supply water at the rate necessary for maximum growth.

Leaf growth occurred in sunflower only when leaf water potentials were above —3.5 bars. Sunflower leaves therefore require a minimum turgor for enlargement, in this instance equivalent to a turgor of about 6.5 bars. The high water potentials required for growth favored rapid leaf growth at night and reduced growth during the day.

  相似文献   

15.
The osmotic pressure of the cell sap of stalk storage parenchyma of sugarcane (Saccharum spp. hybrids) increases by an order of magnitude during ontogeny to reach molar concentrations of sucrose at maturity. Stalk parenchyma cells must either experience very high turgor at maturation or have an ability to regulate turgor. We tested this hypothesis by using pressure probe techniques to quantify parameters of cell and tissue water relations of sugarcane storage parenchyma during ontogeny. The largest developmental change was in the volumetric elastic modulus, which increased from 6 bars in immature tissue to 43 bars in mature tissue. Turgor was maintained relatively low during sucrose accumulation by the partitioning of solutes between the cell and wall compartments. Membrane hydraulic conductivity decreased from about 12 × 10−7 centimeters per second per bar down to 4.4 × 10−7 centimeters per second per bar. The 2.7-fold decrease in membrane hydraulic conductivity during tissue maturation was accompanied by a 7.8-fold increase in wall elasticity. Integration of the cell wall and membrane properties appears to be by the opposing effects of turgor on hydraulic conductivity and elastic modulus. The changes in these properties during development of sugarcane stalk tissue may be a way for parenchyma cells to develop a capacity for expansive growth and still serve as a strong sink for storing high concentrations of sucrose.  相似文献   

16.
Zhu GL  Steudle E 《Plant physiology》1991,95(1):305-315
A double pressure probe technique was used to measure simultaneously water flows and hydraulic parameters of individual cells and of excised roots of young seedlings of maize (Zea mays L.) in osmotic experiments. By following initial flows of water at the cell and root level and by estimating the profiles of driving forces (water potentials) across the root, the hydraulic conductivity of individual cell layers was evaluated. Since the hydraulic conductivity of the cell-to-cell path was determined separately, the hydraulic conductivity of the cell wall material could be evaluated as well (Lpcw = 0.3 to 6.10−9 per meter per second per megapascal). Although, for radial water flow across the cortex and rhizodermis, the apoplasmic path was predominant, the contribution of the hydraulic conductance of the cell-to-cell path to the overall conductance increased significantly from the first layer of the cortex toward the inner layers from 2% to 23%. This change was mainly due to an increase of the hydraulic conductivity of the cell membranes which was Lp = 1.9.10−7 per meter per second per megapascal in the first layer and Lp = 14 to 9.10−7 per meter per second per megapascal in the inner layers of the cortex. The hydraulic conductivity of entire roots depended on whether hydrostatic or osmotic forces were used to induce water flows. Hydrostatic Lpr was 1.2 to 2.3.10−7 per meter per second per megapascal and osmotic Lpr = 1.6 to 2.8.10−8 per meter per second per megapascal. The apparent reflection coefficients of root cells (σs) of nonpermeating solutes (KCI, PEG 6000) decreased from values close to unity in the rhizodermis to about 0.7 to 0.8 in the cortex. In all cases, however, σs was significantly larger than the reflection coefficient of entire roots (σsr). For KCI and PEG 6000, σsr was 0.53 and 0.64, respectively. The results are discussed in terms of a composite membrane model of the root.  相似文献   

17.
The daily (24 hour) changes in carbon balance, water loss, and leaf area of whole sorghum plants (Sorghum bicolor L. Moench, cv BTX616) were measured under controlled environment conditions typical of warm, humid, sunny days. Plants were either (a) irrigated frequently with nutrient solution (osmotic potential −0.08 kilojoules per kilogram = −0.8 bar), (b) not irrigated for 15 days, (c) irrigated frequently with moderately saline nutrient (80 millimoles NaCl + 20 millimoles CaCl2·2H2O per kilogram water, osmotic potential −0.56 kilojoules per kilogram), or (d) preirrigated with saline nutrient and then not irrigated for 22 days.

Under frequent irrigation, salt reduced leaf expansion and carbon gain, but water use efficiency was increased since the water loss rate was reduced more than the carbon gain. Water stress developed more slowly in the salinized plants and they were able to adjust osmotically by a greater amount. Leaf expansion and carbon gain continued down to lower leaf water potentials.

Some additional metabolic cost associated with salt stress was detected, but under water stress this was balanced by the reduced cost of storing photosynthate rather than converting it to new biomass. Reirrigation produced a burst of respiration associated with renewed synthesis of biomass from stored photosynthate.

It is concluded that although irrigation of sorghum with moderately saline water inhibits plant growth in comparison with irrigation with nonsaline water, it also inhibits water loss and allows a greater degree of osmotic adjustment, so that the plants are able to continue growing longer and reach lower leaf water potentials between irrigations.

  相似文献   

18.
Rates of CO2 assimilation and leaf conductances to CO2 transfer were measured in plants of Zea mays during a period of 14 days in which the plants were not rewatered, and leaf water potential decreased from −0.5 to −8.0 bar. At any given ambient partial pressure of CO2, water stress reduced rate of assimilation and leaf conductance similarly, so that intercellular partial pressure of CO2 remained almost constant. At normal ambient partial pressure of CO2, the intercellular partial pressure of CO2 was estimated to be 95 microbars. This is the same as had been estimated in plants of Zea mays grown with various levels of nitrogen supply, phosphate supply and irradiance, and in plants of Zea mays examined at different irradiances.

After leaves of Phaseolus vulgaris L. and Eucalyptus pauciflora Sieb. ex Spreng had been exposed to high irradiance in an atmosphere of CO2-free N2 with 10 millibars O2, rates of assimilation and leaf conductances measured in standard conditions had decreased in similar proportions, so that intercellular partial pressure of CO2 remained almost unchanged. As the conductance of each epidermis that had not been directly irradiated had declined as much as that in the opposite, irradiated surface it was hypothesized that conductance may have been influenced by photoinhibition within the mesophyll tissue.

  相似文献   

19.
Growing plant cells increase in volume principally by water uptake into the vacuole. There are only three general mechanisms by which a cell can modulate the process of water uptake: (a) by relaxing wall stress to reduce cell turgor pressure (thereby reducing cell water potential), (b) by modifying the solute content of the cell or its surroundings (likewise affecting water potential), and (c) by changing the hydraulic conductance of the water uptake pathway (this works only for cells remote from water potential equilibrium). Recent studies supporting each of these potential mechanisms are reviewed and critically assessed. The importance of solute uptake and hydraulic conductance is advocated by some recent studies, but the evidence is indirect and conclusions remain controversial. For most growing plant cells with substantial turgor pressure, it appears that reduction in cell turgor pressure, as a consequence of wall relaxation, serves as the major initiator and control point for plant cell enlargement. Two views of wall relaxation as a viscoelastic or a chemorheological process are compared and distinguished.  相似文献   

20.
A mechanism of respiration-dependent water uptake enhanced by auxin   总被引:2,自引:0,他引:2  
Summary There are many contradictory observations on the mechanohydraulic relation of growing higher plant cells and tissues. Graphical analysis of the simultaneous equations which govern irreversible wall yielding and water absorption has made more comprehensive the understanding of this relation when relative growth rate is plotted against turgor pressure. It suggests that some respiration-dependent and auxin sensitive process might regulate the difference of osmotic potential between cells and water source. Based on anatomical and electrophysiological knowledge of the pea stem xylem, we propose the wall canal system as the mechanism of respiration-dependent water uptake which is sensitive to auxin. This system consists of the xylem apoplastic walls, the xylem proton pumps, active solute uptake system and cell membranes. In the simplest case, third-order simultaneous differential equations are involved. Numerical analysis showed that net uptake of solutes enables water to be taken up against an opposing gradient of water potential. The behaviour of this wall canal system describes well the mechano-hydraulic relation of enlarging plant cells and tissues. Recent typical, but incompatible, interpretations of this relation are critically discussed based on our model.Abbreviations V the volume of enlarging symplast - the average extensibility of the wall - Pi turgor pressure - Y the yield threshold of the wall - L the relative hydraulic conductance - the solute reflection coefficient of the plasmamembrane - Ci the osmotic concentration of the symplast cells - Cx the osmotic concentration of the xylem vessels - Px hydrostatic pressure in the xylem vessels - R the gas constant - T absolute temperature - o water potential of xylem fluid - i water potential of symplast cells  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号