首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a cytokine-specific alpha-subunit (hGMRalpha) and a common signal-transducing beta-subunit (hbetac) that is shared with the interleukin-3 and -5 receptors. We have previously identified a constitutively active extracellular point mutant of hbetac, I374N, that can confer factor independence on murine FDC-P1 cells but not BAF-B03 or CTLL-2 cells (Jenkins, B. J., D'Andrea, R. J., and Gonda, T. J. (1995) EMBO J. 14, 4276-4287). This restricted activity suggested the involvement of cell type-specific signaling molecules in the activation of this mutant. We report here that one such molecule is the mouse GMRalpha (mGMRalpha) subunit, since introduction of mGMRalpha, but not hGMRalpha, into BAF-B03 or CTLL-2 cells expressing the I374N mutant conferred factor independence. Experiments utilizing mouse/human chimeric GMRalpha subunits indicated that the species specificity lies in the extracellular domain of GMRalpha. Importantly, the requirement for mGMRalpha correlated with the ability of I374N (but not wild-type hbetac) to constitutively associate with mGMRalpha. Expression of I374N in human factor-dependent UT7 cells also led to factor-independent proliferation, with concomitant up-regulation of hGMRalpha surface expression. Taken together, these findings suggest a critical role for association with GMRalpha in the constitutive activity of I374N.  相似文献   

2.
Soluble GM-CSF receptor alpha subunit (sGMRalpha) is a soluble isoform of the GMRalpha that is believed to arise exclusively through alternative splicing of the GMRalpha gene product. The sGMRalpha mRNA is expressed in a variety of tissues, but it is not clear which cells are capable of secreting the protein. We show here that normal human monocytes, but not lymphocytes, constitutively secrete sGMRalpha. Stimulation of monocytes with GM-CSF, LPS, PMA, or A23187 rapidly up-regulates the secretion of sGMRalpha in a dose-dependent manner, demonstrating that secretion is also regulated. To determine whether sGMRalpha arose exclusively through alternative splicing of the GMRalpha gene product, or whether it could also be generated through ectodomain shedding of GMRalpha, we engineered a murine pro-B cell line (Ba/F3) to express exclusively the cDNA for cell surface GMRalpha (Ba/F3.GMRalpha). The Ba/F3.GMRalpha cell line, but not the parental Ba/F3 cell line, constitutively shed a sGMRalpha-like protein that bound specifically to GM-CSF, was equivalent in size to recombinant alternatively spliced sGMRalpha (60 kDa), and was recognized specifically by a mAb raised against the ectodomain of GMRalpha. Furthermore, a broad-spectrum metalloprotease inhibitor (BB94) reduced constitutive and PMA-, A23187-, and LPS-induced secretion of sGMRalpha by monocytes, suggesting that shedding of GMRalpha by monocytes may be mediated in part through the activity of metalloproteases. Taken together, these observations demonstrate that sGMRalpha is constitutively secreted by monocytes, that GM-CSF and inflammatory mediators up-regulate sGMRalpha secretion, and that sGMRalpha arises not only through alternative splicing but also through ectodomain shedding of cell surface GMRalpha.  相似文献   

3.
Receptor activation by IL5 and GM-CSF is a sequential process that depends on their interaction with a cytokine-specific subunit alpha and recruitment of a common signaling subunit beta (betac). In order to elucidate the assembly dynamics of these receptor subunits, we performed kinetic interaction analysis of the cytokine-receptor complex formation by a surface plasmon resonance biosensor. Using the extracellular domains of receptor fused with C-terminal V5-tag, we developed an assay method to co-anchor alpha and betac subunits on the biosensor surface. We demonstrated that dissociation of the cytokine-receptor complexes was slower when both subunits were co-anchored on the biosensor surface than when alpha subunit alone was anchored. The slow-dissociation effect of betac had a similar impact on GM-CSF receptor stabilization to that of IL5. The effects were abolished by alanine replacement of either Tyr18 or Tyr344 residue in betac, which together constitute key parts of a cytokine binding epitope. The data argue that betac plays an important role in preventing the ligand-receptor complexes from rapidly dissociating. This slow-dissociation effect of betac explains how, when multiple betac cytokine receptor alpha subunits are present on the same cell surface, selective betac usage can be controlled by sequestration in stabilized cytokine-alpha-betac complexes.  相似文献   

4.
The stoichiometry of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor complex is still unresolved. We have utilised a sensitive, functional assay for receptor homodimerisation to show that GM-CSF induces dimerisation of the common signalling subunit, hbeta(c). We generated a chimeric cytokine receptor in which the extracellular and transmembrane domains of hbeta(c)are fused to the cytoplasmic domain of erythropoietin receptor (EPO-R). Given that to induce EPO-R activation and mitogenic signalling there is a requirement for formation of a specific homodimeric complex, we reasoned that the cytoplasmic domain of EPO-R could be utilised as a highly sensitive reporter for functional homodimer formation. We show that, in the presence of a cytoplasmically truncated GM-CSF alpha-subunit, the hbetac-EPO receptor chimera transduces a mitogenic signal in BaF-B03 in response to GM-CSF. This is consistent with formation of a hbeta(c)homodimer following GM-CSF binding and implies that ligand stimulation induces formation of a higher order complex that contains the hbeta(c)homodimer.  相似文献   

5.
The receptor systems for the hemopoietic cytokines GM-CSF, IL-3, and IL-5 consist of ligand-specific alpha receptor subunits that play an essential role in the activation of the shared betac subunit, the major signaling entity. Here, we report the structure of the complete betac extracellular domain. It has a structure unlike any class I cytokine receptor described thus far, forming a stable interlocking dimer in the absence of ligand in which the G strand of domain 1 hydrogen bonds into the corresponding beta sheet of domain 3 of the dimer-related molecule. The G strand of domain 3 similarly partners with the dimer-related domain 1. The structure provides new insights into receptor activation by the respective alpha receptor:ligand complexes.  相似文献   

6.
7.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific alpha subunit and a betac subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface and functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.  相似文献   

8.
A mutant form of the common beta-subunit of the GM-CSF, interleukin-3 (IL3) and IL5 receptors is activated by a 37 residue duplicated segment which includes the WSXWS motif and an adjacent, highly conserved, aliphatic/basic element. Haemopoietic expression of this mutant, hbeta(c)FIDelta, in mice leads to myeloproliferative disease. To examine the mechanism of activation of this mutant we targetted the two conserved motifs in each repeat for mutagenesis. Here we show that this mutant exhibits constitutive activity in BaF-B03 cells in the presence of mouse or human GM-CSF receptor alpha-subunit (GMRalpha) and this activity is disrupted by mutations of the conserved motifs in the first repeat. In the presence of these mutations the receptor reverts to an alternative conformation which retains responsiveness to human IL3 in a CTLL cell line co-expressing the human IL3 receptor alpha-subunit (hIL3Ralpha). Remarkably, the activated conformation is maintained in the presence of substitutions, deletions or replacement of the second repeat. This suggests that activation occurs due to insertion of extra sequence after the WSXWS motif and is not dependent on the length or specific sequence of the insertion. Thus hbeta(c) displays an ability to fold into functional receptor conformations given insertion of up to 37 residues in the membrane-proximal region. Constitutive activation most likely results from a specific conformational change which alters a dormant, inactive receptor complex, permitting functional association with GMRalpha and ligand-independent mitogenic signalling.  相似文献   

9.
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3 and IL-5 are related cytokines that play key roles in regulating the differentiation, proliferation, survival and activation of myeloid blood cells. The cell surface receptors for these cytokines are composed of cytokine-specific alpha-subunits and a common beta-receptor (betac), a shared subunit that is essential for receptor signaling in response to GM-CSF, IL-3 and IL-5. Previous studies have reached conflicting conclusions as to whether N-glycosylation of the betac-subunit is necessary for functional GM-CSF, IL-3 and IL-5 receptors. We sought to clarify whether betac N-glycosylation plays a role in receptor function, since all structural studies of human betac to date have utilized recombinant protein lacking N-glycosylation at Asn(328). Here, by eliminating individual N-glycans in human betac and the related murine homolog, beta(IL-3), we demonstrate unequivocally that ligand-binding and receptor activation are not critically dependent on individual N-glycosylation sites within the beta-subunit although the data do not preclude the possibility that N-glycans may exert some sort of fine control. These studies support the biological relevance of the X-ray crystal structures of the human betac domain 4 and the complete ectodomain, both of which lack N-glycosylation at Asn(328).  相似文献   

10.
The inhibition of binding between human granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor by human interleukin-3 (IL-3) was observed in myelogenous leukemia cell line KG-1 which bore the receptors both for GM-CSF and IL-3. In contrast, this phenomenon was not observed in histiocytic lymphoma cell line U-937 or in gastric carcinoma cell line KATO III, both of which have apparent GM-CSF receptor but an undetectable IL-3 receptor. In KG-1 cells, the cross-inhibition was preferentially observed when the binding of GM-CSF was performed under the high-affinity binding condition; i.e., a low concentration of 125I-GM-CSF was incubated. Scatchard analysis of 125I-GM-CSF binding to KG-1 cells in the absence and in the presence of unlabeled IL-3 demonstrated that IL-3 inhibited GM-CSF binding to the higher-affinity component of GM-CSF receptor on KG-1 cells. Moreover, a chemical cross-linking study has revealed that the cross-inhibition of the GM-CSF binding observed in KG-1 cells is specific for the β-chain, Mr 135,000 binding protein which has been identified as a component forming the high-affinity GM-CSF receptor existng specifically on hemopoietic cells.  相似文献   

11.
The lutropin receptor consists of an extracellular N-terminal half and a membrane-associated C-terminal half. hCG initially binds the exodomain with a high affinity and the resulting complex is thought to interact with the endodomain through a secondary contact generating a hormonal signal. Therefore, the exodomain and endodomain are likely to associate directly or indirectly with each other, but lack of fruitful materials and technology has hampered knowledge about their physical relationship and contact sites. In this work, we engineered a double-recombinant (separate exodomain and endodomain) baculovirus system successfully expressing on the surface of insect cells high levels of split LH receptor, binding the hormone with high affinity and inducing cAMP synthesis. In contrast, the exodomain and endodomain expressed separately were mostly trapped in cells. Our data indicate that the exodomain and endodomain are disulfide linked in the split receptor. When the disulfide links were reduced, the split receptor still induced cAMP up to 60%, which raises the intriguing possibility of a residual induction activity of the endodomain in the absence of high-affinity ligand binding. Our results also underscore that the targeting and transport of the LH receptor to plasma membrane require both domains, whereas each domain is independently sufficient for folding. The expression level of functional lutropin receptors is the highest ever reported. Our system may also be useful for future studies requiring a high amount of soluble secreted exodomain.  相似文献   

12.
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 play a key role in allergic inflammation. They mediate their effect via receptors that consist of two distinct subunits, a cytokine-specific alpha subunit and a common beta subunit (betac) that transduces cell signaling. We sought to down-regulate the biologic activities of GM-CSF, IL-3, and IL-5 simultaneously by inhibiting betac mRNA expression with antisense technology. Experiments were performed with TF-1 cells (a human erythroleukemia cell line expressing GM-CSF, IL-3, and IL-5 receptors, which proliferates in response to these cytokines), monocytic U937 cells, which require these cytokines for differentiation, and purified human eosinophils. Cells were treated with antisense phosphorothioate oligodeoxynucleotides (ODN) targeting betac mRNA. In contrast to nontreated cells and cells treated by sense or mismatched ODN, antisense ODN inhibited betac mRNA expression and significantly decreased the level of cell surface betac protein expression on TF-1 and U937 cells. Receptor function was also affected. Antisense ODN were able to inhibit TF-1 cell proliferation in vitro in the presence of GM-CSF, IL-3, or IL-5 in the culture medium and eosinophil survival. We suggest that antisense ODN against betac may provide a new therapeutic alternative for the treatment of neoplastic or allergic diseases associated with eosinophilic inflammation.  相似文献   

13.
14.
The receptors for human interleukins 3 and 5 and granulocyte macrophage colony-stimulating factor are composed of ligand-specific alpha-subunits and a common beta-subunit (betac), the major signaling entity. The way in which betac interacts with ligands in the respective activation complexes has remained poorly understood. The recently determined crystal structure of the extracellular domain of betac revealed a possible ligand-binding interface composed of domain 1 of one chain of the betac dimer and the adjacent domain 4 of the symmetry-related chain. We have used site-directed mutagenesis, in conjunction with ligand binding and proliferation studies, to demonstrate the critical requirement of the domain 1 residues, Tyr(15) (A-B loop) and Phe(79) (E-F loop), in high affinity complex formation and receptor activation. The novel ligand-receptor interface formed between domains 1 and 4 represents the first example of a class I cytokine receptor interface to be composed of two noncontiguous fibronectin III domains.  相似文献   

15.
The granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (GMR) is composed of two chains that belong to the superfamily of cytokine receptors typified by the growth hormone receptor. A common structural element found in cytokine receptors is a module of two fibronectin-like domains, each characterized by seven beta-strands denoted A-G and A'-G', respectively. The alpha-chain (GMRalpha) confers low affinity GM-CSF binding (K(d) = 1-5 nM), whereas the beta-chain (beta(c)) does not bind GM-CSF by itself but confers high affinity binding when associated with alpha (K(d) = 40-100 pM). In the present study, we define the molecular determinants required for ligand recognition and for stabilization of the complex through a convergence of several approaches, including the construction of chimeric receptors, the molecular dynamics of our three-dimensional model of the GM.GMR complex, and site-directed mutagenesis. The functional importance of individual residues was then investigated through ligand binding studies at equilibrium and through determination of the kinetic constants of the GM.GMR complex. Critical to this tripartite complex is the establishment of four noncovalent bonds, three that determine the nature of the ligand recognition process involving residues Arg(280) and Tyr(226) of the alpha-chain and residue Tyr(365) of the beta-chain, since mutations of either one of these residues resulted in a significant decrease in the association rate. Finally, residue Tyr(365) of beta(c) serves a dual function in that it cooperates with another residue of beta(c), Tyr(421) to stabilize the complex since mutation of Tyr(365) and Tyr(421) result in a drastic increase in the dissociation rate (Koff). Interestingly, these four residues are located at the B'-C' and F'-G' loops of GMRalpha and of beta(c), thus establishing a functional symmetry within an apparently asymmetrical heterodimeric structure.  相似文献   

16.
The high-affinity NGF receptor is thought to be a complex of two receptors , gp75 and the tyrosine kinase TrkA, but direct biochemical evidence for such an association had been lacking. In this report, we demonstrate the existence of such a gp75-TrkA complex by a copatching technique. Gp75 on the surface of intact cells is patched with an anti- gp75 antibody and fluorescent secondary antibody, the cells are then fixed to prevent further antibody-induced redistributions, and the distribution of TrkA is probed with and anti-TrkA antibody and fluorescent secondary antibody. We utilize a baculovirus-insect cell expression of wild-type and mutated NGF receptors. TrkA and gp75 copatch in both the absence and presence of NGF. The association is specific, since gp75 does not copatch with other tyrosine kinase receptors, including TrkB, platelet-derived growth factor receptor- beta, and Torso (Tor). To determine which domains of TrkA are required for copatching, we used a series of TrkA-Tor chimeric receptors and show that the extracellular domain of TrkA is sufficient for copatching with gp75. A chimeric receptor with TrkA transmembrane and intracellular domains show partial copatching with gp75. Deletion of the intracellular domain of gp75 decreases but does not eliminate copatching. A point mutation which inactivates the TrkA kinase has no effect on copatching, indicating that this enzymatic activity is not required for association with gp75. Hence, although interactions between the gp75 and TrkA extracellular domains are sufficient for complex formation, interactions involving other receptor domains also play a role.  相似文献   

17.
BACKGROUND: Molecular interactions among cytokines and cytokine receptors form the basis of many cell-signaling pathways relevant to immune function. Interferon-gamma (IFN-gamma) signals through a multimeric receptor complex consisting of two different but structurally related transmembrane chains: the high-affinity receptor-binding subunit (IFN-gammaRalpha) and a species-specific accessory factor (AF-1 or IFN-gammaRbeta). In the signaling complex, the two receptors probably interact with one another through their extracellular domains. Understanding the atomic interactions of signaling complexes enhances the ability to control and alter cell signaling and also provides a greater understanding of basic biochemical processes. RESULTS: The crystal structure of the complex of human IFN-gamma with the soluble, glycosylated extracellular part of IFN-gammaRalpha has been determined at 2.9 A resolution using multiwavelength anomalous diffraction methods. In addition to the expected 2:1 complex, the crystal structure reveals the presence of a third receptor molecule not directly associated with the IFN-gamma dimer. Two distinct intermolecular contacts, involving the edge strands of the C-terminal domains, are observed between this extra receptor and the 2:1 receptor-ligand complex thereby forming a 3:1 complex. CONCLUSIONS: The observed interactions in the 2:1 complex of the high-affinity cell-surface receptor with the IFN-gamma cytokine are similar to those seen in a previously reported structure where the receptor chains were not glycosylated. The formation of beta-sheet packing interactions between pairs of IFN-gammaRalpha receptors in these crystals suggests a possible model for receptor oligomerization of Ralpha and the structurally homologous Rbeta receptors in the fully active IFN-gamma signaling complex.  相似文献   

18.
19.
Over 300 transgenic sugarcane plants representing approx. 200 independent lines producing the human cytokine granulocyte macrophage colony stimulating factor (GM-CSF) were analyzed for recombinant protein accumulation and activity levels. Expression constructs differed in use of the maize polyubiquitin 1, Mubi-1, or the sugarcane polyubiquitin 9, SCubi9, promoters; presence or absence of a C-terminal HDEL tag for ER retention; and presence or absence of a 6X Histidine tag for metal ion affinity purification. Accumulation of GM-CSF protein ranged from undetectable to 0.02 of total soluble protein. No significant difference was observed between the two promoters; however, the ER retention tag was required for higher accumulation levels. Human bone marrow cells (TF-1), which require GM-CSF for cell division, proliferated when growth media was supplemented with transgenic sugarcane extracts. Comparison to purified commercially produced GM-CSF indicated the sugarcane-produced protein had essentially identical activity levels. In a 14-month field trial, accumulation levels remained stable. This is the first report of field production of GM-CSF. During the field trial, no flowering of the trial plants occurred; no pollen or seed was produced. Drying, burning, and burial of the test plants effectively blocked possible routes for the transgenic sugarcane to enter the environment or food supply. Sugarcane may provide a highly secure system for biofactory production of pharmaceutical proteins.This revised version was published online in May 2005 with corrections to the last authors name.  相似文献   

20.
The eosinophil is a central effector cell in allergic asthma. Differentiation and function of eosinophils are regulated by the CD4 Th2 cytokines IL-3, IL-5, and GM-CSF, which all signal through a common beta receptor subunit (betac). Recent therapeutic approaches targeting IL-5 alone have not ablated tissue accumulation of eosinophils and have had limited effects on disease progression, suggesting important roles for IL-3 and GM-CSF. By using a mouse model of allergic airways inflammation, we show that allergen-induced expansion and accumulation of eosinophils in the lung are abolished in betac-deficient (betac-/-) mice. Moreover, betac deficiency resulted in inhibition of hallmark features of asthma, including airways hypersensitivity, mucus hypersecretion, and production of Ag-specific IgE. Surprisingly, we also identified a critical role for this receptor in regulating type 2 immunity. Th2 cells in the lung of allergen-challenged betac-/- mice were limited in their ability to proliferate, produce cytokines, and migrate to effector sites, which was attributed to reduced numbers of myeloid dendritic cells in the lung compartment. Thus, the betac plays a critical role in allergen-induced eosinophil expansion and infiltration and is pivotal in regulating molecules that promote both early and late phases of allergic inflammation, representing a novel target for therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号