首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
5.
The complete nucleotide sequence of the rat aldolase A isozyme gene, including the 5' and 3' flanking sequences, was determined. The gene comprises ten exons, spans 4827 base-pairs and occurs in a single copy per haploid rat genome. The genomic DNA sequence was compared with those of three species of rat aldolase A mRNA (mRNAs I, II and III) that have been found to differ from each other only in the 5' non-coding region and to be expressed tissue-specifically. It revealed that the first exon (exon M1) encodes the 5' non-coding sequence of mRNA I, while the second exon (exon AH1) encodes those of mRNAs II and III and the following eight exons (exons 2 to 9) are shared commonly by all the mRNA species. These results allowed us to conclude that mRNA I and mRNAs II, III were generated from a single aldolase A gene by alternative usage of exon M1 or exon AH1 in addition to exons 2 to 9. S1 nuclease mapping of the 5' ends of their precursor RNAs suggested that these three mRNA species were transcribed from three different initiation sites on the single gene.  相似文献   

6.
Arabidopsis PsbQ, encoding a 16 kDa protein of the oxygen-evolving complex, is regulated by light and is expressed preferentially in leaf tissues. To analyze the components required for light-regulated and organ-specific expression of PsbQA, several promoter constructs were generated and expressed in tobacco. The 2.2 kb promoter could confer organ-specific expression of the reporter gene, whereas regulatory elements for light-dependent induction could not be located within this promoter and the transcribed region extending up to a second exon, represented by a genomic fragment encompassing the gene. The genomic fragment representing the transcribed region, however, could confer light regulation even on a constitutive promoter, as observed by steady-state mRNA analysis in T0 and T1 tobacco plants. The results obtained have led to the conclusion that regulatory elements for organ-specificity mainly reside in the promoter region whereas the transcribed region of the gene has an important role in light regulation.  相似文献   

7.
8.
9.
10.
11.
生肌调节因子(MRFs)家族成员包括MRF4、Myf5、Myogenin和MyoD,是肌肉形成的关键控制因素,其作为一种转录因子在肌肉的发育分化过程中发挥重要作用。本研究通过RT-qPCR方法分析MRFs家族基因在翘嘴鳜成体中不同组织及器官的表达情况,阐明其在肌肉组织中的特异性表达。结果显示:MRFs家族基因在成体翘嘴鳜肌肉、心脏、肝脏、脾脏、肾脏、肠道和脑组织及器官中均检测到表达,且在肌肉中的表达量显著高于其他组织及器官中的表达量(p<0.05)。为研究生肌调节因子在翘嘴鳜肌肉发育过程中的作用提供了基础资料。  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
Feng H  Liu H  Kong R  Wang L  Wang Y  Hu W  Guo Q 《Fish & shellfish immunology》2011,30(4-5):1159-1169
The cytoplasmic helicase protein RIG-I (retinoic acid-inducible gene I) and downstream signaling molecules, MAVS (mitochondrial antiviral signaling protein), TRAF3 (TNF-receptor-associated factor 3) and TBK1 (TANK-binding kinase 1), have significant roles in the recognition of cytoplasmic 5'-triphosphate ssRNA and short dsRNA, and phosphorylation of IRF-3 (interferon regulatory factor 3) and IRF-7 which is responsible for the induction of type I interferons (IFN). In the present study, the full-length cDNAs of RIG-I, MAVS, TRAF3 and TBK1 were cloned and identified in common carp (Cyprinus carpio L.). The deduced protein of carp RIG-I is of 946 aa (amino acids), consisting of two CARDs (caspase-recruitment domain), a DEXDc (DExD/H box-containing domain), a HELICc (helicase superfamily c-terminal domain) and a RD (regulatory domain). Carp MAVS is of 585 aa, containing a CARD, a proline-rich region and a TM (transmembrane domain). Carp TRAF3 encodes a protein of 573 aa, including a RING (really interesting new gene), two TRAF-type zinc fingers, a coiled coil and a MATH-TRAF3 (meprin and TRAF homology) domain. Carp TBK1 is of 727 aa and contains a S_TKc domain (Serine/Threonine protein kinases, catalytic domain). Carp RIG-I, MAVS, TRAF3 and TBK1 mRNAs are ubiquitously expressed in all tissues examined. In response to SVCV infection, carp RIG-I and MAVS mRNAs were up-regulated at different levels in spleen, head kidney and intestine tissues at different time points. Similarly, both carp IRF-3 and IRF-7 mRNAs were significantly up-regulated in the detected tissues. Especially in intestine, the IRF-3 and IRF-7 mRNAs of carp increased and reached 25.3-fold (at 3 dpi) and 224.7-fold (at 5 dpi). Noteworthily, a significant growth of carp TRAF3 and TBK1 mRNA was also mainly found in intestine (7.0-fold and 11.3-fold at 5 dpi, respectively). These data implied that the expression profiles of IRF-3/-7 mRNAs in carp correlate with the up-regulation of RIG-I/MAVS/TRAF3/TBK, and carp RIG-I and MAVS may be involved in antiviral responses through the RIG-I viral recognition signaling pathway in a TRAF3/TBK1-dependent manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号