首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A model developed over 20 years ago has been used to estimate daily food intake in brown trout living in streams and lakes over a wide geographical range. The chief disadvantages of this early model are that it is not continuous and requires twelve parameters, not all of which can be interpreted biologically. A new model, using a larger data set, was therefore developed to overcome these problems and estimate the mean daily energy intake. 2. The two data sets used to develop the original model were also used to develop the general form of the new one, but a third data set was used to specify the model more precisely and to estimate the parameters. This third data set originated from experiments in which 185 trout (live weight range 1–350 g) were kept individually at 19 constant temperatures (range 3.8–21.7 °C) usually for 5–6 weeks. They were fed freshly killed shrimps (Gammarus pulex) and their food consumption was recorded throughout each experiment. 3. Five, six and eight parameter versions of the new model were all excellent fits to the data (P < 0.001, R2 > 0.99), with the eight parameter version being slightly the best. All parameters can be interpreted in biological terms; three define threshold temperatures, three define the curvilinear slopes in the model over different temperature ranges, one is a weight exponent and one is the maximum daily energy intake of a 1 g trout. The simpler six parameter model was adequate at temperatures above 7 °C. 4. An additional experiment with twenty-eight trout feeding on six different invertebrate foods provided estimates of energy intake that were very similar to those predicted from the model. However, when daily intake was converted to dry weight, agreement with values from the model (also as dry weight) was poor. Possible reasons for this are discussed, as are other studies using the earlier model, and it is shown that different conclusions can be reached depending upon whether comparisons are based on units of energy, dry weight or wet weight.  相似文献   

2.
The effect of 21 days of starvation, followed by a period of compensatory growth during refeeding, was studied in juvenile roach Rutilus rutilus during winter and summer, at 4, 20 and 27° C acclimation temperature and at a constant photoperiod (12L : 12D). Although light conditions were the same during summer and winter experiments and fish were acclimated to the same temperatures, there were significant differences in a range of variables between summer and winter. Generally winter fish were better prepared to face starvation than summer fish, especially when acclimated at a realistic cold season water temperature of 4° C. In winter, the cold acclimated fish had a two to three‐fold larger relative liver size with an approximately double fractional lipid content, in comparison to summer animals at the same temperature. Their white muscle protein and glycogen concentration, but not their lipid content, were significantly higher. Season, independent of photoperiod or reproductive cycle, was therefore an important factor that determined the physiological status of the animal, and should generally be taken into account when fish are acclimated to different temperature regimes. There were no significant differences between seasons with respect to growth. Juvenile roach showed compensatory growth at all three acclimation temperatures with maximal rates of compensatory growth at 27° C. The replenishment of body energy stores, which were utilized during the starvation period, was responsible for the observed mass gain at 4° C. The contribution of the different energy resources (protein, glycogen and lipid) was dependent on acclimation temperature. In 20 and 27° C acclimated roach, the energetic needs during food deprivation were met by metabolizing white muscle energy stores. While the concentration of white muscle glycogen had decreased after the fasting period, the concentrations of white muscle lipid and protein remained more or less constant. The mobilization of protein and fat was revealed by the reduced size of the muscle after fasting, which was reflected in a decrease in condition factor. At 20° C, liver lipids and glycogen were mobilized, which caused a decrease both in the relative liver size and in the concentration of these substrates. Liver size was also decreased after fasting in the 4° C acclimated fish, but the substrate concentrations remained stable. This experimental group additionally utilized white muscle glycogen during food deprivation. Almost all measured variables were back at the control level within 7 days of refeeding.  相似文献   

3.
The impact of growth temperature was evaluated for the fungal plant pathogen Mycoleptodiscus terrestris over a range of temperatures (20–36°C). The effect of temperature on biomass accumulation, colony forming units (cfu), and microsclerotia production was determined. Culture temperatures of 24–30°C produced significantly higher biomass accumulations and 20–24°C resulted in a significantly higher cfu. The growth of M. terrestris was greatly reduced at temperatures above 30°C and was absent at 36°C. The highest microsclerotia concentrations were produced over a wide range of temperatures (20–30°C). These data suggest that a growth temperature of 24°C would optimize the parameters evaluated in this study. In addition to growth parameters, we also evaluated the desiccation tolerance and storage stability of air-dried microsclerotial preparations from these cultures during storage at 4°C. During 5 months storage, there was no significant difference in viability for air-dried microsclerotial preparations from cultures grown at 20–30°C (>72% hyphal germination) or in conidia production (sporogenic germination) for air-dried preparations from cultures grown at 20–32°C. When the effect of temperature on germination by air-dried microsclerotial preparations was evaluated, data showed that temperatures of 22–30°C were optimal for hyphal and sporogenic germination. Air-dried microsclerotial preparations did not germinate hyphally at 36°C or sporogenically at 20, 32, 34, or 36°C. These data show that temperature does impact the growth and germination of M. terrestris and suggest that water temperature may be a critical environmental consideration for the application of air-dried M. terrestris preparations for use in controlling hydrilla.  相似文献   

4.
The study has revealed differences in search behavior among juvenile individuals of the roach Rutilus rutilus produced by breeders from a tributary of the Rybinsk Reservoir and from nonfreezing areas of the Moskva River. It has been shown that differences in behavioral responses of juveniles are minimal at a stable temperature (approximately 20°C). Gradually rising or falling temperatures lead to an increase in the variation of behavioral parameters. Response to rising temperature is more pronounced in juvenile roach individuals produced by breeders from the Rybinsk Reservoir tributary, while response to decreasing temperature is, on the contrary, more pronounced in individuals produced by breeders from the nonfreezing Moskva River area. Year-round occurrence in zones with heated water in the nonfreezing Moskva River area has probably contributed to a change in the roach population’s adaptation to cold, consolidated by selection at the genetic level over several generations.  相似文献   

5.
The abundance of Ceriodaphnia reticulata (Jurine) in Lake Kinneret is restricted every year to the period March to June with a peak in May. The most constant parameter accompanying the peak is temperature with a range of 20–22° C. An attempt was made to clarify whether the estival high average temperatures observed in the epilimnion of this lake (27–28° C) could explain the decrease of the Ceriodaphnia population. Three physiological parameters: food intake, ammonia excretion and respiration rates, were measured experimentally at three temperatures (15, 22 and 27° C). The dry weight of individuals of the winter and summer populations were measured, and the percentages of egg-bearing females in the populations were calculated. It was found that temperature increase accelerates the rates of ammonia excretion and food ingestion. The acceleration was greater in the lower temperature range (15–22° C) than in the higher one (22–27° C). Conversely, the enhancing of respiration rate is higher in the upper temperature range. The resulting deficit of energy at high temperatures causes a reduction in body size and a significant diminution of egg production, which leads to a progressive decline of the population.  相似文献   

6.
Telenomus busseolae Gahan is the most important egg parasitoid of sugarcane stem borers in Iran. Laboratory experiments were conducted to evaluate the functional response of T. busseolae to egg densities of Sesamia nonagrioides (Lefebvre) under four different temperatures (20, 25, 30 and 35°C). Results of logistic regression revealed a type III functional response for all temperatures tested and type of functional response was not affected by temperature. Roger's random parasite equation was fitted to observed data at 35°C. In the other data sets (collected data under 20, 25 and 30 °C) Roger's equation could not provide meaningful parameters, therefore Holling's disk equation was used to fit the data. The attack rate for T. busseolae varying from 0.001784 to 0.10704, 0.0026 to 0.152, 0.0024 to 0.144 and 0.000866 to 0.05196 per h and estimated handling times were 0.59, 0.50, 0.53 and 0.29 h at 20, 25, 30 and 35°C, respectively. Based on asymptotic 95% confidence intervals, functional response parameters did not differ significantly from 20 to 30°C, which indicates that handling time and attack rate are least affected by the temperature changes. The results suggest a similar performance of T. busseolae against S. nonagrioides eggs at temperatures of 20–30°C. These results show that T. busseolae is well adapted to temperature changes during the sugarcane growing season.  相似文献   

7.
Temperature affects both the biology and morphology of mosquito vectors. Geometric morphometrics is a useful new tool for capturing and analyzing differences in shape and size in many morphological parameters, including wings. We have used this technique for capturing the differences in the wings of the malaria vector Anopheles superpictus, using cohorts reared at six different constant temperatures (15°, 20°, 25°, 27°, 30°, and 35° C) and also searched for potential correlations with the life tables of the species. We studied wing shape in both male and female adults, using 22 landmarks on the wing in relation to ecological parameters, including the development rate. The ecological zero was calculated as 9.93° C and the thermal constant as 296.34 day‐degrees. The rearing temperature affects egg, larval, and pupal development and also the total time from egg to adult. As rearing temperatures increased, longevity decreased in both sexes. In An. superpictus, Ro value and productivity correlated with the statistically significant gradual deformations in the wing shape related to size in both sexes. These deformations directly linked to differences in immature rearing temperatures. Analysis using PCA and UPGMA phenograms showed that although wings of females became narrower dorsoventrally as the temperature increased, they became broader in males. Comparisons of the wing landmarks indicated the medial part of the wing was most affected by larval rearing temperatures, showing relatively more deformations. Algorithmic values of the life tables were determined in correlation with the results of geometric morphometrics. Comparisons of centroid sizes in the cohorts showed that overall wing size became smaller in both sexes in response to higher rearing temperatures.  相似文献   

8.
Hypoxia periods of 6, 12, 24, 48, and 72?h combined with temperatures of 15°C, 20°C and 25°C were applied to Diachasmimorpha longicaudata pupae in packaging conditions. Alternating temperatures of 26–20–26°C were applied to pupae in three sequential 4-h periods less than 12?h of hypoxia, and the effect of hypoxia on the pupae was evaluated under ambient conditions in commercial shipping. The emergence, longevity, fecundity and flight ability of adult parasitoids were recorded. The duration of hypoxia (>24?h) and the higher temperature (25°C) significantly reduced the emergence and longevity of adults. The different temperatures, including the variation in temperature combined with hypoxia, showed no significant effect on fecundity or flight ability. The temperature and humidity recorded during commercial shipping under hypoxia did not show any effect on the emergence of parasitoids. As a consequence, hypoxia was only notably significant after 24?h, which occasionally occurs in practical packaging processes. The use of hypoxia for shipping D. longicaudata pupae can be widely recommended, but long shipping periods and high temperatures should still be avoided.  相似文献   

9.
The biological processes on mosquito could be variable in response to local climatic characteristics. The thermal effects on time and the rate larval development, immature survival and adult size in local populations of Ochlerotatus albifasciatus (Macquart) (Diptera: Culicidae) from cold (Sarmiento) and temperate (Buenos Aires) regions from Argentina were evaluated. This species affects livestock production and human health. Larvae of both regions were placed in breeding thermal baths (11–32 °C range). Development and survival were recorded daily until adult emergence. The development temperature threshold and thermal constant for Sarmiento (4.59 ± 3.08 °C, 204.08 ± 7.83 degree days) was lower and higher than Buenos Aires, respectively (8.06 ± 1.81 °C, 149.25 ± 2.6 degree days). At cold temperatures (11–16 °C), Sarmiento larvae demonstrated 5 days faster development and higher survival (56%) than Buenos Aires (15%), whereas at warm temperatures (20–32 °C) were up to 2 days slower and similar survival (16% vs. 18%). The size did not show differences between populations. An Ochlerotatus albifasciatus population seems to present local thermal responses. The favourable temperature for survival and rate of development would vary within a cold or warm range, and these differential responses would explain the wide geographical distribution in different climatic regions of southern South America.  相似文献   

10.
The supratidal amphipod Talorchestia longicornis Say has a circadian rhythm in activity, in which it is active on the substrate surface at night and inactive in burrows during the day. The present study determined: (1) the circadian rhythms in individual versus groups of amphipods; (2) the range of temperature cycles that entrain the circadian rhythm; (3) entrainment by high-temperature cycles versus light?:?dark cycles, and (4) seasonal substrate temperature cycles. The circadian rhythm was determined by monitoring temporal changes in surface activity using a video system. Individual and groups of amphipods have similar circadian rhythms. Entrainment occurred only to temperature cycles that included temperatures below 20°C (10–20, 15–20, 17–19, 15–25°C) but not to temperatures above 20°C (20–25, 20–30°C), and required only a 2°C temperature cycle (17–19°C). Diel substrate temperatures were above 20°C in the summer and below 20°C during the winter. Upon simultaneous exposure to a diel high-temperature cycle (20–30°C) and a light?:?dark cycle phased differently, amphipods entrained to the light?:?dark cycle. Past studies found that a temperature cycle below 20°C overrode the light?:?dark cycle for entrainment. The functional significance of this change in entrainment cues may be that while buried during the winter, the activity rhythm remains in phase with the day?:?night cycle by the substrate temperature cycles. During the summer, T. longicornis switches to the light?:?dark cycle for entrainment, perhaps as a mechanism to phase activity precisely to the short summer nights.  相似文献   

11.
The development, survivorship, longevity, reproduction, and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama were evaluated at 10°C, 15°C, 20°C, 25°C, 28°C, 30°C and 33°C. The populations reared at 10°C and 33°C failed to develop. Between 15°C and 30°C, mean developmental period from egg to adult varied from 49.3 days at 15°C to 14.1 days at 28°C. The low‐temperature developmental thresholds for 1st through 5th instars were estimated at 11.7°C, 10.7°C, 10.1°C, 10.5°C and 10.9°C, respectively. A modified Logan model was used to describe the relationship between developmental rate and temperature. The survival of the 3rd through 5th nymphal instars at 15–28°C was essentially the same. The mean longevity of females increased with decreasing temperature within 15–30°C. The maximal longevity of individual females was recorded 117, 60, 56, 52 and 51 days at 15°C, 20°C, 25°C, 28°C and 30°C, respectively. The average number of eggs produced per female significantly increased with increasing temperature and reached a maximum of 748.3 eggs at 28°C (P<0.001). The population reared at 28°C had the highest intrinsic rate of increased (0.199) and net reproductive rate (292.2); and the shortest population doubling time (3.5 days) and mean generation time (28.6 days) compared with populations reared at 15–25°C. The optimum range of temperatures for D. citri population growth was 25–28°C.  相似文献   

12.
To elucidate population-increasing factors in the diving beetle Cybister tripunctatus lateralis (Fabricius) (Coleoptera: Dytiscidae) in Japan in recent years, life histories and oviposition patterns were compared among three endangered diving beetle species, Cybister brevis Aubé (qualified by the Japanese Red Data List as ‘near threatened’), Cybister chinensis Motschulsky (vulnerable), and C. tripunctatus lateralis (vulnerable). Oviposition in C. brevis, C. chinensis, and C. tripunctatus lateralis was observed from late April to mid-June, from late April to early July, and from late May to mid-August, respectively, under semi-outdoor conditions. There were no interspecies differences in total hatchling production during the reproductive season. In rearing experiments at various temperatures (20, 23, 25, 28, and 30 °C), the mortality of C. tripunctatus lateralis larvae was higher at 20 °C, and gradually lower with increasing temperature up to 30 °C. Adult body size of females in C. tripunctatus lateralis is larger than that of males but there were no significant differences among temperatures (25–30 °C). Cybister brevis had a higher emergence rate at 23–28 °C than at 20 and 30 °C. In C. brevis, the body size of adults reared at 25 or 28 °C was significantly larger than at other temperatures. Cybister chinensis did not differ in emergence rate and adult body size among the five temperature conditions. The developmental zero (i.e., the lower developmental threshold) from the first instar to adult emergence was 11.1 °C for C. brevis, 8.7 °C for C. chinensis, and 16.8 °C for C. tripunctatus lateralis. We speculate how the influence of global warming may have a positive impact on the growth and survival of C. tripunctatus lateralis.  相似文献   

13.
The development rates and fecundity of three important pests of strawberry in the UK were determined over a range of temperatures. Development time of the strawberry tarsonemid mite, Phytonemus pallidus, from egg lay to adult, ranged from a mean of 28.4 days at 12.5°C to 8.8 days at 25°C. No nymphs developed to adult at 10°C. Females lived for up to 45 days and laid a mean of 24.3 and 28.5 eggs at 20°C and 25°C respectively. Total development time from egg lay to adult for the strawberry blossom weevil, Anthonomus rubi, ranged from a mean of 95.7 days at 10°C to 18.2 days at 25°C. Mean fecundity at 20°C was 157.6 eggs, and the oviposition period averaged 71.6 days. When nymphs were reared on strawberry, development of the European tarnished plant bug, Lygus rugulipennis, from egg lay to adult, ranged from 83.8 days at 15°C to 28.8 days at 25°C. Development times on groundsel were shorter and ranged from 65.6 to 22.2 days at 15°C and 25°C. Only two nymphs developed to adults at 10°C; no eggs hatched at that temperature. Mean fecundity at 20°C was 75.4 eggs, but ranged from 23 to 179. Under a fluctuating temperature regime of 10°C for 12 h:20°C for 12 h, nymphs of L. rugulipennis took 40.3 days to become adult on strawberry, and 33.4 days on groundsel. Simple linear models fitted the developmental rate ‐ constant temperature relationship well for all species, accounting for 95–98% of the total variation in observed developmental rates. Development under fluctuating temperatures illustrated the potential problem of extrapolating linear models beyond the conditions of the experiment.  相似文献   

14.
Abstract.
  • 1 The survival of adult and first-instar Myzus persicae reared at 20°C and 10°C was investigated after brief (1 min) exposure in the absence of plant material to temperatures between −5°C and −25°C, and extended exposures on plants of 1–10 days at a constant 5°C, 3°C and −5°C and a 24 h cycling regime between 5°C (18 h) and −5°C (6 h).
  • 2 Life stage, rearing temperature, period of exposure and temperature regime all had a significant effect on the ability of aphids to survive cold. The effects of life stage and rearing temperature were most noticeable following exposure to cycling temperatures and extended exposures at −5°C, and least apparent after 1 min exposures at lower sub-zero temperatures.
  • 3 Mortality following exposure to temperatures cycling between −5°C and 5°C was greater than that at 3°C (the mean of the cycling temperatures) and less than at a constant −5°C, suggesting that when temperatures fluctuate by a few degrees around 0°C the minimum temperature may affect survival to a greater extent than the mean.
  • 4 These results suggest that an overwintering population of acclimated M.persicae would persist without significant mortality after a period of 7–10 days with −5°C frosts each night.
  相似文献   

15.
16.
The life table parameters ofAphis gossypii Glover were evaluated in tow sets of experiments onCucurbita pepo. The first set was conducted at six constant temperatures (5°C increments from 10–35°C) with 12 h photophase. The second set of experiments was conducted at 6, 12, and 18 h photophase at 25°C. Nymphal survivorship was 100% at 15, 20, 25 and 30°C. However, it was 80 and 0% at 10 and 35°C, respectively. The optimum temperature for body length was 10°C, and body length decreased with increasing temperature.A. gossypii attained its optimum growth and reproduction at 25°C. At this temperature, the net reproductive rate (79.7), intrinsic rate of increase (0.496) and finite rate of increase (1.6) were largest while generation time (6.6 d) and population doubling time (1.4 d) were smallest. Temperatures above and below 25°C reduced the net reproductive rate, and the intrinsic and finite rates of increase. The intrinsic and finite rates of increase ofA. gossypii reared at 18 h photophase (0.53 and 1.7) were significantly higher than at 12 (0.43 and 1.5) and 6 h daylength (0.49 and 1.6).  相似文献   

17.
Abstract. Larvae of the butterfly Lycaena tityrus (Poda) are reared at 20 or 27 °C until adult eclosion, after which they are maintained at the same temperature or are transferred to the alternate temperature. The resulting adults are exposed to −20 °C for 8 min, returned to ambient temperature, and the recovery time to standing position is recorded. On the day of eclosion, individuals reared at 20 °C show 19% shorter recovery times than individuals reared at 27 °C. This effect of developmental temperature disappears when the same animals are tested 3 and 6 days later. However, adult temperature did not affect recovery time in these animals, presumably due to over-riding effects of previous cold shocks. This is suggested by another set of animals, not having experienced previous cold shocks, demonstrating recovery times that are 28% shorter in individuals maintained as adults for 3 days at 20 compared to 27 °C. Thus, L. tityrus appears to be capable of adapting to local temperatures.  相似文献   

18.
1. The chief objective was to develop a functional model for growth of stone loach, Barbatula barbatula, using immature fish from three populations. The growth model had been developed previously for brown trout, Salmo trutta, but new estimates of the five parameters for the stone loach had to be obtained from laboratory experiments. 2. Fish from four size groups (initial arithmetic mean live weights 0.053 g, 0.231 g, 0.840 g, 1.612 g, with five fish per group) from Great Oaks Wood Beck were acclimatized to constant temperatures of either 3, 5, 10, 15, 20 or 25 °C. Each fish was kept in a separate tank and fed to satiation on freshwater shrimps. Weights and lengths of each fish were recorded at the start and finish of a growth period of 35 days. For each of the other populations (Black and Ford Wood Becks), there were only three temperatures (5, 10, 20 °C) with ten fish per temperature. 3. The growth model was an excellent fit (P < 0.001, R2 > 0.99) for the 120 fish from Great Oaks Wood Beck. Growth rates were negative at 3 °C, close to zero at 5 and 25 °C, and positive at 10, 15 and 20 °C, with an optimum value of 19 °C. When growth rates were positive, they decreased markedly with increasing fish weight for small fish but decreased more slowly for larger fish. At the start of the experiments, weight–length relationships were similar for fish from all three populations and were well described by a power function. There was excellent agreement between growth rates estimated from the fitted growth model for fish from Great Oaks Wood Beck and values obtained for fish from Black and Ford Wood Becks. Data from all three populations were therefore pooled (n = 180) to obtain new estimates of the five parameters in the model. 4. Comparisons between parameter estimates for trout and stone loach showed that the latter grew better in warmer waters (e.g. optimum value for growth was 19.0 °C for stone loach and 13.1 °C for trout, with ranges for growth of 5.0–25.0 °C and 3.6–19.5 °C, respectively).  相似文献   

19.
The temperature dependence of NADH:NR activity was examined in several marine phytoplankton species and vascular plants. These species inhabit divergent thermal environments, including the chromophytes Skeletonema costatum (12–15° C), Skeletonema tropicum (18–25° C), Thalassiosira antarctica (?2 to 4° C), and Phaeocystis antarctica (?2 to 4° C), the green alga Dunaliella tertiolecta (14–28° C), and the vascular plants Cucurbita maxima (20–35° C) and Zea mays (20–25° C). Despite the difference in growth habitats, similar temperature response curves were observed among the chromophytic phytoplankton, with temperatures optimal for NR activity being between 10–20° C. In contrast, the chlorophyll b‐containing alga and vascular plants exhibited optimal temperatures for NR activity above 30° C. Such dramatic differences in NR thermal characteristics from the two taxonomic groups reflect a divergence in NR structure that may be associated with the evolutionary diversification of chromophytes and chlorophytes. Further, it suggests a potential contribution of the thermal performance of NR to the geographic distributions, seasonal abundance patterns, and species composition of phytoplankton communities. NR partial activities, which assess the individual functions of Mo‐pterin and FAD domains, were evaluated on NR purified from S. costatum to determine the possible causes for high temperature (>20° C) inactivation of NR from chromophytes. It was found that the FAD domain and electron transport among redox centers were sensitive to elevated temperatures. S. costatum cells grown at 5, 15, and 25° C exhibited an identical optimal temperature (15° C) for NADH:NR activity, whereas the maximal NR activity and NR protein levels differed and were positively correlated with growth temperature and growth rate. These findings demonstrate that thermal acclimation of NO3? reduction capacity is largely at the level of NR protein expression. The consequences of these features on NO3? utilization are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号