首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular Ca2+ is an important regulator of many cellular processes. Besides ion channels and transporters in the plasmalemma, changes in [Ca]i can be mediated by uptake and release mechanisms of internal organelles. Theoretical and experimental procedures are developed aiming to reveal the distribution of internal Ca2+ pools and their role in generating complicated spatial patterns of [Ca]i gradients. Cultured pyramidal neurons from rat hippocampus were loaded with Ca2+-sensitive fluorescent dyes, fura-2 and fluo-3. Cell images were partitioned according to pixel amplitude and highlighted pictures were characterized by their intensity, relative area and connectivity. This approach facilitates the localization of the sites of Ca2+ release from internal stores induced by application of different agents. After each trial, neurons were stained with dyes, acridine orange or DiOC6, which bind preferentially to nucleus and endoplasmic reticulum. A correlation between images confirmed the spatial localization of Ca2+ release sites. Application of the partition procedure also gave a clear evidence for the importance of Ca2+ influx in the mechanism of [Ca]i oscillations.  相似文献   

2.
The kinetic and steady-state properties of macroscopic mslo Ca-activated K+ currents were studied in excised patches from Xenopus oocytes. In response to voltage steps, the timecourse of both activation and deactivation, but for a brief delay in activation, could be approximated by a single exponential function over a wide range of voltages and internal Ca2+ concentrations ([Ca]i). Activation rates increased with voltage and with [Ca]i, and approached saturation at high [Ca]i. Deactivation rates generally decreased with [Ca]i and voltage, and approached saturation at high [Ca]i. Plots of the macroscopic conductance as a function of voltage (G-V) and the time constant of activation and deactivation shifted leftward along the voltage axis with increasing [Ca]i. G-V relations could be approximated by a Boltzmann function with an equivalent gating charge which ranged between 1.1 and 1.8 e as [Ca]i varied between 0.84 and 1,000 μM. Hill analysis indicates that at least three Ca2+ binding sites can contribute to channel activation. Three lines of evidence indicate that there is at least one voltage-dependent unimolecular conformational change associated with mslo gating that is separate from Ca2+ binding. (a) The position of the mslo G-V relation does not vary logarithmically with [Ca]i. (b) The macroscopic rate constant of activation approaches saturation at high [Ca]i but remains voltage dependent. (c) With strong depolarizations mslo currents can be nearly maximally activated without binding Ca2+. These results can be understood in terms of a channel which must undergo a central voltage-dependent rate limiting conformational change in order to move from closed to open, with rapid Ca2+ binding to both open and closed states modulating this central step.  相似文献   

3.
1. Several cloned sodium channels were expressed in oocytes and compared with respect to their sensitivity to internal Mg2+ concerning the open-channel block and to external Ca2+ concerning open-channel block and shifts in steady-state activation. 2. A quantitative comparison between wild-type II channels and a mutant with a positive charge in the S4 segment of repeat I neutralized (K226Q) revealed no significant differences in the Mg2+ block. 3. The blocking effect of extracellular Ca2+ ions on single-channel inward currents was studied for type II, mutant K226Q and type III. A quantitative comparison showed that all three channel types differ significantly in their Ca+ sensitivity. 4. The influence of extracellular Ca2+ on the voltage dependence of steady-state activation of macroscopic currents was compared for type II and K226Q channels. Extracellular Ca+ increases the voltage of half-maximal activation, V1/2, more for K226Q than for wild-type II channels; a plot of V 1/2 against [Ca] o , is twice as steep for the mutant K226Q as for the wild-type on a logarithmic concentration scale. 5. The differential effects of extracellular Ca+ and intracellular Mg2+ on wild-type II and K226Q channels are discussed in terms of structural models of the Na+ channel protein.Abbreviations [Na] i intracellular Na+ concentration - [Mg] intracellular Mg2+ concentration - [Ca] o extracellular Ca2+ concentration  相似文献   

4.
Extracellular ATP at micro- to millimolar concentrations activates Cl conductance and increases cytosolic calcium ([Ca] i ) in many epithelial cells, including the colonic epithelial cell line HT29-Cl.16E. Therefore, [Ca] i has been postulated to be the intracellular messenger for Cl channel activation. HT29-Cl.16E is a highly differentiated cell line that forms confluent monolayers and secretes mucins and Cl. The involvement of [Ca] i in the purinergically-stimulated Cl secretion was investigated pharmacologically in this cell line by whole-cell patch-clamp and Ussing chamber techniques, as well as [Ca] i measurements in fura-2 loaded cells. The calmodulin inhibitors W13 (5 μm) and chlorpromazine (50 μm) abolished increases in ATP-stimulated [Ca] i -increases by 90% and 80%, respectively. However, these inhibitors had no effect on the ATP-stimulated Cl conductance measured in either individual cells or confluent monolayers. As controls, the effects of W13 and chlorpromazine on Ca2+-ionophore stimulated Cl conductance was measured. In this case, the two compounds inhibited whole cell Cl conductance and monolayer Isc by 90% and 100%, respectively. These data demonstrate: (1) The purinergically-stimulated increase in Cl current does not require an increase in [Ca] i , suggesting the involvement of either another signaling pathway or direct activation of Cl channels by purinergic receptors. (2) A calmodulin or a calmodulinlike binding site that is sensitive to W13 and chlorpromazine participates in the regulation of the [Ca] i increase by purinergic receptors in HT29-Cl.16E. Received: 4 December 1995/Revised: 16 August 1996  相似文献   

5.
Using the voltage-clamp technique, we investigated transmembrane ion currents in isolated smooth muscle cells of the guinea pigtaenia coli. In our study, we identified and studied a charibdotoxin-sensitive component of Ca2+-dependent K+ current carried through the channels of high conductance (in most publications called “big conductance,”I BK(Ca)). This component was completely blocked by 100 nM charibdotoxin and by tetraethylammonium in concentrations as low as 1 mM.I BK(Ca) demonstrated fast kinetics of inactivation, which nearly coincided with that of Ca2+ current. In addition to the dependence on Ca2+ concentration, this current also showed voltage-dependent properties: with a rise in the level of depolarization its amplitude increased. In many cells, depolarizing shifts in the membrane potential evoke spontaneous outward currents. Such currents probably represent the secondary effect of cyclic Ca2+ release from the caffeine-sensitive intracellular stores that result in short-term activation of charibdotoxin-sensitive Ca2+-dependent K+ channels.  相似文献   

6.
The dominant role of CaV2 voltage-gated calcium channels for driving neurotransmitter release is broadly conserved. Given the overlapping functional properties of CaV2 and CaV1 channels, and less so CaV3 channels, it is unclear why there have not been major shifts toward dependence on other CaV channels for synaptic transmission. Here, we provide a structural and functional profile of the CaV2 channel cloned from the early-diverging animal Trichoplax adhaerens, which lacks a nervous system but possesses single gene homologues for CaV1–CaV3 channels. Remarkably, the highly divergent channel possesses similar features as human CaV2.1 and other CaV2 channels, including high voltage–activated currents that are larger in external Ba2+ than in Ca2+; voltage-dependent kinetics of activation, inactivation, and deactivation; and bimodal recovery from inactivation. Altogether, the functional profile of Trichoplax CaV2 suggests that the core features of presynaptic CaV2 channels were established early during animal evolution, after CaV1 and CaV2 channels emerged via proposed gene duplication from an ancestral CaV1/2 type channel. The Trichoplax channel was relatively insensitive to mammalian CaV2 channel blockers ω-agatoxin-IVA and ω-conotoxin-GVIA and to metal cation blockers Cd2+ and Ni2+. Also absent was the capacity for voltage-dependent G-protein inhibition by co-expressed Trichoplax Gβγ subunits, which nevertheless inhibited the human CaV2.1 channel, suggesting that this modulatory capacity evolved via changes in channel sequence/structure, and not G proteins. Last, the Trichoplax channel was immunolocalized in cells that express an endomorphin-like peptide implicated in cell signaling and locomotive behavior and other likely secretory cells, suggesting contributions to regulated exocytosis.  相似文献   

7.
We characterized the effects of intracellular Mg2+ (Mg2+i) on potassium currents mediated by the Kv1.5 and Kv2.1 channels expressed in Xenopus oocytes. Increase in Mg2+i caused a voltage-dependent block of the current amplitude, apparent acceleration of the current kinetics (explained by a corresponding shift in the steady-state activation) and leftward shifts in activation and inactivation dependencies for both channels. The voltage-dependent block was more potent for Kv2.1 [dissociation constant at 0 mV, Kd(0), was ~70 mM and the electric distance of the Mg2+ binding site, , was 0.2] than for the Kv1.5 channel [Kd(0)~40 mM and =0.1]. Similar shifts in the voltage-dependent parameters for both channels were described by the Gouy-Chapman formalism with the negative charge density of 1 e/100 Å2. Additionally, Mg2+i selectively reduced a non-inactivating current and increased the accumulation of inactivation of the Kv1.5, but not the Kv2.1 channel. A potential functional role of the differential effects of Mg2+i on the Kv channels is discussed.  相似文献   

8.
This study investigated the underlying mechanisms of oxytocin (OT)-induced increases in intracellular Ca2+ concentrations ([Ca2+]i) in acutely dispersed myometrial cells from prepartum sows. A dosedependent increase in [Ca2+]i was induced by OT (0.1 nM to 1 μM) in the presence and absence of extracellular Ca2+ ([Ca2+]e). [Ca2+]i was elevated by OT in a biphasic pattern, with a spike followed by a sustained plateau in the presence of [Ca2+]e. However, in the absence of [Ca2+]e, the [Ca2+]i response to OT became monophasic with a lower amplitude and no plateau, and this monophasic increase was abolished by pretreatment with ionomycin, a Ca2+ ionophore. Administration of OT (1 μM) for 15 sec increased inositol 1,4,5-trisphosphate (IP3) formation by 61%. Pretreatment with pertussis toxin (PTX, 1 μg/ml) for 2 hr failed to alter the OT-induced increase in [Ca2+]i and IP3 formation. U-73122 (30 nM to 3 μM), a phospholipase C (PLC) inhibitor, depressed the rise in [Ca2+]i by OT dose dependently. U-73122 (3 μM) also abolished the OT-induced IP3 formation. Thapsigargin (2 μM), an inhibitor of Ca2+-ATPase in the endoplasmic reticulum, did not increase [Ca2+]i. However, it did time-dependently inhibit the OT-induced increase in [Ca2+]i. Nimodipine (1 μM), a Voltage-dependent Ca2+ channel (VDCC) blocker, inhibited the OT-induced plateau by 26%. La3+ (1 μM), a nonspecific Ca2+ channel blocker, abrogated the OT-induced plateau. In whole-cell patch-clamp studies used to evaluate VDCC activities, OT (0.1 μM) increased Ca2+ Current (Ica) by 40% with no apparent changes in the current-voltage relationship. The OT-induced increase in Ica reached the maximum in 5 min, and the increase was abolished by nimodipine (1 μM). These results suggested that (1) activation of OT receptors in porcine myometrium evokes a cascade in the PTX-insensitive G-protein–PLC-IP3 signal transduction, resulting in an increase in [Ca2+]i; (2) the OT-induced increase in [Ca2+]i is characterized by a biphasic pattern, in which the spike is predominately contributed by the intracellular Ca2+ release from the IP3-sensitive pool, and to a lesser extent by Ca2+ influx, whereas the plateau is from increased Ca2+ influx; and (3) the influx is via VDCC and receptor-operated Ca2+ channels. © 1995 Wiley-Liss, Inc.  相似文献   

9.
In guard cells, activation of anion channels (Ianion) is an early event leading to stomatal closure. Activation of Ianion has been associated with abscisic acid (ABA) and its elevation of the cytosolic free Ca2+ concentration ([Ca2+]i). However, the dynamics of the action of [Ca2+]i on Ianion has never been established, despite its importance for understanding the mechanics of stomatal adaptation to stress. We have quantified the [Ca2+]i dynamics of Ianion in Vicia faba guard cells, measuring channel current under a voltage clamp while manipulating and recording [Ca2+]i using Fura‐2 fluorescence imaging. We found that Ianion rises with [Ca2+]i only at concentrations substantially above the mean resting value of 125 ± 13 nm , yielding an apparent Kd of 720 ± 65 nm and a Hill coefficient consistent with the binding of three to four Ca2+ ions to activate the channels. Approximately 30% of guard cells exhibited a baseline of Ianion activity, but without a dependence of the current on [Ca2+]i. The protein phosphatase antagonist okadaic acid increased this current baseline over twofold. Additionally, okadaic acid altered the [Ca2+]i sensitivity of Ianion, displacing the apparent Kd for [Ca2+]i to 573 ± 38 nm . These findings support previous evidence for different modes of regulation for Ianion, only one of which depends on [Ca2+]i, and they underscore an independence of [Ca2+]i from protein (de‐)phosphorylation in controlling Ianion. Most importantly, our results demonstrate a significant displacement of Ianion sensitivity to higher [Ca2+]i compared with that of the guard cell K+ channels, implying a capacity for variable dynamics between net osmotic solute uptake and loss.  相似文献   

10.
The sequence of ionic changes involved in initiation of acrosomal exocytosis in capacitated mouse spermatozoa was investigated. Earlier studies demonstrated that a large influx of Na+ is required for exocytosis, this Na+ apparently being associated with an increase in intracellular pH (pHi) via an Na+-H+ exchanger. This rise in pHi may in turn activate calcium channels and permit the influx of extracellular Ca2+ needed to trigger acrosomal exocytosis. In the present study, the dihydropyridine voltage-dependent calcium channel antagonist nifedipine was able to inhibit significantly exocytosis in sperm cells treated in various ways capable of stimulating acrosomal loss. The monovalent cation ionophore monensin can promote Na+ entry required for both capacitation and acrosomal exocytosis, as demonstrated by using chlortetracycline to monitor changes in sperm functional potential. In the presence of 10 nM nifedipine, monensin treatment accelerated capacitation but was unable to trigger exocytosis. The requirement for internalization of a high concentration of Na+ can be bypassed by the addition of 25 mM NH4CI to raise the pHi of cells capacitated in 25NH4CI to raise the pHi of cells capacitated in 25 mM Na+ (insufficient Na+ to support exocytosis under usual conditions). Again, introduction of nifedipine was able to inhibit exocytosis. In a third experimental approach, amiloridestimulated exocytosis in capacitated cells was significantly inhibited by nifedipine. In contrast to these treatments directed at specific mechanisms, the ability of the Ca2+ inophore A23187 to promote more general entry of Ca2+ and thereby to accelerate capacitation and exocytosis was not inhibited by nifedipine. Finally, monensin-treated cells exhibited a rise and then a fall in 45Ca2+ uptake, the time course of which paralleled stimulation of acrosomal exocytosis in similarly treated cells. Nifedipine significantly reduced this uptake. The fact that nifedipine can block exocytosis induced by a variety treatments strongly suggests that voltage-dependent calcium channels play a pivotal role in the response. These results are consistent with the following sequence of ionic changes in capacitated cells leading to acrosomal exocytosis: [Na+]i ↑ → [H]i↓ → pHi ↑ → activation of calcium channels → [Ca2+]i ↑ → exocytosis. Given that zona-induced exocytosis is reportedly an indirect response, mediated by voltage-dependent calcium channels, and that the Na+-H+ exchanger in somatic cells can be activated by receptor-mediated mechanisms, we suggest that sperm-zona inter action promotes an influx of Na+ by activating an Na+-H+ exchanger and thereby initiating the above sequence of changes. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Stomatal closure in response to abscisic acid depends on mechanisms that are mediated by intracellular [Ca2+] ([Ca2+]i), and also on mechanisms that are independent of [Ca2+]i in guard cells. In this study, we addressed three important questions with respect to these two predicted pathways in Arabidopsis thaliana. (i) How large is the relative abscisic acid (ABA)‐induced stomatal closure response in the [Ca2+]i‐elevation‐independent pathway? (ii) How do ABA‐insensitive mutants affect the [Ca2+]i‐elevation‐independent pathway? (iii) Does ABA enhance (prime) the Ca2+ sensitivity of anion and inward‐rectifying K+ channel regulation? We monitored stomatal responses to ABA while experimentally inhibiting [Ca2+]i elevations and clamping [Ca2+]i to resting levels. The absence of [Ca2+]i elevations was confirmed by ratiometric [Ca2+]i imaging experiments. ABA‐induced stomatal closure in the absence of [Ca2+]i elevations above the physiological resting [Ca2+]i showed only approximately 30% of the normal stomatal closure response, and was greatly slowed compared to the response in the presence of [Ca2+]i elevations. The ABA‐insensitive mutants ost1‐2, abi2‐1 and gca2 showed partial stomatal closure responses that correlate with [Ca2+]i‐dependent ABA signaling. Interestingly, patch‐clamp experiments showed that exposure of guard cells to ABA greatly enhances the ability of cytosolic Ca2+ to activate S‐type anion channels and down‐regulate inward‐rectifying K+ channels, providing strong evidence for a Ca2+ sensitivity priming hypothesis. The present study demonstrates and quantifies an attenuated and slowed ABA response when [Ca2+]i elevations are directly inhibited in guard cells. A minimal model is discussed, in which ABA enhances (primes) the [Ca2+]i sensitivity of stomatal closure mechanisms.  相似文献   

12.
In order to examine the status of Ca2+ channels in heart sarcolemma during the development of diabetes, rats were injected intravenously with 65 mg/kg streptozotocin and hearts were removed 1, 3 and 8 weeks later. Crude membranes from the ventricular muscle were prepared and the specific binding of 3H-nitrendipine was studied by employing different concentrations of this Ca 2+-antagonist. A significant decrease in both dissociation constant and maximal number of 3H-nitrendipine binding was observed in 3 and 8 weeks diabetic preparations. No such alterations were evident in diabetic brain membranes. Treatment of diabetic animals with insulin prevented the occurrence of these changes in the myocardium. The altered 3H-nitrendipine binding characteristics in diabetic heart membranes may not be due to the high levels of circulating catecholamines in this experimental model because no such changes were seen upon injecting a high dose (40 mg/kg) of isoproterenol in rats for 24 hr. The reduced number of 3H-nitrendipine binding sites may decrease Ca2+-influx through voltage sensitive Ca2+ channels and partly explain the depressed cardiac contractile force development in chronic diabetes whereas the increased affinity of Ca2+ channels may partly explain the increased sensitivity of diabetic heart to Ca 2+.  相似文献   

13.
Cochlear inner hair cells (IHCs) develop from pre‐sensory pacemaker to sound transducer. Here, we report that this involves changes in structure and function of the ribbon synapses between IHCs and spiral ganglion neurons (SGNs) around hearing onset in mice. As synapses matured they changed from holding several small presynaptic active zones (AZs) and apposed postsynaptic densities (PSDs) to one large AZ/PSD complex per SGN bouton. After the onset of hearing (i) IHCs had fewer and larger ribbons; (ii) CaV1.3 channels formed stripe‐like clusters rather than the smaller and round clusters at immature AZs; (iii) extrasynaptic CaV1.3‐channels were selectively reduced, (iv) the intrinsic Ca2+ dependence of fast exocytosis probed by Ca2+ uncaging remained unchanged but (v) the apparent Ca2+ dependence of exocytosis linearized, when assessed by progressive dihydropyridine block of Ca2+ influx. Biophysical modeling of exocytosis at mature and immature AZ topographies suggests that Ca2+ influx through an individual channel dominates the [Ca2+] driving exocytosis at each mature release site. We conclude that IHC synapses undergo major developmental refinements, resulting in tighter spatial coupling between Ca2+ influx and exocytosis.  相似文献   

14.
The ability of membrane voltage to activate high conductance, calcium-activated (BK-type) K(+) channels is enhanced by cytosolic calcium (Ca(2+)). Activation is sensitive to a range of [Ca(2+)] that spans over four orders of magnitude. Here, we examine the activation of BK channels resulting from expression of cloned mouse Slo1 alpha subunits at [Ca(2+)] and [Mg(2+)] up to 100 mM. The half-activation voltage (V(0.5)) is steeply dependent on [Ca(2+)] in the micromolar range, but shows a tendency towards saturation over the range of 60-300 microM Ca(2+). As [Ca(2+)] is increased to millimolar levels, the V(0.5) is strongly shifted again to more negative potentials. When channels are activated by 300 microM Ca(2+), further addition of either mM Ca(2+) or mM Mg(2+) produces similar negative shifts in steady-state activation. Millimolar Mg(2+) also produces shifts of similar magnitude in the complete absence of Ca(2+). The ability of millimolar concentrations of divalent cations to shift activation is primarily correlated with a slowing of BK current deactivation. At voltages where millimolar elevations in [Ca(2+)] increase activation rates, addition of 10 mM Mg(2+) to 0 Ca(2+) produces little effect on activation time course, while markedly slowing deactivation. This suggests that Mg(2+) does not participate in Ca(2+)-dependent steps that influence current activation rate. We conclude that millimolar Mg(2+) and Ca(2+) concentrations interact with low affinity, relatively nonselective divalent cation binding sites that are distinct from higher affinity, Ca(2+)-selective binding sites that increase current activation rates. A symmetrical model with four independent higher affinity Ca(2+) binding steps, four voltage sensors, and four independent lower affinity Ca(2+)/Mg(2+) binding steps describes well the behavior of G-V curves over a range of Ca(2+) and Mg(2+). The ability of a broad range of [Ca(2+)] to produce shifts in activation of Slo1 conductance can, therefore, be accounted for by multiple types of divalent cation binding sites.  相似文献   

15.
Abstract: Oxidative insult elicited by hydrogen peroxide (H2O2) was previously shown to increase the basal intracellular Ca2+ concentration in synaptosomes. In the present study, the effect of H2O2 on the depolarization-evoked [Ca2+] signal was investigated. Pretreatment of synaptosomes with H2O2 (0.1–1 mM) augmented the [Ca2+] rise elicited by high K+ depolarization with essentially two alterations, the sudden sharp rise of [Ca2+]i due to K+ depolarization is enhanced and, instead of a decrease to a stable plateau, a slow, steady rise of [Ca2+]i follows the peak [Ca2+]i. H2O2 in the same concentration range lowered the ATP level and the [ATP]/[ADP] ratio. When carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) (1 µM) or rotenone (2 µM)/oligomycin (10 µM) was applied initially to block mitochondrial ATP production, the lowered [ATP]/[ADP] ratio was further reduced by subsequent addition of 0.5 mM H2O2. The decline of the [ATP]/[ADP] ratio was parallel with but could not explain the enhanced K+-evoked [Ca2+]i signal, indicated by experiments in which the [ATP]/[ADP] ratio was decreased by FCCP (0.1 µM) or rotenone (2 µM) to a similar value as by H2O2 without causing any alteration in the [Ca2+]i signal. These results indicate that H2O2-evoked oxidative stress, in its early phase, gives rise to a complex dysfunction in the Ca2+ homeostasis and, parallel with it, to an impaired energy status.  相似文献   

16.
We investigated the cytosolic free Ca2+ concentration ([Ca2+]i) of leech Retzius neurons in situ while varying the extracellular and intracellular pH as well as the extracellular ionic strength. Changing these parameters had no significant effect on [Ca2+]i when the membrane potential of the cells was close to its resting value. However, when the cells were depolarized by raising the extracellular K+ concentration or by applying the glutamatergic agonist kainate, extracellular pH and ionic strength markedly affected [Ca2+]i, whereas intracellular pH changes appeared to have virtually no effect. An extracellular acidification decreased [Ca2+]i, while alkalinization or reduction of the ionic strength increased it. Correspondingly, [Ca2+]i also increased when the kainate-induced extracellular acidification was reduced by raising the pH-buffering capacity. At low extracellular pH, the membrane potential to which the cells must be depolarized to evoke a detectable [Ca2+]i increase was shifted to more positive values, and it moved to more negative values at high pH. We conclude that in leech Retzius neurons extracellular pH, but not intracellular pH, affects [Ca2+]i by modulating Ca2+ influx through voltage-dependent Ca2+ channels. The results suggest that this modulation is mediated primarily by shifts in the surface potential at the extracellular side of the plasma membrane. Received: 23 January 2001/Revised: 15 June 2001  相似文献   

17.
In this study, the functional consequences of the pharmacological modulation of the M‐current (IKM) on cytoplasmic Ca2+ intracellular Ca2+concentration ([Ca2+]i) changes and excitatory neurotransmitter release triggered by various stimuli from isolated rat cortical synaptosomes have been investigated. Kv7.2 immunoreactivity was identified in pre‐synaptic elements in cortical slices and isolated glutamatergic cortical synaptosomes. In cerebrocortical synaptosomes exposed to 20 mM [K+]e, the IKM activator retigabine (RT, 10 μM) inhibited [3H]d ‐aspartate ([3H]d ‐Asp) release and caused membrane hyperpolarization; both these effects were prevented by the IKM blocker XE‐991 (20 μM). The IKM activators RT (0.1–30 μM), flupirtine (10 μM) and BMS‐204352 (10 μM) inhibited 20 mM [K+]e‐induced synaptosomal [Ca2+]i increases; XE‐991 (20 μM) abolished RT‐induced inhibition of depolarization‐triggered [Ca2+]i transients. The P/Q‐type voltage‐sensitive Ca2+channel (VSCC) blocker ω‐agatoxin IVA prevented RT‐induced inhibition of depolarization‐induced [Ca2+]i increase and [3H]d ‐Asp release, whereas the N‐type blocker ω‐conotoxin GVIA failed to do so. Finally, 10 μM RT did not modify the increase of [Ca2+]i and the resulting enhancement of [3H]d ‐Asp release induced by [Ca2+]i mobilization from intracellular stores, or by store‐operated Ca2+channel activation. Collectively, the present data reveal that the pharmacological activation of IKM regulates depolarization‐induced [3H]d ‐Asp release from cerebrocortical synaptosomes by selectively controlling the changes of [Ca2+]i occurring through P/Q‐type VSCCs.  相似文献   

18.
Ca2+ sparks are the elementary events of intracellular Ca2+ release from the sarcoplasmic reticulum in cardiac myocytes. In order to investigate whether spontaneous L-type Ca2+ channel activation contributes to the genesis of spontaneous Ca2+ sparks, we used confocal laser scanning microscopy and fluo-4 to visualize local Ca2+ sparks in intact rat ventricular myocytes. In the presence of 0.2 mmol/L CdCI2 which inhibits spontaneous L-type Ca2+ channel activation, the rate of occurrence of spontaneous Ca2+ sparks was halved from 4.20 to 2.04 events/(100 μm · s), with temporal and spatial properties of individual Ca2+ sparks unchanged. Analysis of the Cd2+-sensitive spark production revealed an open probability of ~10 -5 for L-type channels at the rest membrane potentials (-80 mV). Thus, infrequent and stochastic openings of sarcolemmal L-type Ca2+ channels in resting heart cells contribute significantly to the production of spontaneous Ca2+ sparks.  相似文献   

19.
We studied the effects of increased Ca2+ influx on α1‐adrenoceptor‐stimulated InsP formation in adult rat cardiac myocytes. We further examined if such effects could be mediated through a specific α1‐adrenoceptor subtype. [3H]InsP responses to adrenaline were dependent on extracellular Ca2+ concentration, from 0.1 μM to 2 mM, and were completely blocked by Ca2+ removal. However, in cardiac myocytes preloaded with BAPTA, a highly selective calcium chelating agent, Ca2+ concentrations higher than 1 μM had no effect on adrenaline‐stimulated [3H]InsP formation. Taken together these results suggest that [3H]InsP formation induced by α1‐adrenergic stimulation is in part mediated by increased Ca2+ influx. Consistent with this, ionomycin, a calcium ionophore, stimulated [3H]InsP formation. This response was additive with the response to adrenaline stimulation implying that different signaling mechanisms may be involved. In cardiac myocytes treated with the α1B‐adrenoceptor alkylating agent, CEC, [3H]InsP formation remained unaffected by increased Ca2+ concentrations, a pattern similar to that observed when intracellular Ca2+ was chelated with BAPTA. In contrast, addition of the α1A‐subtype antagonist, 5′‐methyl urapidil, did not affect the Ca2+ dependence of [3H]InsP formation. Neither nifedipine, a voltage‐dependent Ca2+ channel blocker nor the inorganic Ca2+ channel blockers, Ni2+ and Co2+, had any effect on adrenaline stimulated [3H]InsP, at concentrations that inhibit Ca2+ channels. The results suggest that in adult rat cardiac myocytes, in addition to G protein‐mediated response, α1‐adrenergic‐stimulated [3H]InsP formation is activated by increased Ca2+ influx mediated by the α1B‐subtype. J. Cell. Biochem. 84: 201–210, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   

20.
Changes in free Ca2+ in sieve-tube sap have been proposed to be important in the regulation of phloem transport, and Ca2+-activated protein kinase activity has been described in phloem exudate (S.A. Avdiushko et al. 1997 J Plant Physiol 150: 552–559). Using atomic absorption spectrometry, we have determined that the total Ca2+ concentration in sieve-tube sap from Ricinus seedlings containing the endosperm is about 100 μM (range 80–150 μM). We used three independent methods to determine the free calcium ion concentration in the phloem sap ([Ca2+]p). The first method was to calculate [Ca2+]p from the total Ca2+ concentration, in combination with the binding constants and concentrations of the ionic solutes in phloem sap. The resultant estimate of [Ca2+]p was 63 μM. The second method used the Ca-specific fluorescent dye 2-[2-(5-carboxy)oxazole]-5-hydroxy-6-aminobenzofuran-N,N,O-triacetic-acid (FURAPTRA) on exuded sieve-tube sap. Although the sap interfered severely with the fluorescence properties of the dye, Ca2+ titrations enabled a value of [Ca2+]p = 20 μM to be deduced. The third method used Ca2+-selective microelectrodes on exuded sap samples, which gave an average value for [Ca2+]p = 13 μM. No significant change in this value was observed during the sap exudation period. The Ca2+ buffer capacity was determined and the result of about 0.6 mmol · l−1 · pCa−1 displayed excellent agreement with the measured values of free and total Ca2+ concentration in sieve-tube sap. Since the measured values for free Ca2+ are 20- to 100-fold higher than those usually reported for the cytosol of a range of plant cells in resting conditions, it is concluded that either regulation of [Ca2+]p is of limited physiological importance, or that the Ca2+-dependent proteins respond only to relatively high [Ca2+]p. The implications for regulation of cytosolic free Ca2+ in symplastically connected companion cells is discussed. Received: 15 February 1998 / Accepted: 14 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号