首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Nuclear transport factor 2 (NTF2) mediates the nuclear import of RanGDP. The simplicity and specialization of this system, combined with the availability of crystal structures of NTF2, RanGDP and their complex, has facilitated the investigation of the molecular mechanism of its trafficking. NTF2 binds to both RanGDP and FxFG repeat-containing nucleoporins. Mutants engineered on the basis of structural information together with determination of binding constants have been used to dissect the roles of these interactions in transport. Thus, NTF2 binds to RanGDP sufficiently strongly for the complex to remain intact during transport through NPCs, but the interaction between NTF2 and FxFG nucleoporins is much more transient, which would enable NTF2 to move through the NPC by hopping from one repeat to another. An analogous nucleoporin hopping mechanism may also be used by carrier molecules of the importin-beta family to move through NPCs.  相似文献   

6.
The V protein of the recently emerged paramyxovirus, Nipah virus, has been shown to inhibit interferon (IFN) signal transduction through cytoplasmic sequestration of cellular STAT1 and STAT2 in high-molecular-weight complexes. Here we demonstrate that the closely related Hendra virus V protein also inhibits cellular responses to IFN through binding and cytoplasmic sequestration of both STAT1 and STAT2, but not STAT3. These findings demonstrate a V protein-mediated IFN signal evasion mechanism that is a general property of the known Henipavirus species.  相似文献   

7.
8.
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a multitasking protein involved in RNA packaging, alternative splicing of pre-mRNA, telomere maintenance, cytoplasmic RNA trafficking, and translation. It binds short segments of single-stranded nucleic acids, including the A2RE11 RNA element that is necessary and sufficient for cytoplasmic transport of a subset of mRNAs in oligodendrocytes and neurons. We have explored the structures of hnRNP A2, its RNA recognition motifs (RRMs) and Gly-rich module, and the RRM complexes with A2RE11. Circular dichroism spectroscopy showed that the secondary structure of the first 189 residues of hnRNP A2 parallels that of the tandem betaalpha betabeta alphabeta RRMs of its paralogue, hnRNP A1, previously deduced from X-ray diffraction studies. The unusual GRD was shown to have substantial beta-sheet and beta-turn structure. Sedimentation equilibrium and circular dichroism results were consistent with the tandem RRM region being monomeric and supported earlier evidence for the binding of two A2RE11 oligoribonucleotides to this domain, in contrast to the protein dimer formed by the complex of hnRNP A1 with the telomeric ssDNA repeat. A three-dimensional structure for the N-terminal, two-RRM-containing segment of hnRNP A2 was derived by homology modeling. This structure was used to derive a model for the complex with A2RE11 using the previously described interaction of pairs of stacked nucleotides with aromatic residues on the RRM beta-sheet platforms, conserved in other RRM-RNA complexes, together with biochemical data and molecular dynamics-based observations of inter-RRM mobility.  相似文献   

9.
The successful resolution of inflammation is dependent upon the coordinated transition from the initial recruitment of neutrophils to a more sustained population of mononuclear cells. IL-6, which signals via the common receptor subunit gp130, represents a crucial checkpoint regulator of neutrophil trafficking during the inflammatory response by orchestrating chemokine production and leukocyte apoptosis. However, the relative contribution of specific IL-6-dependent signaling pathways to these processes remains unresolved. To define the receptor-mediated signaling events responsible for IL-6-driven neutrophil trafficking, we used a series of gp130 knockin mutant mice displaying altered IL-6-signaling capacities in an experimental model of acute peritoneal inflammation. Hyperactivation of STAT1 and STAT3 in gp130(Y757F/Y757F) mice led to a more rapid clearance of neutrophils, and this coincided with a pronounced down-modulation in production of the neutrophil-attracting chemokine CXCL1/KC. By contrast, the proportion of apoptotic neutrophils in the inflammatory infiltrate remained unaffected. In gp130(Y757F/Y757F) mice lacking IL-6, neutrophil trafficking and CXCL1/KC levels were normal, and this corresponded with a reduction in the level of STAT1/3 activity. Furthermore, monoallelic ablation of Stat3 in gp130(Y757F/Y757F) mice specifically reduced STAT3 activity and corrected both the rapid clearance of neutrophils and impaired CXCL1/KC production. Conversely, genetic deletion of Stat1 in gp130(Y757F/Y757F) mice failed to rescue the altered responses observed in gp130(Y757F/Y757F) mice. Collectively, these data genetically define that IL-6-driven signaling via STAT3, but not STAT1, limits the inflammatory recruitment of neutrophils, and therefore represents a critical event for the termination of the innate immune response.  相似文献   

10.
11.
The nuclear pore complex is the gateway for protein and RNA transport between the cytoplasm and nucleus. Recent work has characterized signals and components involved in nuclear import of macromolecules and has described mechanisms for transport regulation. Advances in understanding the structure of the pore complex are starting to provide a framework for interpreting the biochemistry of nuclear import. Information on the export of RNA from the nucleus is only beginning to emerge.  相似文献   

12.
13.
Cytoplasmic transport and localization of mRNA has been reported for a range of oocytes and somatic cells. The heterogeneous nuclear ribonucleoprotein (hnRNP) A2 response element (A2RE) is a 21-nucleotide segment of the myelin basic protein mRNA that is necessary and sufficient for cytoplasmic transport of this message in oligodendrocytes. The predominant A2RE-binding protein in rat brain has previously been identified as hnRNP A2. Here we report that an 11-nucleotide subsegment of the A2RE (A2RE11) was as effective as the full-length A2RE in binding hnRNP A2 and mediating transport of heterologous RNA in oligodendrocytes. Point mutations of the A2RE11 that eliminated binding to hnRNP A2 also markedly reduced the ability of these oligoribonucleotides to support RNA transport. Oligodendrocytes treated with antisense oligonucleotides directed against the translation start site of hnRNP A2 had reduced levels of this protein and disrupted transport of microinjected myelin basic protein RNA. Several A2RE-like sequences from localized neuronal RNAs also bound hnRNP A2 and promoted RNA transport in oligodendrocytes. These data demonstrate the specificity of A2RE recognition by hnRNP A2, provide direct evidence for the involvement of hnRNP A2 in cytoplasmic RNA transport, and suggest that this protein may interact with a wide variety of localized messages that possess A2RE-like sequences.  相似文献   

14.
15.
16.
17.
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 binds a 21-nucleotide myelin basic protein mRNA response element, the A2RE, and A2RE-like sequences in other localized mRNAs, and is a trans-acting factor in oligodendrocyte cytoplasmic RNA trafficking. Recombinant human hnRNPs A1 and A2 were used in a biosensor to explore interactions with A2RE and the cognate oligodeoxyribonucleotide. Both proteins have a single site that bound oligonucleotides with markedly different sequences but did not bind in the presence of heparin. Both also possess a second, specific site that bound only A2RE and was unaffected by heparin. hnRNP A2 bound A2RE in the latter site with a K(d) near 50 nm, whereas the K(d) for hnRNP A1 was above 10 microm. UV cross-linking assays led to a similar conclusion. Mutant A2RE sequences, that in earlier qualitative studies appeared not to bind hnRNP A2 or support RNA trafficking in oligodendrocytes, had dissociation constants above 5 microm for this protein. The two concatenated RNA recognition motifs (RRMs), but not the individual RRMs, mimicked the binding behavior of hnRNP A2. These data highlight the specificity of the interaction of A2RE with these hnRNPs and suggest that the sequence-specific A2RE-binding site on hnRNP A2 is formed by both RRMs acting in cis.  相似文献   

18.
Helmut Kr?mer 《Autophagy》2010,6(7):974-975
Fusion with lysosomes is the common last step of endocytic trafficking and autophagy. Accordingly, several proteins are required in both pathways for cargoes to reach their destinations. Among these proteins, Drosophila Acinus stands out, as it exerts opposite effects on these two pathways, and thus establishes a new paradigm. Loss of Acinus function destabilizes early endosomes, thereby promoting the delivery of their cargo to lysosomes. By contrast, the maturation of autophagosomes to autolysosomes is inhibited in acn mutant cells. The increase in autophagy upon Acinus overexpression and its location to the nucleus are consistent with Acinus being a novel regulator of autophagy.Key words: fat body, endosomes, lysosomes, nuclear protein, Notch signaling, EGF ReceptorMuch of the core machinery that is required for the formation and maturation of autophagosomes and endosomes has been identified by genetic screens in yeast. But as both types of organelles are charged with more complex functions in multicellular organisms, it is not surprising to find additional layers of regulation imposed on them. One such regulatory element was revealed by a genetic screen we conducted in Drosophila.The screen''s original idea was to take advantage of the observation that many proteins acting in trafficking to lysosomes also function in the biogenesis of lysosome-related organelles. Among these, the pigment granules—responsible for the characteristic color of the fly eye—are easily scored for defects. Thus, we set up a primary screen for eye color mutants. Among the more than 500 original hits, a secondary screen identified those mutants that altered endocytic trafficking. Importantly, the genetic tool kit assembled by the fly community allowed us to screen homozygous mutant eyes in otherwise heterozygous flies. This schema made it possible to identify mutations that are homozygous lethal as one might expect for null alleles of genes required for lysosomal delivery.One of the unexpected genes identified by this screen was acinus (acn). The Acn protein lacks any domain signatures and is most similar to human Acinus, which had been implicated in the destruction of chromatin during apoptosis. It is not clear yet whether the Drosophila protein contributes to this function as well, but in acn null alleles chromatin condensation and fragmentation during apoptosis appear normal.There is, however, a profound effect on endocytic trafficking, as acn is required for stabilization of early endosomes. Staining for endocytosed ligands, such as Boss or Delta, is drastically reduced, concomitant with a reduction in early endosomes marked by Rab5 or the SNARE Avl. By contrast, late endosomes marked by Rab7 appear normal. These changes do not represent a block in the initial internalization of the ligands, as inhibition of lysosomal degradation reveals the same accumulation of internalized ligands in wild-type and acn mutant cells.Reduced stability of early endosomes also causes reduced signaling from EGF receptors and Notch, consistent with the emerging notion that signaling from these receptors may be linked to their uptake into early endosomes.Many mutants that disrupt endocytic trafficking also affect autophagy. We found that this theme extends to acn. The most accessible form of autophagy in Drosophila is found in fat bodies after a short period of starvation. Activation of the AKT1/TOR pathway triggers the formation of autophagosomes, which mature into autolysosomes by fusing with lysosomes. Loss of acn interferes with this maturation step, as shown by the reduction in LysoTracker staining and also by quantitative electron microscopy. Consistent with an effect on the maturation of autophagosomes, acn is required downstream of TOR signaling. For example, expression of dominant-negative TOR kinase is a powerful tool to induce autophagy in the fat body of wild-type, but not acn larvae.Interestingly, overexpression of Acn induces autophagy. This does not appear to be merely a side effect. Ubiquitous expression of Acn is lethal, but flies survive when autophagy is suppressed by knockdown of ATG5, a core element of the autophagy machinery. We find that this enhanced autophagy is also independent of the TOR pathway.Taken together, this analysis of the first null mutant of an acinus gene in any system reveals its function as a regulator of endosomal and autophagosomal dynamics, modulating developmental signaling and the cellular response to starvation. Our investigation of acn loss-of-function phenotypes reveals defects in membrane trafficking during endocytosis and autophagy. We were therefore surprised that Acn protein localized to the nucleus, and that we failed to detect any consistent localization to endocytic or autophagic structures. This unexpected finding was further tested with transgenes expressing Myc-tagged Acn in the context of a genomic rescue construct. This tagged protein, under control of its endogenous enhancer/promoter elements, rescued all aspects of Acn function, and, nevertheless, localized to the nucleus, rather than any endosomal compartment.These findings suggest that the mechanism by which Acinus proteins modify endocytosis and autophagy may be indirect. One model for such an indirect effect is suggested by the interaction of mammalian Acinus proteins with several RNA binding proteins. Modulation of the levels or structure of RNAs that encode specific elements of the endocytosis or autophagy pathways may constitute an exciting new element of their regulation. Testing this possibility and identifying potential targets regulated by this Acn-dependent mechanism are important challenges that we have just begun to address.  相似文献   

19.
The question of how genetic materials are trafficked in and out of the cell nucleus is a problem of great importance not only for understanding viral infections but also for advancing gene-delivery technology. Here we demonstrate a physical technique that allows gene trafficking to be studied at the single-gene level by combining sensitive fluorescence microscopy with microinjection. As a model system, we investigate the nuclear import of influenza genes, in the form of ribonucleoproteins (vRNPs), by imaging single vRNPs in living cells in real time. Our single-particle trajectories show that vRNPs are transported to the nuclear envelope by diffusion. We have observed heterogeneous interactions between the vRNPs and nuclear pore complexes with dissociation rate constants spanning two orders of magnitude. Our single-particle tracking experiments also provided new insights into the regulation mechanisms for the nuclear import of vRNPs: the influenza M1 protein, a regulatory protein for the import process, downregulates the nuclear import of vRNPs by inhibiting the interactions between vRNPs and nuclear pore complexes but has no significant effect on the transport properties of vRNPs. We expect this single-particle tracking approach to find broad application in investigations of genetic trafficking.  相似文献   

20.
We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. One chimera consists of a FK506-binding protein (FKBP12) fused to a cellular 'address' (nuclear localization signal or nuclear export sequence). The second chimera consists of a target protein fused to a fluorescent protein and the FKBP12-rapamycin-binding (FRB) domain from FKBP-12-rapamycin associated protein 1 (FRAP1, also known as mTor). Rapamycin induces dimerization of the FKBP12- and FRB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号