首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human platelets store considerable amounts of diadenosine 5′, 5′′′-p1, p3-triphosphate, which is released together with the homologue diadenosine tetraphosphate (Ap4A) upon thrombin-induced aggregation (Lüthje, J. & Ogilvie, A. (1983) Biochem. Biophys. Res. Commun. 115, 253–260). We now report that, when added to platelet-rich plasma at 10–20 μM, diadenosine triphosphate gradually induces aggregation. The addition of diadenosine tetraphosphate antagonizes this effect by rapidly disaggregating the platelets. When another physiological but structurally unrelated stimulus, i.e. PAF (Platelet activating factor) is introduced into the system, diadenosine triphosphate drastically enhances and prolongs the aggregatory effect of PAF. Again, Ap4A is antagonistic in this system. The mechanism of Ap3A-stimulation can be explained by the slow and continuous liberation of ADP from Ap3A by the action of a hydrolyzing enzyme which is present in human plasma. Our studies suggest that Ap3A may be physiologically important in providing a relative long-lived stimulus that can modulate platelet aggregation.  相似文献   

2.
ATP was coupled with 5-bromo-4-chloro-3-indolyl phosphate using a water-soluble carbodiimide to yield 5-bromo-4-chloro-3-indolyl tetraphospho-5′-adenosine (BClp4A) which is an analog of diadenosine 5′,5′″-P1,P4-tetraphosphate (Ap4A). BClp4A is a chromogenic substrate for three different types of Ap4A catabolic enzyme in alkaline phosphatase-coupled reactions. Ap4A phosphorylase I from Saccharomyces cerevisiae was used as a model enzyme to demonstrate that BClp4A stains for enzymic activity in polyacrylamide gels under nondenaturing conditions. A yeast colony assay was developed to detect Ap4A phosphorylase I activity in situ using BClp4A as a chromogenic substrate. Ap4A phosphorylase I was assayed in situ in yeast transformed with a multicopy plasmid containing APA1, the gene encoding Ap4A phosphorylase I. BClp4A should facilitate screening of genomic or cDNA libraries for genes encoding Ap4A catabolic enzymes.  相似文献   

3.
Bovine tryptophanyl-tRNA synthetase (TrpRS, E.C. 6.1.1.2) is unable to catalyze in vitro formation of Ap4A in contrast to some other aminoacyl-tRNA synthetases. However, in the presence of -tryptophan, ATP-Mg2+ and ADP the enzyme catalyzes the Ap3A synthesis via adenylate intermediate. Ap3A (not Ap4A) may serve as a substrate for TrpRS in the reaction of E·(Trp AMP) formation and in the tRNATrp charging. The Km value for Ap3A was higher than the Km for ATP (approx. 1.00 vs. 0.22 mM) and Vmax was 3 times lower than for ATP. The Zn2+-deficient enzyme catalyzes Ap3A synthesis in the absence of exogenous ADP due to ATPase activity of Zn2+-deprived TrpRS. The inability of mammalian TrpRS to synthesize Ap4A, might be considered as a molecular tool preventing the removal of Zn2+ due to chelation by Ap4A and therefore preserving the enzyme activity.  相似文献   

4.
1. Diadenosine tetraphosphate (Ap4A) levels were determined in HL-60 cells differentiating into granulocytes or monocytes after treatment for 0-7 days with retinoic acid (RA) or 4-beta-phorbol-12-myristate-13-acetate (PMA) respectively. 2. The levels increased significantly compared to untreated control cells within 2 days and then declined again. 3. In RA treated cells the levels finally decreased far below those of untreated HL-60 cells and became equal to those found in human granulocytes. 4. PMA treatment had no effect on Ap4A levels in human granulocytes. 5. A possible interaction between Ap4A and ADP-ribosyl transferase is discussed.  相似文献   

5.
6.
7.
Di(1,N6-ethenoadenosine) 5′, 5-P1, P4-tetraphosphate, ε-(Ap4A), a fluorescent analog of Ap4A has been synthesized by reaction of 2-chloroacetaldehyde with Ap4A. At neutral pH this Ap4A analog presents characteristic maxima at 265 and 274 nm, shoulders at ca 260 and 310 nm and moderate fluorescence (λexc 307 nm, λem 410 nm). Enzymatic hydrolysis of the phosphate backbone produced a slight hyperchromic effect but a notorious increase of the fluorescence emission. Cytosolic extracts from adrenochromaffin tissue as well as cultured chromaffin cells were able to split ε(Ap4A) and catabolize the resulting ε-nucleotide moieties up to ε-Ado.  相似文献   

8.
Diadenosine tetraphosphate (Ap4A) and diadenosine pentaphosphate (Ap5A) have been identified in bovine adrenal medullary tissue using an HPLC method. The values obtained were 0.1 +/- 0.05 mumol/g of tissue for both compounds. The subcellular fraction where Ap4A and Ap5A were present in the highest concentration was chromaffin granules: 32 nmol/mg of protein for both compounds (approximately 6 mM intragranularly). This value was 30 times higher than in the cytosolic fraction. Enzymatic degradation of Ap4A and Ap5A, isolated from chromaffin granules, with phosphodiesterase produces AMP as the final product. The Ap4A and Ap5A obtained from this tissue were potent inhibitors of adenosine kinase. Their Ki values relative to adenosine were 0.3 and 2 microM for Ap4A and Ap5A, respectively. The cytosolic fraction also contains enzymatic activities that degrade Ap4A as well as Ap5A. These activities were measured by an HPLC method; the observed Km values were 10.5 +/- 0.5 and 13 +/- 1 microM for Ap4A and Ap5A, respectively.  相似文献   

9.
10.
Yuan K  Cao C  Bai GY  Kim SZ  Kim SH 《Peptides》2007,28(7):1397-1405
Diadenosine polyphosphates (APnAs) are endogenous compounds and exert diverse cardiovascular functions. However, the effects of APnAs on atrial ANP release and contractility have not been studied. In this study, the effects of diadenosine tetraphosphate (AP4A) on atrial ANP release and contractility, and their mechanisms were studied using isolated perfused rat atria. Treatment of atria with AP4A resulted in decreases in atrial contractility and extracellular fluid (ECF) translocation whereas ANP secretion and cAMP levels in perfusate were increased in a dose-dependent manner. These effects of AP4A were attenuated by A(1) receptor antagonist but not by A(2A) or A(3) receptor antagonist. Other purinoceptor antagonists also did not show any effects on AP4A-induced ANF release and contractility. The increment of ANP release and negative inotropy induced by AP4A was similar to those induced by AP3A, AP5A, and AP6A. Protein kinase A inhibitors accentuated AP4A-induced ANP secretion. In contrast, an inhibitor of phospholipase C, protein kinase C or sarcolemma K(ATP) channel completely blocked AP4A-induced ANP secretion. However, an inhibitor of adenylyl cyclase or mitochondria K(ATP) channel had no significant modification of AP4A effects. These results suggest that AP4A regulates atrial inotropy and ANP release mainly through A(1) receptor signaling involving phospholipase C-protein kinase C and sarcolemmal K(ATP) channel and that protein kinase A negatively modulates the effects of AP4A.  相似文献   

11.
This review summarizes our knowledge of analogs and derivatives of diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A), the most extensively studied member of the dinucleoside 5',5"'-P1,Pn-polyphosphate (NpnN) family. After a short discussion of enzymes that may be responsible for the accumulation and degradation of Np4)N's in the cell, this review focuses on chemically and/or enzymatically produced analogs and their practical applications. Particular attention is paid to compounds that have aided the study of enzymes involved in the metabolism of Ap4A (Np4N'). Certain Ap4A analogs were alternative substrates of Ap4A-degrading enzymes and/or acted as enzyme inhibitors, some other helped to establish enzyme mechanisms, increased the sensitivity of certain enzyme assays or produced stable enzyme:ligand complexes for structural analysis.  相似文献   

12.
The effect of virus infection on the intracellular concentration of the proposed stress alarmone P1P4-bis(5'-adenosyl) tetraphosphate (Ap4A) has been examined in Vero cells. Compared with exposure to 0.8 mM-Cd2+, which causes a 30-fold increase in Ap4A, infection with simian virus 40 and poliovirus causes only a 2-fold increase, whereas herpes simplex virus type 1 results in a decrease in Ap4A during the course of the infection.  相似文献   

13.
Reducing cell death during the secondary injury is a major priority in the development of a cure for traumatic spinal cord injury (SCI). One of the earliest processes that follow SCI is the excitotoxicity resulting from the massive release of excitotoxicity mediators, including ATP, which induce an excessive and/or prolonged activation of their receptors and a deregulation of the calcium homeostasis. Diadenosine tetraphosphate (Ap4A) is an endogenous purinergic agonist, present in both extracellular and intracellular fluids, with promising cytoprotective effects in different diseases including neurodegenerative processes. In a search for efficient neuroprotective strategies for SCI, we have tested the capability of Ap4A to reduce the excitotoxic death mediated by the ATP-induced deregulation of calcium homeostasis and its consequences on tissue preservation and functional recovery in a mouse model of moderate contusive SCI. Our analyses with the murine neural cell line Neuro2a demonstrate that treatment with Ap4A reduces ATP-dependent excitotoxic death by both lowering the intracellular calcium response and decreasing the expression of specific purinergic receptors. Follow-up analyses in a mouse model of contusive SCI showed that acute administration of Ap4A following SCI reduces tissue damage and improves motor function recovery. These results suggest that Ap4A cytoprotection results from a decrease of the purinergic tone preventing the effects of a massive release of ATP after SCI, probably together with a direct induction of anti-apoptotic and pro-survival pathways via activation of P2Y2 proposed in previous studies. In conclusion, Ap4A may be a good candidate for an SCI therapy, particularly to reduce excitotoxicity in combination with other modulators and/or inhibitors of the excitotoxic process that are being tested.  相似文献   

14.
Antigens associated with mammalian centromeres were localized at the high and electron microscopic levels using the peroxidase-labeled antibody method. The antibody used was of a type naturally occurring in the sera of patients with scleroderma. At the light microscopic level, it reacts specifically with the centromere regions of chromosomes in a variety of mammalian species and strains in discrete foci in interphase nuclei. We find that the number of foci approximates the number of chromosomes present in the various cell types. At the ultrastructural level, the antigenic foci are confirmed to lie in the kinetochore regions of each chromosome. In interphase nuclei, the antigenic foci were usually associated either with the inner surfaces of the nuclear envelope or with the nucleoli. These observations indicate that the centromere regions of the chromosomes in interphase are not randomly distributed within the nucleus but are usually fixed either to the inner surface of the nuclear envelope or to nucleoli.  相似文献   

15.
Diadenosine polyphosphates (Ap(x)A) are physiologically released and may be partly involved in the pathogenesis of diabetes mellitus. Ap(4)A (diadenosine tetraphosphate) leads to an increase in blood glucose while it decreases insulin levels in plasma. A possible link between Ap(x)A and diabetes mellitus-associated diseases such as insulin resistance and hyperlipidemia (plasma free fatty acids, cholesterol and its biosynthesis, triacylglycerols) has not been investigated yet. Parameters such as free fatty acid and cholesterol content in blood were determined enzymically. The biosynthesis of cholesterol and triacylglycerols was determined in HepG2 cells using the radioactive precursor [(14)C]-acetate and by using gas chromatography. Plasma free fatty acids were significantly decreased 5 and 10 min after an Ap(4)A bolus (0.75 mg kg(-1) b.w.) given to rats. Plasma cholesterol was reduced 5 and 60 min after Ap(4)A administration. LPDS (lipoprotein-deficient serum)-stimulated cholesterol biosynthesis in HepG2 cells was significantly reduced after 1 h incubation with Ap(4)A. Triacylglycerol (TAG) biosynthesis in HepG2 cells was not significantly influenced by Ap(4)A; there was just a tendency for a concentration-dependent decrease in TAG levels. In conclusion Ap(4)A as a diabetogenetic compound is not likely to be responsible for the development of insulin resistance or of hyperlipidemia. Parameters such as free fatty acids, cholesterol and triacylglycerols are not elevated by Ap(4)A, but are even decreased. Ap(4)A seems to be involved in the development of diabetes mellitus by increasing blood glucose and decreasing plasma insulin as shown earlier, but not in diabetes mellitus-associated diseases such as insulin resistance or hyperlipidemia.  相似文献   

16.
17.

Background  

The chlamydiae alter many aspects of host cell biology, including the division process, but the molecular biology of these alterations remains poorly characterized. Chlamydial inclusion membrane proteins (Incs) are likely candidates for direct interactions with host cell cytosolic proteins, as they are secreted to the inclusion membrane and exposed to the cytosol. The inc gene CT223 is one of a sequential set of orfs that encode or are predicted to encode Inc proteins. CT223p is localized to the inclusion membrane in all tested C. trachomatis serovars.  相似文献   

18.
19.
Reaction of (NEt4)2MS4 (M = Mo, W) with CuCl and KSCN (or NH4SCN) in acetone or acetonitrile affords a new set of mixed metal–sulfur compounds: infinite anionic chains Cu4(NCS)5MS43− (1,2), (CuNCS)3WS42− (3) and two dimensional polymeric dianions (CuNCS)4MS42− (4,5). Crystal of 1 (M = W) and 3 are triclinic, space group P1(1:a = 10.356(2),b = 15.039(1),c = 17.356(2)Å, = 78.27(1)°, β = 88.89(2)° and γ = 88.60(1)°,Z = 2,R = 0.04 for 3915 independent data;3:a = 8.449(2),b = 14.622(4),c = 15.809(8)Å, = 61.84(3)°, β = 73.67(3)° and γ = 78.23(2)°,Z = 2,R = 0.029 for 6585 independent data). Crystals of 4 (M = W) and 5 (M = Mo) are monoclinic, space group P21/m,Z = 2 (4:a = 12.296(4),b = 14.794(4),c = 10.260(3)Åand β = 101.88(3)°,R = 0.034 for 4450 independent data;5:a = 12.306(2),b = 14.809(3),c = 10.257(2)Åand β = 101.99(3)°,R = 0.043 for 3078 independent data). The crystal structure determinations of 4 and 5 show that four edges of the tetrahedral MS42− core are coordinated by copper atoms forming WS4Cu4 aggregates linked by eight-membered Cu(NCS)2Cu rings. A two-dimensional network is thus formed in the diagonal (101) plane. The space between the anionic two-dimensional networks is filled with the NEt4+ cations. Additional NCS groups lead to the [Cu4(NCS)5WS4]3− (1) trianion connected by NCS bridges forming pseudo-dimers. These latter are held together by weak CuS(NCS) interactions giving rise to infinite chains along a direction parallel to [100]. In contrast complex3 develops infinite chains from WS4Cu3 aggregates with the same Cu(NCS)2Cu bridges as in 4 and 5. These chains are running along a direction parallel to [010]. The structural data of the different types of polymeric compounds containing MS42− and CuNCS have been used to interpret vibrational spectroscopic data of the thiocyanate groups.  相似文献   

20.
Diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) has been proposed as an intracellular signal for growth. In order to test this hypothesis Ap4A levels were followed in several cell types under various conditions. Quiescent dog thyroid cells in a primary culture were induced to proliferate by addition of a mixture of epidermal growth factor, thyrotropin and foetal calf serum; V79 cells were synchronized by serum depletion then stimulated to proliferate by addition of foetal calf serum. Protein and DNA synthesis increased in both cases, although no significant changes in Ap4A levels per cell could be demonstrated. HeLa D98/AH2 and L929 cells were treated with human recombinant tumour necrosis factor alpha which caused marked cell death. This was measured by a decrease in DNA content and a release into extracellular medium of incorporated radioactive precursor. No concomitant variations in Ap4A concentrations could be observed under these conditions. The data from these various systems do not support the hypothesis that changes in Ap4A levels regulate cellular proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号