首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prothrombin is activated to thrombin by two sequential factor Xa-catalyzed cleavages, at Arg271 followed by cleavage at Arg320. Factor Va, along with phospholipid and Ca2+, enhances the rate of the process by 300,000-fold, reverses the order of cleavages, and directs the process through the meizothrombin pathway, characterized by initial cleavage at Arg320. Previous work indicated reduced rates of prothrombin activation with recombinant mutant factor Va defective in factor Xa binding (E323F/Y324F and E330M/V331I, designated factor VaFF/MI). The present studies were undertaken to determine whether loss of activity can be attributed to selective loss of efficiency at one or both of the two prothrombin-activating cleavage sites. Kinetic constants for the overall activation of prothrombin by prothrombinase assembled with saturating concentrations of recombinant mutant factor Va were calculated, prothrombin activation was assessed by SDS-PAGE, and rate constants for both cleavages were analyzed from the time course of the concentration of meizothrombin. Prothrombinase assembled with factor VaFF/MI had decreased k(cat) for prothrombin activation with Km remaining unaffected. Prothrombinase assembled with saturating concentrations of factor VaFF/MI showed significantly lower rate for cleavage of plasma-derived prothrombin at Arg320 than prothrombinase assembled with saturating concentrations of wild type factor Va. These results were corroborated by analysis of cleavage of recombinant prothrombin mutants rMz-II (R155A/R284A/R271A) and rP2-II (R155A/R284A/R320A), which can be cleaved only at Arg320 or Arg271, respectively. Time courses of these mutants indicated that mutations in the factor Xa binding site of factor Va reduce rates for both bonds. These data indicate that the interaction of factor Xa with the heavy chain of factor Va strongly influences the catalytic activity of the enzyme resulting in increased rates for both prothrombin-activating cleavages.  相似文献   

2.
Membrane-bound factor Xa alone catalyzes prothrombin activation following initial cleavage at Arg(271) and prethrombin 2 formation (pre2 pathway). Factor Va directs prothrombin activation by factor Xa through the meizothrombin pathway, characterized by initial cleavage at Arg(320) (meizo pathway). We have shown previously that a pentapeptide encompassing amino acid sequence 695-699 from the COOH terminus of the heavy chain of factor Va (Asp-Tyr-Asp-Tyr-Gln, DYDYQ) inhibits prothrombin activation by prothrombinase in a competitive manner with respect to substrate. To understand the mechanism of inhibition of thrombin formation by DYDYQ, we have studied prothrombin activation by gel electrophoresis. Titration of plasma-derived prothrombin activation by prothrombinase, with increasing concentrations of peptide, resulted in complete inhibition of the meizo pathway. However, thrombin formation still occurred through the pre2 pathway. These data demonstrate that the peptide preferentially inhibits initial cleavage of prothrombin by prothrombinase at Arg(320). These findings were corroborated by studying the activation of recombinant mutant prothrombin molecules rMZ-II (R155A/R284A/R271A) and rP2-II (R155A/R284A/R320A) which can be only cleaved at Arg(320) and Arg(271), respectively. Cleavage of rMZ-II by prothrombinase was completely inhibited by low concentrations of DYDYQ, whereas high concentrations of pentapeptide were required to inhibit cleavage of rP2-II. The pentapeptide also interfered with prothrombin cleavage by membrane-bound factor Xa alone in the absence of factor Va increasing the rate for cleavage at Arg(271) of plasma-derived prothrombin or rP2-II. Our data demonstrate that pentapeptide DYDYQ has opposing effects on membrane-bound factor Xa for prothrombin cleavage, depending on the incorporation of factor Va in prothrombinase.  相似文献   

3.
The activation of bovine prothrombin by prothrombinase (Factor Xa, Factor Va, synthetic phospholipid vesicles, and calcium ion) was studied in the presence of the fluorescent, reversible thrombin inhibitor dansylarginine-N-(3-ethyl-1,5-pentanediyl) amide (DAPA). Recordings of fluorescence intensity during prothrombin activation exhibited maxima that decreased to stable limiting values. These data suggested the transient appearance of the meizothrombin-DAPA complex, which exhibits fluorescence with 1.5-fold greater intensity than the thrombin-DAPA complex. At substrate concentrations well below Km, progress curves could be fitted by equations describing an ordered, sequential conversion of prothrombin to thrombin through the intermediate meizothrombin via two pseudo-first order steps. The pseudo-first order rate constants for both steps varied linearly with enzyme concentration, indicating that both steps are catalyzed by prothrombinase. The progress of the reaction was also monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and densitometry analyses of aliquots removed at intervals spanning the reaction. These analyses confirmed both the existence of meizothrombin and its time course as predicted from the equations used to analyze fluorescence intensity profiles. Meizothrombin levels peaked at about 0.3 mol/mol initial prothrombin under the conditions typically studied. In addition, prethrombin 2, which is the intermediate expected from cleavages occurring in the order opposite that required to form meizothrombin, was not observed under any of the conditions examined. These data indicate that prothrombin activation catalyzed by the fully assembled prothrombinase complex proceeds via an ordered, sequential reaction with meizothrombin as the sole intermediate.  相似文献   

4.
The prothrombinase complex consists of the protease factor Xa, Ca2+, and factor Va assembled on an anionic membrane. Factor Va functions both as a receptor for factor Xa and a positive effector of factor Xa catalytic efficiency and thus is key to efficient conversion of prothrombin to thrombin. The activation of the procofactor, factor V, to factor Va is an essential reaction that occurs early in the process of tissue factor-initiated blood coagulation; however, the catalytic sequence leading to formation of factor Va is a subject of disagreement. We have used biophysical and biochemical approaches to establish the second order rate constants and reaction pathways for the activation of phospholipid-bound human factor V by native and recombinant thrombin and meizothrombin, by mixtures of prothrombin activation products, and by factor Xa. We have also reassessed the activation of phospholipid-bound human prothrombin by factor Xa. Numerical simulations were performed incorporating the various pathways of factor V activation including the presence or absence of the pathway of factor V-independent prothrombin activation by factor Xa. Reaction pathways for factor V activation are similar for all thrombin forms. Empirical rate constants and the simulations are consistent with the following mechanism for factor Va formation. alpha-Thrombin, derived from factor Xa cleavage of phospholipid-bound prothrombin via the prethrombin 2 pathway, catalyzes the initial activation of factor V; generation of factor Va in a milieu already containing factor Xa enables prothrombinase formation with consequent meizothrombin formation; and meizothrombin functions as an amplifier of the process of factor V activation and thus has an important procoagulant role. Direct activation of factor V by factor Xa at physiologically relevant concentrations does not appear to be a significant contributor to factor Va formation.  相似文献   

5.
Prothrombinase activates prothrombin through initial cleavage at Arg(320) followed by cleavage at Arg(271). This pathway is characterized by the generation of an enzymatically active, transient intermediate, meizothrombin, that has increased chromogenic substrate activity but poor clotting activity. The heavy chain of factor Va contains an acidic region at the COOH terminus (residues 680-709). We have shown that a pentapeptide from this region (DYDYQ) inhibits prothrombin activation by prothrombinase by inhibiting meizothrombin generation. To ascertain the function of these regions, we have created a mutant recombinant factor V molecule that is missing the last 30 amino acids from the heavy chain (factor V(Delta680-709)) and a mutant molecule with the (695)DYDY (698) --> AAAA substitutions (factor V(4A)). The clotting activities of both recombinant mutant factor Va molecules were impaired compared to the clotting activity of wild-type factor Va (factor Va (Wt)). Using an assay employing purified reagents, we found that prothrombinase assembled with factor Va(Delta680-709) displayed an approximately 39% increase in k cat, while prothrombinase assembled with factor Va(4A) exhibited an approximately 20% increase in k cat for the activation of prothrombin as compared to prothrombinase assembled with factor Va(Wt). Gel electrophoresis analyzing prothrombin activation by prothrombinase assembled with the mutant molecules revealed a delay in prothrombin activation with persistence of meizothrombin. Our data demonstrate that the COOH-terminal region of factor Va heavy chain is indeed crucial for coordinated prothrombin activation by prothrombinase because it regulates meizothrombin cleavage at Arg(271) and suggest that this portion of factor Va is partially responsible for the enhanced procoagulant function of prothrombinase.  相似文献   

6.
Thrombin activated factor Va (factor VIIa, residues 1-709 and 1546-2196) has an apparent dissociation constant (Kd,app) for factor Xa within prothrombinase of approximately 0.5 nM. A protease (NN) purified from the venom of the snake Naja nigricollis nigricollis, cleaves human factor V at Asp697, Asp1509, and Asp1514 to produce a molecule (factor VNN) that is composed of a Mr 100,000 heavy chain (amino acid residues 1-696) and a Mr 80,000 light chain (amino acid residues 1509/1514-2196). Factor VNN, has a Kd,app for factor Xa of 4 nm and reduced clotting activity. Cleavage of factor VIIa by NN at Asp697 results in a cofactor that loses approximately 60-80% of its clotting activity. An enzyme from Russell's viper venom (RVV) cleaves human factor V at Arg1018 and Arg1545 to produce a Mr 150,000 heavy chain and Mr 74,000 light chain (factor VRVV, residues 1-1018 and 1546-2196). The RVV species has affinity for factor Xa and clotting activity similar to the thrombin-activated factor Va. Cleavage of factor VNN at Arg1545 by alpha-thrombin (factor VNN/IIa) or RVV (factor VNN/RVV) leads to enhanced affinity of the cofactor for factor Xa (Kd,app approximately 0.5 nM). A synthetic peptide containing the last 13 residues from the heavy chain of factor Va (amino acid sequence 697-709, D13R) was found to be a competitive inhibitor of prothrombinase with respect to prothrombin. The peptide was also found to specifically interact with thrombin-agarose. These data demonstrate that 1) cleavage at Arg1545 and formation of the light chain of factor VIIa is essential for high affinity binding and function of factor Xa within prothrombinase and 2) a binding site for prothrombin is contributed by amino acid residues 697-709 of the heavy chain of the cofactor.  相似文献   

7.
Barhoover MA  Orban T  Bukys MA  Kalafatis M 《Biochemistry》2008,47(48):12835-12843
The prothrombinase complex catalyzes the activation of prothrombin to alpha-thrombin. We have repetitively shown that amino acid region (695)DYDY(698) from the COOH terminus of the heavy chain of factor Va regulates the rate of cleavage of prothrombin at Arg(271) by prothrombinase. We have also recently demonstrated that amino acid region (334)DY(335) is required for the optimal activity of prothrombinase. To assess the effect of these six amino acid residues on cofactor activity, we created recombinant factor Va molecules combining mutations at amino acid regions 334-335 and 695-698 as follows: factor V(3K) ((334)DY(335) --> KF and (695)DYDY(698) --> KFKF), factor V(KF/4A) ((334)DY(335) --> KF and (695)DYDY(698) --> AAAA), and factor V(6A) ((334)DY(335) --> AA and (695)DYDY(698) --> AAAA). The recombinant factor V molecules were expressed and purified to homogeneity. Factor Va(3K), factor Va(K4/4A), and factor Va(6A) had reduced affinity for factor Xa, when compared to the affinity of the wild-type molecule (factor Va(Wt)) for the enzyme. Prothrombinase assembled with saturating concentrations of factor Va(3K) had a 6-fold reduced second-order rate constant for prothrombin activation compared to the value obtained with prothrombinase assembled with factor Va(Wt), while prothrombinase assembled with saturating concentrations of factor Va(KF/4A) and factor Va(6A) had approximately 1.5-fold reduced second-order rate constants. Overall, the data demonstrate that amino acid region 334-335 together with amino acid region 695-698 from factor Va heavy chain are part of a cooperative mechanism within prothrombinase regulating cleavage and activation of prothrombin by factor Xa.  相似文献   

8.
The prothrombinase complex, composed of the proteinase, factor Xa, bound to factor Va on membranes, catalyzes thrombin formation by the specific and ordered proteolysis of prothrombin at Arg(323)-Ile(324), followed by cleavage at Arg(274)-Thr(275). We have used a fluorescent derivative of meizothrombin des fragment 1 (mIIaDeltaF1) as a substrate analog to assess the mechanism of substrate recognition in the second half-reaction of bovine prothrombin activation. Cleavage of mIIaDeltaF1 exhibits pseudo-first order kinetics regardless of the substrate concentration relative to K(m). This phenomenon arises from competitive product inhibition by thrombin, which binds to prothrombinase with exactly the same affinity as mIIaDeltaF1. As thrombin is known to bind to an exosite on prothrombinase, initial interactions at an exosite likely play a role in the enzyme-substrate interaction. Occupation of the active site of prothrombinase by a reversible inhibitor does not exclude the binding of mIIaDeltaF1 to the enzyme. Specific recognition of mIIaDeltaF1 is achieved through an initial bimolecular reaction with an enzymic exosite, followed by an active site docking step in an intramolecular reaction prior to bond cleavage. By alternate substrate studies, we have resolved the contributions of the individual binding steps to substrate affinity and catalysis. This pathway for substrate binding is identical to that previously determined with a substrate analog for the first half-reaction of prothrombin activation. We show that differences in the observed kinetic constants for the two cleavage reactions arise entirely from differences in the inferred equilibrium constant for the intramolecular binding step that permits elements surrounding the scissile bond to dock at the active site of prothrombinase. Therefore, substrate specificity is achieved by binding interactions with an enzymic exosite that tethers the protein substrate to prothrombinase and directs cleavage at two spatially distinct scissile bonds.  相似文献   

9.
Alpha-thrombin has two separate electropositive binding exosites (anion binding exosite I, ABE-I and anion binding exosite II, ABE-II) that are involved in substrate tethering necessary for efficient catalysis. Alpha-thrombin catalyzes the activation of factor V and factor VIII following discrete proteolytic cleavages. Requirement for both anion binding exosites of the enzyme has been suggested for the activation of both procofactors by alpha-thrombin. We have used plasma-derived alpha-thrombin, beta-thrombin (a thrombin molecule that has only ABE-II available), and a recombinant prothrombin molecule rMZ-II (R155A/R284A/R271A) that can only be cleaved at Arg(320) (resulting in an enzymatically active molecule that has only ABE-I exposed, rMZ-IIa) to ascertain the role of each exosite for procofactor activation. We have also employed a synthetic sulfated pentapeptide (DY(SO(3)(-))DY(SO(3)(-))Q, designated D5Q1,2) as an exosite-directed inhibitor of thrombin. The clotting time obtained with beta-thrombin was increased by approximately 8-fold, whereas rMZ-IIa was 4-fold less efficient in promoting clotting than alpha-thrombin under similar experimental conditions. Alpha-thrombin readily activated factor V following cleavages at Arg(709), Arg(1018), and Arg(1545) and factor VIII following proteolysis at Arg(372), Arg(740), and Arg(1689). Cleavage of both procofactors by alpha-thrombin was significantly inhibited by D5Q1,2. In contrast, beta-thrombin was unable to cleave factor V at Arg(1545) and factor VIII at both Arg(372) and Arg(1689). The former is required for light chain formation and expression of optimum factor Va cofactor activity, whereas the latter two cleavages are a prerequisite for expression of factor VIIIa cofactor activity. Beta-thrombin was found to cleave factor V at Arg(709) and factor VIII at Arg(740), albeit less efficiently than alpha-thrombin. The sulfated pentapeptide inhibited moderately both cleavages by beta-thrombin. Under similar experimental conditions, membrane-bound rMZ-IIa cleaved and activated both procofactor molecules. Activation of the two procofactors by membrane-bound rMZ-IIa was severely impaired by D5Q1,2. Overall the data demonstrate that ABE-I alone of alpha-thrombin can account for the interaction of both procofactors with alpha-thrombin resulting in their timely and efficient activation. Because formation of meizothrombin precedes that of alpha-thrombin, our findings also imply that meizothrombin may be the physiological activator of both procofactors in vivo in the presence of a procoagulant membrane surface during the early stages of coagulation.  相似文献   

10.
The factor Va (FVa) inactivation by activated protein C (APC), mediated by cleavages at Arg306 and Arg506 in FVa, is inhibited by both factor Xa (FXa) and prothrombin. Although FXa is known to specifically inhibit the Arg506 cleavage, the effect of prothrombin has not been confined to one cleavage site. We used recombinant FV variants, FV:R506Q/R679Q and FV:R306Q/R679Q, to investigate the effect of prothrombin on the individual cleavage sites. The APC-mediated FVa inhibition was monitored by a prothrombinase-based FVa assay, and apparent first order rate constants were calculated for each of the cleavage sites both in the presence and absence of prothrombin. Prothrombin impaired cleavages at both Arg306 and Arg506 and the inhibition correlated with a delayed appearance of proteolytic products on Western blots. Almost complete inhibition was obtained at around 3 microm prothrombin, whereas half-maximal inhibition was obtained at 0.7 microm prothrombin. After cleavage of prothrombin by thrombin, the inhibitory activity was lost. The inhibitory effect of prothrombin on APC-mediated inhibition of FVa was seen both in the presence and absence of protein S, but in particular for the Arg306 sites, it was more pronounced in the presence of protein S. Thus, prothrombin inhibition of APC inactivation of FVa appears to be due to both impaired APC function and decreased APC cofactor function of protein S. In conclusion, FVa, being part of the prothrombinase complex, is protected from APC by both FXa and prothrombin. Release of products of prothrombin activation from the prothrombinase complex would alleviate the protection, allowing APC-mediated inactivation of FVa.  相似文献   

11.
In the penultimate step of the coagulation cascade, the multidomain vitamin-K-dependent zymogen prothrombin is converted to thrombin by the prothrombinase complex composed of factor Xa, cofactor Va, and phospholipids. Activation of prothrombin requires cleavage at two residues, R271 and R320, along two possible pathways generating either the intermediate prethrombin-2 (following initial cleavage at R271) or meizothrombin (following initial cleavage at R320). The former pathway is preferred in the absence of and the latter in the presence of cofactor Va. Several mechanisms have been proposed to explain this preference, but the role of the sequence and position of the sites of cleavage has not been thoroughly investigated. In this study, we engineered constructs where the sequences 261DEDSDRAIEGRTATSEYQT279 and 310RELLESYIDGRIVEGSDAE328 were swapped between the R271 and R320 sites. We found that in the absence of cofactor Va, the wild-type sequence at the R271 site is cleaved preferentially regardless of its position at the R271 or R320 site, whereas in the presence of cofactor Va, the R320 site is cleaved preferentially regardless of its sequence. Additional single-molecule FRET measurements revealed that the environment of R271 changes significantly upon cleavage at R320 due to the conformational transition from the closed form of prothrombin to the open form of meizothrombin. Detailed kinetics of cleavage at the R271 site were monitored by a newly developed assay based on loss of FRET. These findings show how sequence and position of the cleavage sites at R271 and R320 dictate the preferred pathway of prothrombin activation.  相似文献   

12.
The conversion of prothrombin to thrombin is catalyzed by prothrombinase, an enzyme complex composed of the serine proteinase factor Xa and a cofactor protein, factor Va, assembled on membranes. Kinetic studies indicate that interactions with extended macromolecular recognition sites (exosites) rather than the active site of prothrombinase are the principal determinants of binding affinity for substrate or product. We now provide a model-independent evaluation of such ideas by physical studies of the interaction of substrate derivatives and product with prothrombinase. The enzyme complex was assembled using Xa modified with a fluorescent peptidyl chloromethyl ketone to irreversibly occlude the active site. Binding was inferred by prethrombin 2-dependent perturbations in the fluorescence of Oregon Green(488) at the active site of prothrombinase. Active site-independent binding was also unequivocally established by fluorescence resonance energy transfer between 2,6-dansyl tethered to the active site of Xa and eosin tethered to the active sites of either thrombin or meizothrombin des fragment 1. Comparable interprobe distances obtained from these measurements suggest that substrate and product interact equivalently with the enzyme. Competition established the ability of a range of substrate or product derivatives to bind in a mutually exclusive fashion to prothrombinase. Equilibrium dissociation constants obtained for the active site-independent binding of prothrombin, prethrombin 2, meizothrombin des fragment 1 and thrombin to prothrombinase were comparable with their affinities inferred from kinetic studies using active enzyme. Our findings directly establish that binding affinity is principally determined by the exosite-mediated interaction of either the substrate, both possible intermediates, or product with prothrombinase. A single type of exosite binding interaction evidently drives affinity and binding specificity through the stepwise reactions necessary for the two cleavage reactions of prothrombin activation and product release.  相似文献   

13.
We have demonstrated that amino acids E (323), Y (324), E (330), and V (331) from the factor Va heavy chain are required for the interaction of the cofactor with factor Xa and optimum rates of prothrombin cleavage. We have also shown that amino acid region 332-336 contains residues that are important for cofactor function. Using overlapping peptides, we identified amino acids D (334) and Y (335) as contributors to cofactor activity. We constructed recombinant factor V molecules with the mutations D (334) --> K and Y (335) --> F (factor V (KF)) and D (334) --> A and Y (335) --> A (factor V (AA)). Kinetic studies showed that while factor Va (KF) and factor Va (AA) had a K D for factor Xa similar to the K D observed for wild-type factor Va (factor Va (WT)), the clotting activities of the mutant molecules were impaired and the k cat of prothrombinase assembled with factor Va (KF) and factor Va (AA) was reduced. The second-order rate constant of prothrombinase assembled with factor Va (KF) or factor Va (AA) for prothrombin activation was approximately 10-fold lower than the second-order rate constant for the same reaction catalyzed by prothrombinase assembled with factor Va (WT). We also created quadruple mutants combining mutations in the amino acid region 334-335 with mutations at the previously identified amino acids that are important for factor Xa binding (i.e., E (323)Y (324) and E (330)V (331)). Prothrombinase assembled with the quadruple mutant molecules displayed a second-order rate constant up to 400-fold lower than the values obtained with prothrombinase assembled with factor Va (WT). The data demonstrate that amino acid region 334-335 is required for the rearrangement of enzyme and substrate necessary for efficient catalysis of prothrombin by prothrombinase.  相似文献   

14.
The protease α-thrombin is a key enzyme of the coagulation process as it is at the cross-roads of both the pro- and anti-coagulant pathways. The main source of α-thrombin in vivo is the activation of prothrombin by the prothrombinase complex assembled on either an activated cell membrane or cell fragment, the most relevant of which is the activated platelet surface. When prothrombinase is assembled on synthetic phospholipid vesicles, prothrombin activation proceeds with an initial cleavage at Arg-320 yielding the catalytically active, yet effectively anticoagulant intermediate meizothrombin, which is released from the enzyme complex ∼30–40% of the time. Prothrombinase assembled on the surface of activated platelets has been shown to proceed through the inactive intermediate prethrombin-2 via an initial cleavage at Arg-271 followed by cleavage at Arg-320. The current work tests whether or not platelet-associated prothrombinase proceeds via a concerted mechanism through a study of prothrombinase assembly and function on collagen-adhered, thrombin-activated, washed human platelets in a flow chamber. Prothrombinase assembly was demonstrated through visualization of bound factor Xa by confocal microscopy using a fluorophore-labeled anti-factor Xa antibody, which demonstrated the presence of distinct platelet subpopulations capable of binding factor Xa. When prothrombin activation was monitored at a typical venous shear rate over preassembled platelet-associated prothrombinase neither potential intermediate, meizothrombin or prethrombin-2, was observed in the effluent. Collectively, these findings suggest that platelet-associated prothrombinase activates prothrombin via an efficient concerted mechanism in which neither intermediate is released.  相似文献   

15.
Meizothrombin and thrombin formation were quantitated during factor Xa-catalyzed activation of human prothrombin in reaction systems containing purified proteins and in plasma. In the purified system considerable amounts of meizothrombin accumulated when prothrombin was activated by factor Xa (with or without accessory components) under initial steady state conditions. The ratio of the rates of meizothrombin and thrombin formation was not influenced by variation of the pH, temperature, or ionic strength of the reaction medium. When 2 microM prothrombin was activated by the complete prothrombinase complex (factor Xa, factor Va, Ca2+, and phospholipid) 80-90% of the initially formed reaction product was meizothrombin. Lowering the prothrombin concentration from 2 to 0.03 microM caused a gradual decrease in the ratio of meizothrombin/thrombin formation from 5 to 0.6. When the phosphatidylserine content of the phospholipid vesicles was varied between 20 and 1 mol % and prothrombin activation was analyzed at 2 microM prothrombin the relative amount of meizothrombin formed decreased from 85 to 55%. With platelets, cephalin, or thromboplastin as procoagulant lipid, thrombin was the major reaction product and only 30-40% of the activation product was meizothrombin. We also analyzed complete time courses of prothrombin activation both with purified proteins and in plasma. In reaction systems with purified proteins substantial amounts of meizothrombin accumulated under a wide variety of experimental conditions. However, little or no meizothrombin was detected in plasma in which coagulation was initiated via the extrinsic pathway with thromboplastin or via the intrinsic pathway with kaolin plus phospholipid (cephalin, platelets, or phosphatidylserine-containing vesicles). Thus, thrombin was the only active prothrombin activation product that accumulated during ex vivo coagulation experiments in plasma.  相似文献   

16.
Incubation of prothrombin on cultured human umbilical vein endothelial cells with factor Xa and calcium ions induced the activation of prothrombin. The mechanism of prothrombin activation was analyzed on sodium dodecyl sulfate gels using immuno- and amido-blotting techniques. It was demonstrated that meizothrombin was formed as an intermediate in prothrombin activation on the endothelial cell surface. In addition, considerable amounts of meizothrombin des-fragment-1 accumulated during prothrombin activation and were not further converted to thrombin. Although preincubation of the endothelial cells with thrombin did not influence the formation of meizothrombin, addition of hirudin to the prothrombin activation mixture inhibited the formation of meizothrombin and meizothrombin des-fragment-1 almost completely. This indicated that the activity of endogenously formed thrombin influenced the formation of meizothrombin via a feedback mechanism. The increased formation of meizothrombin and accumulation of meizothrombin des-fragment-1 in a latter phase of prothrombin activation points to a regulatory mechanism in hemostasis which subdues the formation of the procoagulant alpha-thrombin.  相似文献   

17.
The molecular basis of the substrate and inhibitor specificity of factor Xa, the serine proteinase of the prothrombinase complex, was investigated by constructing two mutants of human antithrombin (HAT) in which the reactive site loop of the serpin from the P4-P4' site was replaced with the corresponding residues of the two factor Xa cleavage sites in prothrombin (HAT/Proth-1 and HAT/Proth-2). These mutants together with prethrombin-2, the smallest zymogen form of thrombin containing only the second factor Xa cleavage site, were expressed in mammalian cells, purified to homogeneity and characterized in kinetic reactions with factor Xa in both the absence and presence of cofactors; factor Va, high affinity heparin and pentasaccharide fragment of heparin. HAT/Proth-1 inactivated factor Xa approximately 3-4-fold better than HAT/Proth-2 in either the absence or presence of heparin cofactors. In the absence of a cofactor, factor Xa reacted with the HAT/Proth-2 and prethrombin-2 with similar second-order rate constants (approximately 2-3x10(2) M(-1)s(-1)). Pentasaccharide catalyzed the inactivation rate of factor Xa by the HAT mutants 300-500-fold. A similar 10(4)-10(5)-fold enhancement in the reactivity of factor Xa with prethrombin-2 and the HAT mutants was observed in the presence of the cofactors Va and heparin, respectively. Factor Va did not influence the reactivity of factor Xa with either one of the HAT mutants. These results suggest that (1) in the absence of a cofactor, the P4-P4' residues of HAT and prethrombin-2 primarily determine the specificity reactions with factor Xa, (2) factor Va binding to factor Xa is not associated with allosteric changes in the catalytic pocket of enzyme that would involve interactions with the P4-P4' binding sites, and (3) similar to allosteric activation of HAT by heparin, a role for factor Va in the prothrombinase complex may involve rearrangement of the residues surrounding the scissile bond of the substrate to facilitate its optimal docking into the catalytic pocket of factor Xa.  相似文献   

18.
Thrombin formation results from cleavage of prothrombin following Arg(271) and Arg(320). Both bonds are accessible for cleavage, yet the sequential action of prothrombinase on Arg(320) followed by Arg(271) is implied by the intermediate observed during prothrombin activation. We have studied the individual cleavage reactions catalyzed by prothrombinase by using a series of recombinant derivatives: wild type prothrombin (II(WT)) contained both cleavage sites; II(Q271) contained a single cleavable site at Arg(320); II(Q320) and II(A320) contained a single cleavable site at Arg(271); and II(QQ) was resistant to cleavage. Cleavage at Arg(320) in II(Q271) could account for the initial cleavage reaction leading to the consumption of either plasma prothrombin or II(WT), whereas cleavage at Arg(271) in either II(Q320) or II(A320) was found to be approximately 30-fold slower. Equivalent kinetic constants were obtained for three of the four possible half-reactions. Slow cleavage at Arg(271) in intact prothrombin resulted from an approximately 30-fold reduction in V(max). Thus, the observed pathway of bond cleavage by prothrombinase can be explained by the kinetic constants for the four possible individual cleavage reactions. II(Q320) was a competitive inhibitor of II(Q271) cleavage, and II(QQ) was a competitive inhibitor for each reaction with K(i) approximately K(m). The data are inconsistent with previous proposals and suggest a model in which substrates for each of the four possible half-reactions bind in a mutually exclusive manner and with equal affinity to prothrombinase in a cleavage site-independent way. Despite equivalent exosite binding interactions between all four possible substrates and the enzyme, we propose that ordered bond cleavage results from the constraints associated with the binding of substrates in one of two conformations to a single form of prothrombinase.  相似文献   

19.
Activation of human factor V by factor Xa and thrombin   总被引:12,自引:0,他引:12  
D D Monkovic  P B Tracy 《Biochemistry》1990,29(5):1118-1128
The activation of human factor V by factor Xa and thrombin was studied by functional assessment of cofactor activity and sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by either autoradiography of 125I-labeled factor V activation products or Western blot analyses of unlabeled factor V activation products. Cofactor activity was measured by the ability of the factor V/Va peptides to support the activation of prothrombin. The factor Xa catalyzed cleavage of factor V was observed to be time, phospholipid, and calcium ion dependent, yielding a cofactor with activity equal to that of thrombin-activated factor V (factor Va). The cleavage pattern differed markedly from the one observed in the bovine system. The factor Xa activated factor V subunits expressing cofactor activity were isolated and found to consist of peptides of Mr 220,000 and 105,000. Although thrombin cleaved the Mr 220,000 peptide to yield peptides previously shown to be products of thrombin activation, cofactor activity did not increase. N-Terminal sequence analysis confirmed that both factor Xa and thrombin cleave factor V at the same bond to generate the Mr 220,000 peptide. The factor Xa dependent functional assessment of 125I-labeled factor V coupled with densitometric analyses of the cleavage products indicated that the cofactor activity of factor Xa activated factor V closely paralleled the appearance of the Mr 220,000 peptide. This observation facilitated the study of the kinetics of factor V activation by allowing the activation of factor V to be monitored by the appearance of the Mr 220,000 peptide (factor Xa activation) or the Mr 105,000 peptide (thrombin activation). Factor Xa catalyzed activation of factor V obeyed Michaelis-Menten kinetics and was characterized by a Km of 10.4 nM, a kcat of 2.6 min-1, and a catalytic efficiency (kcat/Km) of 4.14 X 10(6) M-1 s-1. The thrombin-catalyzed activation of factor V was characterized by a Km of 71.7 nM, a kcat of 14.0 min-1, and a catalytic efficiency of 3.26 X 10(6) M-1 s-1. This indicates that factor Xa is as efficient an enzyme toward factor V as thrombin.  相似文献   

20.
The preferred pathway for prothrombin activation by prothrombinase involves initial cleavage at Arg(320) to produce meizothrombin, which is then cleaved at Arg(271) to liberate thrombin. Exosite binding drives substrate affinity and is independent of the bond being cleaved. The pathway for cleavage is determined by large differences in V(max) for cleavage at the two sites within intact prothrombin. By fluorescence binding studies in the absence of catalysis, we have assessed the ability of the individual cleavage sites to engage the active site of Xa within prothrombinase at equilibrium. Using a panel of recombinant cleavage site mutants, we show that in intact prothrombin, the Arg(320) site effectively engages the active site in a 1:1 interaction between substrate and enzyme. In contrast, the Arg(271) site binds to the active site poorly in an interaction that is approximately 600-fold weaker. Perceived substrate affinity is independent of active site engagement by either cleavage site. We further show that prior cleavage at the 320 site or the stabilization of the uncleaved zymogen in a proteinase-like state facilitates efficient docking of Arg(271) at the active site of prothrombinase. Therefore, we establish direct relationships between docking of either cleavage site at the active site of the catalyst, the V(max) for cleavage at that site, substrate conformation, and the resulting pathway for prothrombin cleavage. Exosite tethering of the substrate in either the zymogen or proteinase conformation dictates which cleavage site can engage the active site of the catalyst and enforces the sequential cleavage of prothrombin by prothrombinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号