首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of a Low Km GTPase Activity in Rat Striatum by Calmodulin   总被引:1,自引:0,他引:1  
In rat striatum, the activation of adenylate cyclase by the endogenous Ca2+-binding protein, calmodulin, is additive with that of GTP but is not additive with that of the nonhydrolyzable GTP analog, guanosine-5'-(beta, gamma-imido)triphosphate (GppNHp). One possible mechanism for this difference could be an effect of calmodulin on GTPase activity which has been demonstrated to "turn-off" adenylate cyclase activity. We examined the effects of Ca2+ and calmodulin on GTPase activity in EGTA-washed rat striatal particulate fractions depleted of Ca2+ and calmodulin. Calmodulin inhibited GTP hydrolysis at concentrations of 10(-9)-10(-6) M but had no effect on the hydrolysis of 10(-5) and 10(-6) M GTP, suggesting that calmodulin inhibited a low Km GTPase activity. The inhibition of GTPase activity by calmodulin was Ca2+-dependent and was maximal at 0.12 microM free Ca2+. Maximal inhibition by calmodulin was 40% in the presence of 10(-7) M GTP. The IC50 for calmodulin was 100 nM. In five tissues tested, calmodulin inhibited GTP hydrolysis only in those tissues where it could also activate adenylate cyclase. Calmodulin could affect the activation of adenylate cyclase by GTP in the presence of 3,4-dihydroxyphenylethylamine (DA, dopamine). Calmodulin decreased by nearly 10-fold the concentration of GTP required to provide maximal stimulation of adenylate cyclase activity by DA in the striatal membranes. The characteristics of the effect of calmodulin on GTPase activity with respect to Ca2+ and calmodulin dependence and tissue specificity parallel those of the activation of adenylate cyclase by calmodulin, suggesting that the two activities are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Opiates and opioid peptides inhibit adenylate cyclase and stimulate specific low Km GTPase activity in membranes from neuroblastoma x glioma NG108-15 hybrid cells. The effects of opiate agonists on both enzymes are mediated by high affinity stereospecific receptors and require Mg2+, GTP, and Na+. In the presence of Mg2+, Na+ inhibits basal GTPase activity; opiates stimulate GTP hydrolysis by antagonizing the Na+-induced inhibition. Activation of GTPase leads, in turn, to inactivation of GTP-stimulated adenylate cyclase activity. The intrinsic activities (or efficacies) of a series of opiates are identical for stimulation of GTPase and inhibition of adenylate cyclase. These results provide a mechanism for the dual requirement for Na+ and GTP in the inhibitory coupling of opiate receptors to the adenylate cyclase system in these cells and may be of general significance to the action of other inhibitory hormones.  相似文献   

3.
Adenylate cyclase inhibition by stable GTP analogs and their interaction with epinephrine were studied in human platelet membranes. Whereas basal enzyme activity was increased by these nucleotides, the stable GTP analogs decreased the adenylate cyclase activity stimulated by fluoride or forskolin by maximally 60 to 70%, with the potency order, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) greater than guanyl-5'-ylimidodiphosphate greater than guanyl-5'-ylmethylenediphosphate. The inhibition of the forskolin-stimulated enzyme by GTP gamma S was half-maximal at about 4 nM, occurred after a time lag period, which was inversely related to the GTP gamma S concentration, and was resistant to washing of the membranes. Prostaglandin E1-stimulated activity exhibited a biphasic response towards GTP gamma S, with activation occurring at low (1 nM) and inhibition at higher GTP gamma S concentrations. The inhibitory effect of GTP gamma S was competitively antagonized by GTP. This antagonism was prevented by epinephrine, which inhibited the stimulated platelet adenylate cyclase in the presence of GTP to the same degree as observed with GTP gamma S alone. In the absence of GTP, epinephrine largely diminished the time lag required for the inhibitory action of GTP gamma S. Furthermore, the decrease in final activity induced by GTP gamma S was amplified by epinephrine. Whereas the acceleration of the inhibitory action of GTP gamma S was observed at low and high GTP gamma S concentrations, the amplification by epinephrine was observed only at submaximally effective concentrations of GTP gamma S.  相似文献   

4.
A novel site of action of a high affinity A1 adenosine receptor antagonist   总被引:4,自引:0,他引:4  
XAC, a high affinity antagonist of the A1 adenosine receptor, enhances adenylate cyclase activity by 1.3-2 fold with an EC50 of approximately 47 nM in adipocyte membranes pretreated with adenosine deaminase to eliminate adenosine and in the presence of total phosphodiesterase inhibition by 100 microM papaverine. This effect of XAC is observed only at concentrations of GTP sufficient to activate Gi (approximately 5 x 10(-6) M GTP) and is not evident in the absence or presence of lower GTP concentrations. ADP ribosylation of Gi by pertussis toxin treatment also abolishes this stimulatory action of XAC. Furthermore, in the presence of GTP activation of inhibitory prostaglandin E1 receptors diminishes the stimulatory effect of XAC on adenylate cyclase. In addition, XAC interferes with GTP-mediated inhibition of forskolin-stimulated adenylate cyclase activity in a noncompetitive manner. Finally, XAC is only a weak inhibitor of the low Km cyclic AMP phosphodiesterase, producing approximately 40% inhibition of phosphodiesterase activity at a concentration of 100 microM. These data suggest that XAC increases adenylate cyclase activity in absence of endogenous adenosine by inhibiting tonic Gi activity in a reversible manner.  相似文献   

5.
The response of adenylate cyclase to GTP and to dopamine (DA) was investigated in synaptic plasma membranes isolated from rat striatum injected with pertussis toxin, which inactivates the inhibitory guanine nucleotide-binding regulatory protein (Ni) of adenylate cyclase. Pertussis toxin treatment reverted the inhibitory effects on the enzyme activity elicited by micromolar concentrations of GTP and reduced by 50% the DA inhibition of cyclase activity via D2 receptors. The toxin treatment enhanced the net stimulation of enzyme activity by DA in the presence of micromolar concentrations of GTP. However, the stimulatory effect of the selective D1 receptor agonist SKF 38393 was not significantly affected. The data indicate that Ni mediates D2 inhibition of striatal adenylate cyclase and participates in the modulation of D1 stimulation of the enzyme activity by DA.  相似文献   

6.
The concentration requirements of calmodulin in altering basal, GTP-, and dopamine-stimulated adenylate cyclase activities in an EGTA-washed particulate fraction from bovine striatum were examined. In the bovine striatal particulate fraction, calmodulin activated basal adenylate cyclase activity 3.5-fold, with an EC50 of 110 nM. Calmodulin also potentiated the activation of adenylate cyclase by GTP by decreasing the EC50 for GTP from 303 +/- 56 nM to 60 +/- 10 nM. Calmodulin did not alter the maximal response to GTP. The EC50 for calmodulin in potentiating the GTP response was only 11 nM as compared to 110 nM for activation of basal activity. Similarly, calmodulin increased the maximal stimulation of adenylate cyclase by dopamine by 50-60%. The EC50 for calmodulin in eliciting this response was 35 nM. These data demonstrate that calmodulin can both activate basal adenylate cyclase and potentiate adenylate cyclase activities that involve the activating GTP-binding protein, Ns. Mechanisms that involve potentiation of Ns-mediated effects are much more sensitive to calmodulin than is the activation of basal adenylate cyclase activity. Potentiation of GTP-stimulated adenylate cyclase activity by calmodulin was apparent at 3 and 5 mM MgCl2, but not at 1 or 10 mM MgCl2. These data further support a role for calmodulin in hormonal signalling and suggest that calmodulin can regulate cyclic AMP formation by more than one mechanism.  相似文献   

7.
Abstract: 4β-Phorbol 12-myristate 13-acetate (PMA), added to a lysed mitochondrial fraction of rat striatum, stimulates adenylate cyclase activity with an apparent time lag of ~30 s. Half-maximal and maximal enzyme stimulations are obtained with 8 and 200 nM PMA, respectively. The PMA stimulation is GTP dependent, reaching a maximum of ~60% at 50 μ.M GTP, and is associated with disappearance of the enzyme inhibition induced by micromolar concentrations of GTP. Enhancement of enzyme activity by cholera toxin and 3,4-dihydroxyphenylethylamine is amplified by PMA only at micromolar concentrations of GTP. PMA does not affect the enzyme stimulation by forskolin but reverses the inhibition of forskolin-stimulated enzyme by GTP. When guanyl-5′-yl-imidodiphosphate is substituted for GTP, PMA does not modify adenylate cyclase activity. Enzyme inhibition by acetylcholine, Leu-enkephalin, and R(-)N6-(2-phenylisopropyl)adenosine is magnified by PMA. Stimulation of adenylate cyclase by PMA is markedly reduced following EGTA treatment, is not observed when adenyl-5′-yl-imidodiphosphate is substituted for ATP as substrate for adenylate cyclase, and is enhanced by l-α-phosphatidyl-l-serine. Like PMA, 4β-phorbol 12,13-dibutyrate and 1-oleoyl-2-acetylglycerol stimulate striatal adenylate cyclase, whereas 4β-phorbol and 4β-phorbol 13-acetate are ineffective. The results indicate that phorbol esters increase striatal adenylate cyclase activity by reducing the GTP-induced inhibition of the enzyme, presumably as a result of protein kinase C activation.  相似文献   

8.
Guanine nucleotide regulation of membrane adenylate cyclase activity was uniquely modified after exposure of 3T3 mouse fibroblasts to low concentrations of islet-activating protein (IAP), pertussis toxin. The action of IAP, which occurred after a lag time, was durable and irreversible, and was associated with ADP-ribosylation of a membrane Mr = 41,000 protein. GTP, but not Gpp(NH)p, was more efficient and persistent in activating adenylate cyclase in membranes from IAP-treated cells than membranes from control cells. GTP and Gpp(NH)p caused marked inhibition of adenylate cyclase when the enzyme system was converted to its highly activated state by cholera toxin treatment or fluoride addition, presumably as a result of their interaction with the specific binding protein which is responsible for inhibition of adenylate cyclase. This inhibition was totally abolished by IAP treatment of cells, making it very likely that IAP preferentially modulates GTP inhibitory responses, thereby increasing GTP-dependent activation and negating GTP-mediated inhibition of adenylate cyclase.  相似文献   

9.
An assessment was made of some of the basic parameters responsible for the modulation of adenylate cyclase activity in a bovine adrenocortical plasma-membrane preparation. When determined at 0.1 mM-ATP, basal adenylate cyclase activity increased with increasing MgCl2 concentrations, whereas in the presence of corticotropin activity was essentially maximal at 10mM-MgCl2; high concentrations (25mM) of MgCl2 inhibited adenylate cyclase activity determined in the presence of both corticotropin and GTP. At all MgCl2 concentrations, corticotropin and GTP activated the enzyme in a synergistic fashion. The magnitude of the stimulation of basal activity produced by corticotropin was a function of Mg2+ concentration, whereas that produced by GTP appeared largely independent of Mg2+ concentration. Adenylate cyclase activity in the bovine adrenal membrane was half-maximally stimulated by corticotropin concentrations in the range 0.3--1.0 nM. The concentration of corticotropin evoking half-maximum response was not significantly affected by raising the free Mg2+ concentration from 0.4 to 4.9 mM, nor by the presence of GTP. In the presence of GTP, high concentrations (over 1 micrometer) of corticotropin inhibited adenylate cyclase activity, although no inhibition was apparent in the absence of guanine nucleotide.  相似文献   

10.
Stimulation of basal adenylate cyclase activity in membranes of neuroblastoma x glioma hybrid cells by prostaglandin E1 (PGE1) is half-maximal and maximal (about 8-fold) at 0.1 and 10 microM respectively. This hormonal effect requires GTP, being maximally effective at 10 microM. However, at the same concentrations that stimulate adenylate cyclase in the presence of GTP, PGE1 inhibited basal adenylate cyclase activity when studied in the absence of GTP, by maximally 60%. A similar dual action of PGE1 was observed with the forskolin-stimulated adenylate cyclase, although the potency of PGE1 in both stimulating and inhibiting adenylate cyclase was increased and the extent of stimulation and inhibition of the enzyme by PGE1 was decreased by the presence of forskolin. The inhibition of forskolin-stimulated adenylate cyclase by PGE1 occurred without apparent lag phase and was reversed by GTP and its analogue guanosine 5'-[gamma-thio]triphosphate at low concentrations. Treatment of neuroblastoma x glioma hybrid cells or membranes with agents known to eliminate the function of the inhibitory GTP-binding protein were without effect on PGE1-induced inhibition of adenylate cyclase. The data suggest that stimulatory hormone agonist, apparently by activating one receptor type, can cause both stimulation and inhibition of adenylate cyclase, and that the final result depends only on the activity state of the stimulatory GTP-binding protein, Gs. Possible mechanisms responsible for the observed adenylate cyclase inhibition by the stimulatory hormone PGE1 are discussed.  相似文献   

11.
Ethanol increases the activity of "basal," guanine nucleotide- and dopamine-stimulated adenylate cyclase in mouse striatum. In contrast, ethanol, in vitro, did not modify the inhibition of striatal adenylate cyclase activity by opiates (morphine or [D-Ala2,D-Leu5] enkephalin). Following chronic in vivo ethanol treatment of mice, there was also no change in the character of opiate inhibition of striatal adenylate cyclase activity. Since ethanol, in vitro, does decrease striatal opiate receptor binding, the results suggest that the changes in affinity detected by ligand binding studies are not relevant for receptor-coupled adenylate cyclase activity, or that opiate receptor binding and opiate regulation of adenylate cyclase can be modulated independently. The selective effects of ethanol on systems that modulate adenylate cyclase activity may produce imbalances in neuronal function during in vivo ethanol exposure.  相似文献   

12.
In membranes of rat striatum, phorbol 12-myristate 13-acetate (PMA), a potent activator of Ca2+/phospholipid-dependent protein kinase, enhanced adenylate cyclase activity by counteracting the inhibition elicited by GTP. Exposure to pertussis toxin caused a similar alteration of the GTP-regulation of the enzyme activity and largely prevented the PMA effects. PMA treatment increased by threefold the GTP requirement of acetylcholine-induced inhibition of adenylate cyclase activity but did not affect the GTP-dependence of the enzyme stimulation by dopamine. The hydrolysis of GTP by membrane-bound high affinity GTPase was significantly inhibited by PMA (IC 50 10 nM) in a Ca2+-dependent manner. Like PMA, phorbol 12, 13-dibutyrate inhibited the GTPase activity, whereas the biologically inactive 4- phorbol 13-acetate and 4- phorbol were without effect. These results suggest that activation of Ca2+/phospholipid-dependent protein kinase by PMA stimulates adenylate cyclase activity by impairing the activity of the GTP-dependent inhibitory protein, possibly through a reduction of the GTP-GDP exchange.  相似文献   

13.
The activity of the adenylate cyclase inhibitory guanine-nucleotide-binding regulatory protein (Gi), measured as inhibition of forskolin-stimulated cyclic AMP formation, and its regulation by various nucleotides and the inhibitory alpha 2-adrenoreceptor agonist epinephrine was studied in membranes of human platelets. When adenylate cyclase activity was measured with ATP as substrate and in the absence of a nucleoside-triphosphate-regenerating system, GTP (0.1-10 microM) by itself potently and efficiently inhibited the enzyme. GDP was almost as potent and as effective as GTP. In the additional presence of epinephrine, the potencies of both GTP and GDP were increased about threefold, while maximal inhibition by these nucleotides was only slightly increased by the receptor agonist. In contrast to GTP and GDP, the metabolically stable GDP analog, guanosine 5'-[beta-thio]diphosphate, had only a very small effect, suggesting that GDP but not its stable analog is converted to the active GTP. Addition of UDP (1 mM), used to block the GDP to GTP conversion reaction, completely suppressed the inhibitory effect of GDP, while that caused by GTP was not affected. Most important, the inhibitory receptor agonist epinephrine counteracted the suppressive effect of UDP on GDP's action, suggesting that, while UDP inhibits the formation of GTP from GDP, the activated receptor stimulates this conversion reaction. In the presence of a complete nucleoside-triphosphate-regenerating system, which by itself had no influence on control forskolin-stimulated adenylate cyclase activity, GTP alone, at concentrations up to 10 microM, did not decrease enzyme activity, but required the presence of an inhibitory receptor agonist (epinephrine) to activate the Gi protein. Addition of the regenerating system creatine phosphate plus creatine kinase not only abolished adenylate cyclase inhibition by GTP alone, but also largely reduced both the potency and efficiency of epinephrine to activate the Gi protein in the presence of GTP. Furthermore, the nucleoside-triphosphate-regenerating system also largely delayed the onset of adenylate cyclase inhibition by the GTP analog, guanosine-5'-[beta-thio]triphosphate (10 nM), which was accelerated by epinephrine, and it also decreased the final enzyme inhibition caused by this GTP analog.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The inhibitory GTP-binding protein (Gi) is known to mediate the effects of a number of hormones that act through specific receptors to inhibit adenylate cyclase. In this study we examined the mechanism whereby Gi modulates the response of adenylate cyclase to a stimulatory hormone and its role in desensitization. In membranes prepared from the cultured renal epithelial cell line LLCPK1, adenylate cyclase activity was stimulated 16-fold by 1-2 microM lysine vasopressin. Addition of GTP (1-100 microM) resulted in stimulation of basal activity but inhibition of hormone-stimulated activity (approximately 40% inhibition at 100 microM GTP). This contrasts with the usual effect of GTP to support or augment activation by stimulatory receptors. The inhibitory effect was abolished by pertussis toxin, which had little effect on basal activity in the absence or presence of added GTP or on vasopressin-stimulated activity in the absence of added GTP. GTP-mediated inhibition was vasopressin concentration dependent. At concentrations of vasopressin below the K1/2 for enzyme activation (approximately 0.6 nM), GTP was stimulatory, and at higher concentrations, GTP was inhibitory. The inhibitory effect of GTP was also observed for a V2-receptor agonist and was not abolished by a V1-receptor antagonist, indicating that a distinct V1 receptor did not mediate inhibition of adenylate cyclase. Using the known subunit structure of adenylate cyclase, we developed the minimal mechanism that would incorporate a modulatory role for Gi in determining net activation of adenylate cyclase by a stimulatory hormone. The predicted enzyme activities for basal and maximal hormone stimulation in the presence and absence of GTP were generated, and model parameters were chosen to match the experimental observations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Neuropeptide Y (NPY) inhibits cardiac adenylate cyclase activity by interacting with specific receptors coupled to a pertussis toxin-sensitive G protein. Structure-activity studies revealed that only C-terminal fragments can exhibit an NPY-like inhibitory effect on 125I-NPY binding and adenylate cyclase activity of rat cardiac ventricular membranes. Although NPY(17-36) inhibited 125I-NPY binding with high potency, it produced a biphasic effect on basal (GTP, 10 and 100 microM or guanosine 5'-gamma-O-(thio)triphosphate (GTP gamma S, 10 microM) adenylate cyclase activity. Low concentrations (less than 1 nM) of NPY(17-36) inhibited the adenylate cyclase activity whereas high concentrations (greater than 1 nM) reversed this action. GTP gamma S (100 microM) reversed the biphasic effect of NPY(17-36). NPY(17-36) exhibited only a stimulatory effect in the membranes from pertussis toxin-treated rats and an inhibitory effect with membranes from cholera toxin-treated rats. Low concentrations (less than 1 nM) of NPY(17-36) inhibited isoproterenol-stimulated adenylate cyclase activity whereas high doses (greater than 1 nM) reversed this activity. The cardiac NPY receptor antagonist, NPY(18-36) (1 microM), completely blocked the biphasic effect of NPY(17-36) on isoproterenol-stimulated activity. The inhibitory dose-response curve of NPY on isoproterenol-stimulated adenylate cyclase activity was shifted parallel to the right by NPY(17-36) (1 microM), suggesting that it is an antagonist of NPY at high concentrations. N-alpha-acetylated and C-terminally deamidated analogs of NPY(17-36) had no effect on the adenylate cyclase activity. [im-DNP-His26] NPY exhibited a more pronounced biphasic effect whereas N-alpha-myristoyl-NPY(17-36) elicited only a stimulatory effect. These investigations suggest that: 1) the inhibitory and stimulatory effects of NPY(17-36) are mediated by high affinity NPY receptors coupled to a pertussis toxin-sensitive G protein and a distinct population of low affinity receptors coupled to a cholera toxin-sensitive G protein, respectively; and 2) the stimulatory effect of NPY(17-36) is dissociable.  相似文献   

16.
The influence of the diterpene, forskolin, was studied on adenylate cyclase activity in membranes of rat basophilic leukemia cells. Forskolin increased basal adenylate cyclase activity maximally 2-fold at 100 microM. However, adenylate cyclase activity stimulated via the stimulatory guanine nucleotide-binding protein, Ns, by fluoride and the stable GTP analog, guanosine 5'-O-(3-thiotriphosphate), was inhibited by forskolin. Half-maximal and maximal inhibition occurred at about 1 and 10 microM forskolin, respectively. The inhibition occurred without an apparent lag phase, whereas the enzyme stimulation by forskolin was preceded by a considerable lag period. The inhibition was not affected by treating intact cells or membranes with pertussis toxin and proteolytic enzymes, respectively, which have been shown in other cell types to prevent adenylate cyclase inhibition mediated by the guanine nucleotide-binding regulatory component, Ni. The forskolin inhibition of the stable GTP analog-activated adenylate cyclase was impaired by increasing the Mg2+ concentration and was reversed into a stimulation by Mn2+. Under optimal inhibitory conditions, forskolin even decreased basal adenylate cyclase activity. Finally, forskolin largely reduced the apparent affinity of the rat basophilic leukemia cell adenylate cyclase for its substrate, MgATP, which reduction resulted in an apparent inhibition at low MgATP concentrations and a loss of the inhibition at higher MgATP concentrations. The data indicate that forskolin can cause both stimulation and inhibition of adenylate cyclase and, furthermore, they suggest that the inhibition may not be mediated by the Ni protein, but may be caused by a direct action of forskolin at the adenylate cyclase catalytic moiety.  相似文献   

17.
Ca2+, through the mediation of calmodulin, stimulates the activity of brain adenylate cyclase. The growing awareness that fluctuating Ca2+ concentrations play a major role in intracellular signalling prompted the present study, which aimed to investigate the implications for neurotransmitter (receptor) regulation of enzymatic activity of this calmodulin regulation. The role of Ca2+/calmodulin in regulating neurotransmitter-mediated inhibition and stimulation was assessed in a number of rat brain areas. Ca2+/calmodulin stimulated adenylate cyclase activity in EGTA-washed plasma preparations from each region studied--from 1.3-fold (in striatum) to 3.4-fold (in cerebral cortex). The fold-stimulation produced by Ca2+/calmodulin was decreased in the presence of GTP, forskolin, or Mn2+. In EGTA-washed membranes, receptor-mediated inhibition of adenylate cyclase was strictly dependent upon Ca2+/calmodulin stimulation in all regions, except striatum. A requirement for Mg2+ in combination with Ca2+/calmodulin to observe neurotransmitter-mediated inhibition was also observed. In contrast, receptor-mediated stimulation of activity was much greater in the absence of Ca2+/calmodulin. The findings demonstrate that ambient Ca2+ concentrations, in concert with endogenous calmodulin, may play a central role in dictating whether inhibition or stimulation of adenylate cyclase by neurotransmitters may proceed.  相似文献   

18.
The effects of trypsin, acrosin and a recently described trypsin-like protease from bovine sperm were studied on adenylate cyclase activity in membranes of human platelets. These proteases caused an immediate decrease in adenylate cyclase activity, which was independent of the platelet membrane concentration used and which was constant for up to 20 min of incubation at 25 degrees C. When the incubation was prolonged, the proteases eliminated their own inhibitory action as well as that of the inhibitory hormone epinephrine. The adenylate cyclase inhibition caused by the proteases was strictly dependent on the presence of GTP (EC50 approximately 0.1 microM), whereas in the absence of GTP only minor changes in enzyme activity were observed at the conditions and protease concentrations used. Maximal inhibition caused by the proteases was between 40% and 60%. Half-maximal inhibition by the purified proteases trypsin and acrosin was observed at about 30 ng/ml and 2 micrograms/ml respectively. Inhibition of platelet adenylate cyclase by the proteases was partially additive with that caused by epinephrine, while with thrombin no additivity was observed. The serine protease inhibitor leupeptin blocked the actions of the proteases when added simultaneously with the enzymes, but was ineffective when added later on. Treatment of platelet membranes with the alkylating N-ethylmaleimide at low concentrations and Mn2+ ions (greater than or equal to 1 mM), both agents known to abolish inhibition of adenylate cyclase via the inhibitory guanine-nucleotide-binding protein Gi, eliminated the inhibitory action of the proteases. The data indicate that trypsin and trypsin-like proteases have two opposite effects on the platelet adenylate cyclase system, the well-documented elimination of Gi action and, as shown here, an immediate activation of Gi with subsequent adenylate cyclase inhibition. The data are consistent with the hypothesis that the activation of Gi caused by the proteases is due to an interaction of the proteases with specific cell-surface receptor sites in a manner similar to thrombin.  相似文献   

19.
Adenylate cyclase inhibition by hormones. The Mg2+ hypothesis   总被引:1,自引:0,他引:1  
In washed anterior pituitary membranes, there is enough GTP to occupy Ns and therefore to obtain activation of adenylate cyclase by vasointestinal peptide. GTP concentrations needed to obtain adenylate cyclase inhibition by dopamine (above 5 X 10- M) stimulate the adenylate cyclase. The dopamine effect is a blockade of this stimulation. We propose that at least in this system, Ni does not inhibit but stimulates the adenylate cyclase and that inhibitory hormones block this stimulation. We also demonstrate in several adenylate cyclase systems that hormones produced adenylate cyclase inhibition by lowering their Mg affinity A general model for adenylate cyclase activation and inhibition is proposed.  相似文献   

20.
Addition of phorbol ester-activated, partially purified protein kinase C to membranes of human platelets had no effect on forskolin stimulation of the adenylate cyclase and increased stimulation by prostaglandin E1 only at high GTP concentrations by preventing inhibition by GTP. Hormonal inhibition of the platelet adenylate cyclase by epinephrine was eliminated or largely impaired. At low GTP concentrations, epinephrine even caused a small increase in cyclase activity. The data suggest that activated protein kinase C interferes with GTP- and hormone-induced adenylate cyclase inhibition probably by phosphorylating the inhibitory guanine nucleotide-binding regulatory component Ni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号