首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood samples from 54 animals were exchanged between 15 laboratories in nine countries to improve and expand BoLA class I and class II typing. A total of 27 out of 33 (82%) of previously accepted BoLA-w specificities were represented within the cell panel. Seventeen new serum-defined BoLA specificities were accepted by the workshop participants, thus expanding the number of internationally recognized BoLA specificities to 50. The large number of new specificities detected resulted from the number of serological reagents used (n = 1139) and the genetic diversity of the cell panel. Confidence derived from the high percentage of agreement between the laboratories on antigen detection (97.3%; r = 0.84) permitted the removal of the workshop (w) notation from 23 BoLA-w specificities and their acceptance as full status BoLA-A antigens. Two new non-BoLA antigens were also detected, one completely included within the red blood cell factor S' (BoLy-S'), whereas a second (BoLy-w1) did not show any association with tested red blood cell factors. A comparison between serological, isoelectric focusing (IEF) and DNA typing for BoLA class II polymorphism was conducted with a subset of workshop cells. Correlation between the three methods was significant for three combinations of alleles. Three other serologically defined class II specificities were correlated with DR and/or DQ restriction fragment length polymorphism (RFLP) types, whereas six additional IEF types were correlated with DR and/or DQ RFLP types (r greater than or equal to 0.50). Several new IEF, DRB, DQA and DQB RFLP patterns were identified. In 46 animals that were typed for BoLA-DR and DQ genes by RFLP analysis, 46 different BoLA haplotypes were tentatively defined. These 46 haplotypes were distinguished by 31 serologically-defined BoLA-A alleles (and 2 'blanks'), 15 DRB RFLP types (plus up to 10 new DRB RFLP patterns) and 23 DQA-DQB haplotypes.  相似文献   

2.
This paper describes the production of alloantisera directed against bovine major histocompatibility complex (MHC) (BoLA) class II antigens in animals whose MHC phenotypes had been defined by one dimensional isoelectric focusing. Animals of closely matched BoLA class I types were selected by serology and subsequently typed for class I and class II by 1D-IEF of immunoprecipitated antigens. Those with similar class I type by both methods, but differing at the class II locus, were chosen for reciprocal immunization. Cross-immunization was by two skin implantations 6 weeks apart. The resulting antisera showed low titre after the first immunization and elevated titre 3 weeks after the second immunization. The sera reacted strongly with cells expressing specific BoLA class II antigens. The pattern of reactivity correlated well with IEF class II typing on a panel of animals representing all of the class II IEF types present in the Friesian population.  相似文献   

3.
T-cell recognition of bovine MHC (BoLA) class II antigens was investigated in relation to BoLA class II polymorphisms defined by one-dimensional isoelectric focusing (1D-IEF). One-way mixed lymphocyte reactions (MLRs), and allospecific cell lines and clones were used. In general, T-cell responses correlated with the 1D-IEF defined haplotypes (EDF types). However, with MLRs some responses appeared to be associated with BoLA class I differences. All combinations of responder-stimulator pairs produced alloreactive T-cell responses both in MLR and in generation of allolines/clones. Thus allospecific lines and clones were generated to all EDF types tested. Splits in the IEF typing were observed with EDF6 and EDF3, indicating that distinct BoLA class II haplotypes are not necessarily distinguished by 1D-IEF alone. Furthermore, the patterns of reactivity with EDF3 expressing cells were complex with the T-cell specificities splitting EDF3 into several distinct types. Also, in some cases it was clear that more than one T-cell specificity per EDF type was detectable. Thus, allospecific lines and clones provide complementary and additional information to the 1D-IEF typing for polymorphism of the BoLA class II complex. This extra information is particularly important in terms of the functional significance of the BoLA complex for antigen presentation and immune response gene effects.  相似文献   

4.
The genetic structure of the bovine major histocompatibility complex (MHC) was investigated using the lymphocyte microcytotoxicity test for class I typing and the mixed lymphocyte culture (MLC) assay for class II typing. Using locally produced alloantisera and antisera from the Third International BoLA Workshop, 14 class I BoLA-A locus alleles were identified in the study population, a single herd of approximately 700 Holstein-Friesian cattle. Eleven of these were alleles recognized in the International Workshop and three were new alleles. An MLC titration assay was employed in conjunction with class I typing to define BoLA haplotypes and identify BoLA complex homozygotes. An embryo transfer family consisting of eight full sibling cattle including one BoLA complex homozygote was produced by half sibling mating. Five other BoLA complex homozygotes were subsequently identified in the herd. Six MLC defined class II haplotypes investigated in detail were designated BoLA-D1, D2, D3, D4, D5 and D7. BoLA-D1 was associated with the class I specificity BoLA-Aw6, D2 with Aw6 and the new class I specificity Ac3, D3 with Aw6 and Aw11, D4 with Aw10, D5 with Aw31 and Aw11, and D7 with Aw20. The discovery of four groups of class I identical-class II disparate haplotypes, and three pairs of class I disparate-class II identical haplotypes indicates the presence of considerable complexity in the BoLA complex that is not detected using class I serology.  相似文献   

5.
Summary. Serology, isoelectric focusing (IEF) of expressed antigens, and restriction fragment length polymorphisms (RFLP) were compared for the identification of BoLA class I haplotypes. Expressed antigens identified as bands by IEF correlated well with serological definition confirming and extending our earlier findings (Joosten et al. 1988). Comparison of serology and isoelectric focusing bands with restriction fragments was more complicated; fragments were found which correlated both with broadly reacting and antigen specific sera. We also found correlation of fragments with two or more sera which showed no cross-reactivity. Fragments unique to particular haplotypes were also observed.
Serology remains the simplest method of typing BoLA class I antigens. Isoelectric focusing generally agrees with serological definition of antigens and detects antigens not yet defined by serology. It may also be useful in defining the products of other expressed BoLA class I loci. In order to identify RFLPs which could be used for typing, comparison with serology or IEF is essential. Haplotype specific RFLPs could be useful in identifying genes linked to the MHC.  相似文献   

6.
Serology, isoelectric focusing (IEF) of expressed antigens, and restriction fragment length polymorphisms (RFLP) were compared for the identification of BoLA class I haplotypes. Expressed antigens identified as bands by IEF correlated well with serological definition confirming and extending our earlier findings (Joosten et al. 1988). Comparison of serology and isoelectric focusing bands with restriction fragments was more complicated; fragments were found which correlated both with broadly reacting and antigen specific sera. We also found correlation of fragments with two or more sera which showed no cross-reactivity. Fragments unique to particular haplotypes were also observed. Serology remains the simplest method of typing BoLA class I antigens. Isoelectric focusing generally agrees with serological definition of antigens and detects antigens not yet defined by serology. It may also be useful in defining the products of other expressed BoLA class I loci. In order to identify RFLPs which could be used for typing, comparison with serology or IEF is essential. Haplotype specific RFLPs could be useful in identifying genes linked to the MHC.  相似文献   

7.
The bovine major histocompatibility complex (MHC) or BoLA is organized differently from typical mammalian MHCs in that a large portion of the class II region, called class IIb, has been transposed to a position near the centromere on bovine chromosome 23. Gene mapping indicated that the rearrangement resulted from a single inversion, but the boundaries and gene content of the inverted segment have not been fully determined. Here, we report the genomic sequence of BoLA IIb. Comparative sequence analysis with the human MHC revealed that the proximal inversion breakpoint occurred approximately 2.5 kb from the 3' end of the glutamate-cysteine ligase, catalytic subunit (GCLC) locus and that the distal breakpoint occurred about 2 kb from the 5' end from a divergent class IIDRbeta-like sequence designated DSB. Gene content, order and orientation of BoLA IIb are consistent with the single inversion hypothesis when compared with the corresponding region of the human class II MHC (HLA class II). Differences with HLA include the presence of a single histone H2B gene located between the proteasome subunit, beta type, 9 (PSMB9) and DMB loci and a duplicated TAP2 with a variant splice site. BoLA IIb spans approximately 450 kb DNA, with 20 apparently intact genes and no obvious pseudogenes. The region contains 227 simple sequence repeats (SSRs) and approximately 167 kb of retroviral-related repetitive DNA. Nineteen of the 20 genes identified in silico are supported by bovine EST data indicating that the functional gene content of BoLA IIb has not been diminished because it has been transposed from the remainder of BoLA genes.  相似文献   

8.
As is the case with many other autoimmune diseases, there is an association between vitiligo and HLA complex. HLA subtypes vary with racial/ethnic background. The purpose of this study was to determine which HLA class I antigens and HLA class II alleles are associated with Turkish vitiligo patients. Forty-one patients with vitiligo and 61 healthy control subjects were typed for HLA class II alleles. Thirty-three out of 41 patients with vitiligo and 100 healthy transplant donors were typed for HLA class I antigens. HLA DNA typing was performed by polymerase chain reaction/sequence specific primer method for class II. HLA typing for class I was performed by serological method. The frequency of HLA DRB1*03 was 0.6340 in patients compared to 0.2950 in controls (P = 0.0014). The frequency of HLA DRB1*04 was found to be 0.6830 in patients compared to 0.2950 in controls (P = 0.00026). The allele HLA DRB1*07 was present in 0.390 of patients compared to 0.0820 of the controls (P = 0.0004). A preventive antigen for the manifestation of vitiligo has not been identified in this study. Our findings suggest that DRB1*03, DRB1*04 and DRB1*07 alleles are genetic markers for general susceptibility to vitiligo in a Turkish population.  相似文献   

9.
The human leucocyte antigens (HLA)-Bw4/Bw6 antigens detected serologically are "public" determinants located in the HLA-B molecule. They do not generate cytotoxic T lymphocytes (CTLs) in primary allogeneic cultures (mixed lymphocyte antigens) and secondary (primed lymphocyte typing) cultures indicate that they do not behave like normal HLA "private" cell-mediated lympholysis determinants. Therefore, the contribution of the 79-83 (alpha 1) residues in the generation of the epitopes Bw4/Bw6 does not seem to be critical for the examination by T cell receptor in allogeneic CML. The different overlapping patterns of the serological and CTL examinations are discussed, based on the structure of HLA class I antigens.  相似文献   

10.
Molecular cloning of bovine class I MHC cDNA   总被引:13,自引:0,他引:13  
Two cDNA cloned from a Hereford cow B cell line (BL-3) have allowed the determination of the complete coding region for two class I molecules encoded by the bovine MHC (BoLA). The predicted protein sequences have all the features expected of expressed class I molecules that present peptide Ag to cytotoxic T cells. Comparison with class I molecules from other species strongly suggests these cDNA are derived from different genes and provides evidence for the existence of a second expressed class I BoLA locus. The BoLA proteins show greater similarity to HLA than to H-2 molecules, correlating with the cross-reactions of W6/32 and other murine anti-HLA-A,B,C mAb with BoLA molecules. The basis for the W6/32 epitope and the preferential association of H-2 class I H chains with bovine beta 2-m is examined.  相似文献   

11.
BoLA class I antigens were characterized in a group of British and Dutch Friesian cattle by one-dimensional isoelectric focusing (1D-IEF) and the results compared with serology using alloantisera and microcytotoxicity. For IEF analysis, non-stimulated peripheral blood mononuclear cells (PBM) were metabolically labelled with 35S methionine, detergent lysates were prepared and MHC molecules precipitated with the monoclonal antibodies (mAbs) W6/32 or B1.1G6. Staphylococcus protein A precipitated antigens were separated on a vertical slab gel under denaturing conditions. The banding patterns seen for the W6/32 precipitated molecules obtained by 1D-IEF were compared with the serological specificities. Characteristic banding patterns were observed for most serological specificities as well as workshop undefined haplotypes. These patterns were seen both in families and the outbred population. In families IEF haplotypes segregated with serotypes. Additional MHC class I products were suggested by variable banding patterns for different w10 haplotypes and when using the different mAbs. A pulse chase experiment with a w12 animal also suggested more than one expressed product. The w2 and w5 specificities were not precipitated by either W6/32 or B1.1G6 and w6.2 and w6.4 were precipitated by W6/32 but not by B1.1G6. These results show that 1D-IEF is useful for BoLA typing. For the characterization of class I antigens, however, much depends on the mAbs used.  相似文献   

12.
The hepatitis C virus (HCV)-specific CD4+ T-cell response against nonstructural proteins is strongly associated with successful viral clearance during acute hepatitis C. To further develop these observations into peptide-based vaccines and clinical immunomonitoring tools like HLA class II tetramers, a detailed characterization of immunodominant CD4+ T-cell epitopes is required. We studied peripheral blood mononuclear cells from 20 patients with acute hepatitis C using 83 overlapping 20-mer peptides covering the NS3 helicase and NS4. Eight peptides were recognized by > or = 40% of patients, and specific CD4+ T-cell clones were obtained for seven of these and three additional, subdominant epitopes. Mapping of minimal stimulatory sequences defined epitopes of 8 to 13 amino acids in length, but optimal T-cell stimulation was observed with 10- to 15-mers. While some epitopes were presented by different HLA molecules, others were presented by only a single HLA class II molecule, which has implications for patient selection in clinical trials of peptide-based immunotherapies. In conclusion, using two different approaches we identified and characterized a set of CD4+ T-cell epitopes in the HCV NS3-NS4 region which are immunodominant in patients achieving transient or persistent viral control. This information allows the construction of a valuable panel of HCV-specific HLA class II tetramers for further study of CD4+ T-cell responses in chronic hepatitis C. The finding of immunodominant epitopes with very constrained HLA restriction has implications for patient selection in clinical trials of peptide-based immunotherapies.  相似文献   

13.
Major histocompatibility complex class I genes are among the most polymorphic genes characterized. The high level of polymorphism is essential for generating host immune responses. In humans, three distinct genomic loci encode human leukocyte antigen (HLA) class I genes, allowing individuals to express up to six different HLA class I molecules. In cattle, the number of distinct genomic loci are currently at least six, and the number of different bovine leukocyte antigens (BoLA) class I molecules that are expressed in individual animals are variable. The extent of allele variation within the cattle population is unknown. In this study, the number and variety of BoLA class I sequences expressed by 36 individuals were determined from full-length BoLA class I cDNA clones. Twenty distinct BoLA class I alleles were identified, with only four being previously reported. The number of expressed BoLA class I alleles in individual animals ranged between one and four, with none of the animals having an identical complement of BoLA class I molecules. Variation existed in the number of BoLA class I alleles expressed as well as the composition of expressed alleles, however, several BoLA class I alleles were found in multiple individual animals. Polymorphic amino acid sites were analyzed for positive and negative selection using the ADAPTSITE program. In the antigen recognition sites (ARS), there were eight positions that were predicted to be under positive selection and three positions that were predicted to be under negative selection from 62 positions. In contrast, for non-antigen recognition sites (non-ARS), there were three positions that were predicted to be under positive selection and 20 that were predicted to be under negative selection from 278, indicating that positive selection of amino acids occurs at a greater frequency within the antigen recognition sites.  相似文献   

14.
The human leukocyte antigen (HLA) class II system is strongly connected to immunological response and its compatibility between tissues is critical in transplantation. The simple robust typing analyses of HLA genes are extremely important. In this paper, we developed an approach based on microarray technology for genotyping of DQA gene. The microarrays were constructed with a total 31 unmodified 45-mer oligonucleotide. The second exon of DQA gene was amplified, and allowed to hybridize with the array. DQA genotypes were assigned by quantitative analysis of the hybridization results. The arrays were evaluated by DQA genotyping of nine reference samples and 120 clinical samples. The results demonstrate that the genotyping accuracy/concordance achieved 97.5% compared with the direct DNA sequencing. Although our methods did not perform high-resolution genotyping, it could be an alternative for serological typing in routine medical practice.  相似文献   

15.
Heat shock protein 70 (HSPA) is a molecular chaperone which has been suggested to shuttle human leukocyte antigen (HLA) epitope precursors from the proteasome to the transporter associated with antigen processing. Despite the reported observations that peptides chaperoned by HSPA are an effective source of antigens for cross-priming, little is known about the peptides involved in the process. In this study, we investigated the possible involvement of HSPA in HLA class I or class II antigen presentation and analysed the antigenic potential of the associated peptides. HSPA was purified from CCRF-CEM and K562 cell lines, and using mass spectrometry techniques, we identified 44 different peptides which were co-purified with HSPA. The affinity of the identified peptides to two HSPA isoforms, HSPA1A and HSPA8, was confirmed using a peptide array. Four of the HSPA-associated peptides were matched with 13 previously reported HLA epitopes. Of these 13 peptides, nine were HLA class I and four were HLA class II epitopes. These results demonstrate the association of HSPA with HLA class I and class II epitopes, therefore providing further evidence for the involvement of HSPA in the antigen presentation process.  相似文献   

16.
Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.  相似文献   

17.
18.
Current efforts to develop an Epstein-Barr virus subunit vaccine are based on the major envelope glycoprotein gp340. Given the central role of CD4+ T cells in regulating immune responses to subunit vaccine antigens, the present study has begun the work of identifying linear epitopes which are recognized by human CD4+ T cells within the 907-amino-acid sequence of gp340. A panel of gp340-specific CD4+ T-cell clones from an Epstein-Barr virus-immune donor were first assayed for their proliferative responses to a series of truncated gp340 molecules expressed from recombinant DNA vectors in rat GH3 cells, by using an autologous B lymphoblastoid cell line as a source of antigen-presenting cells. The first four T-cell clones analyzed all responded to a truncated form of gp340 which contained only the first 260 N-terminal amino acids. These clones were subsequently screened for responses to each of a panel of overlapping synthetic peptides (15-mers) corresponding to the primary amino acid sequence of the first 260 N-terminal amino acids of gp340. One clone (CG2.7) responded specifically to peptides from the region spanning amino acids 61 to 81, while three other clones (CG5.15, CG5.24, and CG5.36) responded specifically to peptides from the region spanning amino acids 163 to 183. Work with individual peptides from these regions allowed finer mapping of the T-cell epitopes and also revealed the highly dose-dependent nature of peptide-induced responses, with inhibitory effects apparent when the most antigenic peptides were present at supraoptimal concentrations. Experiments using homozygous typing B lymphoblastoid cell lines as antigen-presenting cells showed that the T-cell clones with different epitope specificities were restricted through different HLA class II antigens; clone CG2.7 recognized epitope 61-81 in the context of HLA DRw15, whereas clones CG5.15, CG5.24, and CG5.36 recognized epitope 163-183 in the context of HLA DRw11. The present protocol therefore makes a systematic analysis of CD4+ T-cell epitopes within gp340 possible; it will be necessary to screen gp340-specific T-cell clones from a variety of donors to assess the wider influence of HLA class II polymorphism upon epitope choice.  相似文献   

19.

Screening of HLA class II epitope-based peptides as potential vaccine candidates is one of the most rational approach for vaccine development against Hendra virus (HeV) infection, for which currently there is no successful vaccine in practice. In this study, screening of epitopes from HeV proteins viz matrix, glycoprotein, nucleocapsid, fusion, C protein, V protein, W protein and polymerase, followed by highest binding affinity & molecular dynamic simulation of selected T-cell epitopes with their corresponding HLA class II alleles has been done. The server ProPred facilitates the binding prediction of HLA class II allele specific epitopes from the antigenic protein sequences of HeV. PEPstrMOD server was used for PDB structure modeling of the screened epitopes and MODELLER was used for HLA alleles modeling. We docked the selected T-cell epitopes with their corresponding HLA allele structures using the AutoDock 4.2 tool. Further the selected docked complex structures were optimized by NAnoscale Molecular Dynamics program (NAMD) at 5 ps, with the CHARMM-22 force field parameter incorporated in Visual Molecular Dynamics (VMD 1.9.2) and complex structure stability was evaluated by calculating RMSD values. Epitopes IRIFVPATN (Nucleocapsid), MRNLLSQSL (Nucleocapsid), VRRAGKYYS (Matrix) and VRLKCLLCG (Fusion) proteins have shown considerable binding with DRB1*0806, DRB1*1304, DRB1*0701 and DRB1*0301 HLA class II allele respectively. Toxicity, antigenicity and population coverage of epitopes IRIFVPATN, MRNLLSQSL, VRRAGKYYS and VRLKCLLCG were analyzed by Toxin Pred, Vexijen and IEDB tool, respectively. The potential T-cell epitopes can be utilized in designing comprehensive epitope-based vaccines and diagnostic kits against Hendra virus after further in-vivo studies.

  相似文献   

20.
We previously reported an epitope presenting vector, pCI, a derivative of a human invariant chain (Ii) expression vector, in which the class II associated invariant chain peptide (CLIP, Ii p89-101) could be substituted with antigenic peptides. In the current study, we used this vector to develop a new expression cloning system to identify CD4+ T cell epitopes. We inserted double-stranded oligo DNAs of randomized sequences into this vector and prepared an epitope-presenting library which loads randomized 13-mer peptides onto HLA class II molecules coexpressed in COS-7 cells. Utilizing this library, we isolated a cross-reactive epitope recognized by a glutamic acid decarboxylase (GAD) 65-autoreactive T cell clone established from a patient with insulin-dependent diabetes mellitus. Although the newly identified epitope (PVQLSNQWHVVGATF) was far different from the original epitope, GAD65 p116-128 (NILLQYVVKSFDR), it did have the capacity to stimulate the T cell clone comparable to that of the original GAD epitope. Our system may be applicable not only for identifying of cross-reactive epitopes for CD4+ T cells of known specificity, but also for detection of epitopes stimulatory for CD4+ T cells the epitopes of which are unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号