首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salinization is one of the most important factors affecting agricultural land in the world. Salinization occurs naturally in arid and semiarid regions where evaporation is higher than rainfall. Sugar beet yield declines with an increase in salinity, but the sensitivity to salts varies with salt composition in water and sugar beet growth stage. The aim of this study was to determine the effect of water salinity levels and salt composition on germination and seedling root length of four sugar beet cultivars (PP22, IC2, PP36, and 7233). The experiments were undertaken with irrigation water with two salt compositions (NaCl alone and mixture of MgSO4 + NaCl + Na2SO4 + CaCl2) in three replicates. Thirteen salinity levels with electrical conductivity (EC) of the irrigation water ranging from 0 to 30 dS/m were applied to each cultivar in both experiments. Seed germination percentage and seedling root length growth were determined in 13 days. Statistical analysis revealed that germination and root length were significantly affected by salt composition, cultivars and salinity levels. Regardless of salt composition, seed germination and seedling root length were significantly affected by the irrigation water with EC up to 8 dS/m and 4 dS/m, respectively. Except for cultivar PP22, the adverse effect of salinity of the irrigation water on seed germination and seedling root length was higher for NaCl alone than for the salt mixture, which refers to lower salt stress in field conditions with natural salt composition. Presented at the International Conference on Bioclimatology and Natural Hazards, Poľana nad Detvou, Slovakia, 17–20 September 2007.  相似文献   

2.
为了阐明根区交替控制灌溉(CRDAI)条件下玉米根系吸水规律,通过田间试验,在沟灌垄植模式下采用根区交替控制灌溉研究玉米根区不同点位(沟位、坡位和垄位)的根长密度(RLD)及根系吸水动态。研究表明,根区土壤水分的干湿交替引起玉米RLD的空间动态变化,在垄位两侧不对称分布,并存在层间差异;土壤水分和RLD是根区交替控制灌溉下根系吸水速率的主要限制因素。在同一土层,根系吸水贡献率以垄位最大,沟位最低;玉米营养生长阶段,10—30 cm土层的根系吸水速率最大;玉米生殖生长阶段,20—70 cm为根系吸水速率最大的土层,根系吸水贡献率为43.21%—55.48%。研究阐明了交替控制灌溉下根系吸水与土壤水分、RLD间相互作用的动态规律,对控制灌溉下水分调控机理研究具有理论意义。  相似文献   

3.
通过对旱地甜菜叶片生长特性及摘除不同叶组对块根产量,含糖量,显微结构的影响研究,结果表明:甜菜第10-20片叶的叶龄最长,积温最高,是甜菜的主要功能叶;甜菜从第20片叶期起进入块根,糖份增长期,从第55叶期起进入糖份积累期;摘除不同叶组的叶片对甜菜块根产量,含糖量及显微结构均有不同程度降低作用,摘除前期叶组对甜菜块根产量,产糖量,根径减幅较大,摘除后期叶组对块根含糖量,维管束环数,维管束环密度减幅较大;摘除第1-30片叶对甜菜影响最大。  相似文献   

4.
Coelho  Eugenio F.  Or  Dani 《Plant and Soil》1999,206(2):123-136
Information on root distribution and uptake patterns is useful to better understand crop responses to irrigation and fertigation, especially with the limited wetted soil volumes which develop under drip irrigation. Plant water uptake patterns play an important role in the success of drip irrigation system design and management. Here the root systems of corn were characterized by their length density (RLD) and root water uptake (RWU). Comparisons were made between the spatial patterns of corn RWU and RLD under surface and subsurface drip irrigation in a silt loam soil, considering a drip line on a crop row and between crop rows. Water uptake distribution was measured with an array of TDR probes at high spatial and temporal resolution. Root length density was measured by sampling soil cores on a grid centered on crop row. Roots were separated and an estimation of root geometrical attributes was made using two different image analysis programs. Comparisons of these programs yielded nearly identical estimates of RLD. The spatial patterns of RWU and RLD distributions, respectively normalized to the total uptake and root length, were generally similar only for drip line on a crop row, but with some local variations between the two measures. Both RLD and RWU were adequately fitted with parametric models based on semi-lognormal and normal Gaussian bivariate density functions (Coelho and Or, 1996; Soil Sci. Soc. Am. J. 60, 1039–1049).  相似文献   

5.
Given the lack of data on the absorption of amino acids in the tap root of Beta vulgaris, we studied the uptake of valine and compared it with that of sucrose at the same concentration (1 mM). The uptake of both substrates shared some similar characteristics. In particular, the absorption in both cases was controlled by an active process as evidenced by the inhibitory effect of CCCP and inhibitors of ATPases (DES, DCCD, orthovanadate). Both absorptions also involved the thiol and histidyl groups of protein carriers included in the plasmalemma as shown by treatment with specific compounds (PCMBS, mersalyl, NEM) inhibiting the transport of the nutrients in tissues and in purified PMV. However, it was shown that these uptakes present major differences. Firstly, unlike sucrose uptake, valine uptake was very sensitive to transmembrane electrical potential. Indeed, hyperpolarizing treatment with FC increased valine uptake but did not modify sucrose uptake. By contrast, treatment with high concentrations of KCl, which should result in depolarization of the cells, considerably decreased valine uptake and activated sucrose uptake. Secondly, ion mobilizations were different in the two types of transport. Unlike sucrose, application of valine to tissues strongly modified the time course of H+ influx. By contrast, sucrose uptake was controlled by K+ involvement as shown by effects either of modulators of K+ mobilization (LiCl, TEA) or of treatments inducing K+ starvation from the external medium.  相似文献   

6.
Analysis of soil moisture variations in an irrigated orchard root zone   总被引:1,自引:1,他引:0  
Polak  Amir  Wallach  Rony 《Plant and Soil》2001,233(2):145-159
Soil moisture and suction head in an irrigated orchard were continuously monitored by time domain reflectometry (TDR) probes and gypsum blocks, respectively, during and between successive irrigation events. On each side of the trees in the plot, two 30-cm long probes were installed vertically 10 cm below the soil surface (denoted as shallow) and another two probes were installed vertically 40 cm below the soil surface (denoted as deep). The variation in moisture content measured by the TDR probes between successive irrigation events was qualitatively divided into four stages: the first was during water application; the second initiated when irrigation stopped and the moisture content in the layer sharply decreased, mainly due to free drainage. The succeeding moderate soil-moisture decrease, caused by the simultaneous diminishing free drainage and root uptake, was the third stage. During the fourth stage, moisture depletion from the layer was solely by root uptake. The slopes of moisture content variation with time throughout this stage enabled the monitoring of water availability to the plant. The range of moisture content variations and moisture depletion rates between subsequent irrigation events was higher in the shallow (10–40 cm) than in the deeper (40–70 cm) layer. Irrigation nonuniformity and spatial variability of soil hydraulic properties contributed to the unevenness of the moisture distribution in the soil profile. However, as soon as moisture content within a layer reached field capacity, namely the free drainage had stopped, irrigation uniformity had a negligible effect on water flux to the plant roots. The measured data indicate that soil moisture is fully available to the plant as long as the momentary moisture flux from the soil bulk to the soil–root interface can replenish the moisture being depleted to supply, under non-stressed conditions, the atmospheric water demand. This flux is dominated by the local momentary value of the soil's bulk hydraulic conductivity, K r, and it stays constant for a certain range of K r values, controlled by the increasing root suction. A decrease in water availability to the plant appears for longer irrigation intervals as a break in the constant soil-moisture depletion rate during stage 4. This break is better correlated to a threshold K r value than to threshold values of moisture content or suction. Therefore, it is suggested that moisture content or suction used to measure water availability or to control irrigation first be alibrated by K r() or K r() curves, respectively.  相似文献   

7.
Manual line-intersect methods for estimating root length are being progressively replaced by faster and more accurate image analysis procedures. These methods even allow the estimation of some more root parameters (e.g., diameter), but still require preliminary labour-intensive operations. Through a task-specific macro function written in a general-purpose image analysis programme (KS 300 – Zeiss), the processing time of root images was greatly reduced with respect to skeletonisation methods by using a high-precision algorithm (Fibrelength). This has been previously proposed by other authors, and estimates length as a function of perimeter and area of the digital image of roots. One-bit binary images were acquired, aiming at large savings in computer memory, and automatic discrimination of roots against extraneous objects based on their elongation index (perimeter2/area), was performed successfully. Of four tested spatial resolutions (2.9, 5.9, 8.8, 11.8 pixel mm–1), in clean samples good accuracy in root length estimation was achieved at 11.8 pixel mm–1, up to a root density of 5 cm cm–2 on the scanner bed. This resolution is theoretically suitable for representing roots at least 85 m wide. When dealing with uncleaned samples, a thick layer of water was useful in speeding up spreading of roots on the scanner bed and avoiding underestimation of their length due to overlaps with organic debris. A set of fibrous root samples of sugar beet (Beta vulgaris var. saccharifera L.) collected at harvest over two years at Legnaro (NE Italy) was analysed by applying the above procedure. Fertilisation with 100 kg ha–1 of nitrogen led to higher RLD (root length density in soil) in shallow layers with respect to unfertilised controls, whereas thicker roots were found deeper than 80 cm of soil without nitrogen.  相似文献   

8.
The root system of plants is subject to fast cycles of renewal and decay within the growing season. In water and/or nutrient stress conditions, this turnover may become strategic for plant survival and productivity, but knowledge about its mechanisms is still insufficient. In order to investigate the effects of nitrogen fertilization on growth and turnover of sugar beet roots, an experiment was carried out over two growing seasons in northern Italy with two levels of N supply (0, 100 kg ha–1). Biomass production and partitioning were followed during growth, and fibrous root dynamics were inspected by means of computer-aided procedures applied to minirhizotron images.In conditions of N shortage, lower yields (storage roots) were associated with greater allocation of biomass to tap roots (final tap-root/shoot ratio = 5.6 vs. 4.1) and shallower distribution of fibrous root length density. The maximum depth of roots was not affected by N, but unfertilized plants reached it more slowly.The ratio of cumulative root dead length to produced length at the end of the growing period (TDL max/TPL max) was used as the most suitable approach for assessing overall root turnover. This ratio was greater in controls (0.73 vs. 0.50), which showed lower root longevity (–34% life-span on average), indicating that a greater proportion of root growth was renewed by unfertilized plants over the season.  相似文献   

9.
The objective of the present research was to assess the effects of fertigation frequency on plant phosphorus and water uptake. Special attention was given to root measurement in order to elucidate the mechanism that relates the fertigation frequency to P uptake and plant growth. Lettuce (Lactuca sativa L., cv. Iceberg) grown in pots filled with quartz sand was chosen as a test plant. The experiment comprised six treatments, with two concentrations of P in irrigation water (0.2 mM and 1.0 mM), and three daily fertigation frequencies (one, four and ten). It was found that high irrigation frequency induced a significant increase in plant-P concentration at low solution-P concentration, whereas at high P concentration the effect of irrigation frequency was insignificant. Increasing the irrigation frequency significantly enhanced the transpiration flux so that the transpiration flux of plants under low irrigation-P level at 10 daily irrigation events was similar to that of plants under high solution-P. The increases with irrigation frequency of P concentration in lettuce organs and of P influx to the roots, at the low P level, were attributed to the elimination of the depletion zone at the root-soil interface by the supply of fresh nutrient solution, and the enhancement of P uptake. The higher P uptake resulted from higher convective flux of dissolved P from the substrate solution to the root surface owing to the higher average moisture content associated with frequent irrigation. The only significant correlation revealed by multiple stepwise regressions relating nutrient concentrations in the plant to yield was that between plant-P concentration and the yield. On the basis of a quadratic regression, 97% of the dry weight variation could be explained by differences in P uptake, indicating that the main effect of fertigation frequency was related to an improvement in P mobilization and uptake. Thus, frequent irrigations may compensate for P shortage.  相似文献   

10.
Biological control of fungi causing root rot on sugar beet by native Streptomyces isolates (C and S2) was evaluated in this study. The dry weight and colony forming unit (CFU) of S2 and C increased when 300 mM NaCl was added to medium. The in vitro antagonism assays showed that both isolates had inhibitory effect against Rhizoctonia solani AG-2, Fusarium solani and Phytophthora drechsleri. In dual culture, Streptomyces isolate C inhibited mycelial growth of R. solani, F. solani and P. drechsleri 45%, 53% and 26%, respectively. NaCl treatment of medium increased biocontrol activity of soluble and volatile compounds of isolate C and S2. After salt treatment, growth inhibition of R. solani, F. solani and P. drechsleri by isolate C increased up to 59%, 70% and 79%, respectively. To elucidate the mode of antagonism, protease, chitinase, beta glucanase, cellulase, lipase and α-amylase activity and siderophore and salicylic acid (SA) production were evaluated. Both isolates showed protease, chitinase and α-amylase activity. Also, biosynthesis of siderophore was detectable for both isolates. Production of siderophore and activity of protease and α-amylase increased after adding salt for both isolates. In contrast, chitinase activity decreased significantly. Production of SA, beta glucanase and lipase by isolate S2 and biosynthesis of cellulase by isolate C were observed in presence and absence of NaCl. Soil treatment with Streptomyces isolate C inhibited root rot of sugar beet caused by P. drechsleri, R. solani and F. solani. Results of this study showed that these two Streptomyces isolates had potential to be utilized as biocontrol agent against fungal diseases especially in saline soils.  相似文献   

11.
Extracts of both young and old sugar beet plants were obtained using a modified Likens and Nickerson apparatus. Constituents were identified by GC/MS, and using selected ion monitoring it was shown that the previously determined phenylacetonitrile was probably not of glucosinolate origin. Some unsaturated aldehydes, alcohols and derivatives (enzymic lipid degradation products) were formed to greater extents by the younger leaves, but otherwise such quantitative differences were relatively few and generally random. An interesting range of chlorinated compounds was obtained only from the older plants; a pesticide origin is suggested.  相似文献   

12.
通过两年的田间试验,研究了滴水量和滴水频率对膜下滴灌棉田土壤水分分布及棉花水分利用效率的影响.结果表明:从整个生育期来看,当滴水量(375 mm)相同时,高频滴灌(每3天1次)处理0~20 cm土层含水率较高而深层土壤湿润不够;低频滴灌(每10天1次)处理有利于水分的下渗和侧渗,深层土壤含水率较高,但水分补给不及时,表层土壤偏低;总体上中频滴灌(每7天1次)处理有利于水分在土壤剖面中的均匀分配.当滴水频率相同时,滴水量越大,土壤含水率越高,40 cm以下土层含水率也越高.不同处理的棉田耗水规律基本一致,苗期较低,平均不高于1.7 mm·d-1,蕾期开始上升至花铃期达到最高,日均耗水量可达8.7 mm·d-1,吐絮期回落到1.0 mm·d-1左右.总耗水量与降水和滴水量密切相关,而与滴水频率无关;滴水频率对棉花水分利用效率无显著影响,但水分利用效率随滴水量的增大而显著降低.少量滴灌(300 mm)虽然可以获得较高的水分利用效率,但减产严重,过量滴灌(450mm)无显著增产效应,水分浪费严重.在当地棉田自然条件下,采用中量(375 mm)+中低频(每7天或10天1次)的滴灌模式为宜.  相似文献   

13.
Pea ( Pisum sativum L. cv. Fenomen) and sugar beet ( Beta vulgaris L. cv. Monohill) were cultivated in nutrient media without or with 10 μM CdCl2. Leaves of the same size and stage of development, detached or still attached to the intact plants, were submerged into redistilled water containing 1 to 250 μM CdCl2. The uptake experiments were run for 1 to 8 h at pH 3.6 and 5.1. Cuticular transpiration rate, density of leaf and density of stomata were also measured. Percentage of open stomata was studied at different pH.
Foliar uptake of Cd into the leaf is evident since Cd is transported from the exposed part of the pea leaves, through the petioles and into the stipules, and since the Cd concentration of the leaves increases with time and external Cd concentration. The foliar uptake depends on the permeability of the cuticular membrane, which is increased by a high intrinsic Cd level, which in turn enhances the foliar uptake of Cd in sugar beet. Higher cuticular permeability in pea than in sugar beet is shown by a 2.5 times higher cuticular transpiration rate and a 4 times lower density of leaf for pea, which causes a 7 times higher foliar uptake in pea than in sugar beet. Low pH decreases the net uptake of Cd, probably by an exchange reaction in the cutin and pectin of the cuticular membrane. Stomata are not directly involved in the Cd uptake, and the differences in the sum total of stomatal aperture area per unit leaf area is not related to differences in foliar uptake of Cd. Percentage of open stomata, calculated as average of both sides of the leaves, was not affected by changes in pH: but especially at high pH. proportionally more stomata were open on the adaxial than on the abaxial side.  相似文献   

14.
Sugar beet root maggot (SBRM, Tetanops myopaeformis von Röder) is a major but poorly understood insect pest of sugar beet (Beta vulgaris L.). The molecular mechanisms underlying plant defense responses are well documented, however, little information is available about complementary mechanisms for insect adaptive responses to overcome host resistance. To date, no studies have been published on SBRM gene expression profiling. Suppressive subtractive hybridization (SSH) generated more than 300 SBRM ESTs differentially expressed in the interaction of the pest with a moderately resistant (F1016) and a susceptible (F1010) sugar beet line. Blast2GO v. 3.2 search indicated that over 40% of the differentially expressed genes had known functions, primarily driven by fruit fly D. melanogaster genes. Expression patterns of 18 selected EST clones were confirmed by RT‐PCR analysis. Gene Ontology (GO) analysis predicted a dominance of metabolic and catalytic genes involved in the interaction of SBRM with its host. SBRM genes functioning during development, regulation, cellular process, signaling and under stress conditions were annotated. SBRM genes that were common or unique in response to resistant or susceptible interactions with the host were identified and their possible roles in insect responses to the host are discussed.  相似文献   

15.
刘梅先  杨劲松  李晓明  余美  王进 《生态学杂志》2011,22(12):3203-3210
通过两年的田间试验,研究了滴水量和滴水频率对膜下滴灌棉田土壤水分分布及棉花水分利用效率的影响.结果表明: 从整个生育期来看,当滴水量(375 mm)相同时,高频滴灌(每3天1次)处理0~20 cm土层含水率较高而深层土壤湿润不够;低频滴灌(每10天1次)处理有利于水分的下渗和侧渗,深层土壤含水率较高,但水分补给不及时,表层土壤偏低;总体上中频滴灌(每7天1次)处理有利于水分在土壤剖面中的均匀分配.当滴水频率相同时,滴水量越大,土壤含水率越高,40 cm以下土层含水率也越高.不同处理的棉田耗水规律基本一致,苗期较低,平均不高于1.7 mm·d-1,蕾期开始上升至花铃期达到最高,日均耗水量可达8.7 mm·d-1,吐絮期回落到1.0 mm·d-1左右.总耗水量与降水和滴水量密切相关,而与滴水频率无关;滴水频率对棉花水分利用效率无显著影响,但水分利用效率随滴水量的增大而显著降低.少量滴灌(300 mm)虽然可以获得较高的水分利用效率,但减产严重,过量滴灌(450 mm)无显著增产效应,水分浪费严重.在当地棉田自然条件下,采用中量(375 mm)+中低频(每7天或10天1次)的滴灌模式为宜.  相似文献   

16.
The aim of this work was to study the effects of incorporating sugar beet pulp (SBP) into the diet on the development of the crop and performance of geese. A total of 480 1-day-old ganders were divided into three groups differing in the composition and mode of distribution of the diet offered from day 56 to 89. The following two diets were used: a standard diet (nitrogen-corrected apparent metabolizable energy, AMEn 11.44 MJ/kg; 160 g/kg CP) or a diet containing 10% of SBP (SBP diet; AMEn 11.47 MJ/kg; 160 g/kg CP). The swelling capacity (SC) hydration was higher for SBP than for the standard diet (3.62 v. 2.72 ml of H2O/g of dry matter at 60 min; P<0.05). In the Control group, birds were fed with a controlled time of access to a standard diet. Other birds were fed the SBP diet with a controlled time of access (SBPt group) or a controlled quantity offered (SBPq). From day 90 to 104, 88 birds/group were overfed with a mixture containing mainly corn. Body traits including volume of the crop were measured at day 89. Fatty liver weight and commercial grading were measured at d 104. Feed intake from day 56 to 89 was higher in the Control group than in the SBPt group (8097 v. 7545 g; P<0.05), feed intake in the SBPq group being intermediate (7801 g); however, live weights (LW) of the birds were similar in the three groups measured at day 89 (5746 g; P>0.05). At day 89, the volume of the crop tended to be higher in the SBPt compared with the Control group (52.8 v. 48.8 ml/kg of LW; P=0.101). After overfeeding, feed intake (12 922 g), weight gain (2412 g), LW (8170 g), fatty liver weight (875 g) and commercial grading of the fatty liver were similar (P>0.1) for all the three groups. Therefore, SBP could help adapt the digestive tract of waterfowl to high feed intake through an increase in the crop volume, but its method of use – that is, level of incorporation and mode of distribution – should continue to be investigated.  相似文献   

17.
Sugar beet plants regenerated from UV-treated calluses were examined by restriction fragment length polymorphism (RFLP) analysis to determine the extent of somaclonal variation occurring at the DNA level. In total, 50 random sugar beet DNA sequences were used to screen 42 somaclones for genetic alterations. Three polymorphisms were detected among the 7 644 alleles analysed. From these data a mutation frequency of 0.03 ± 0.02% per allele was estimated. This frequency is in agreement with similar studies of somaclonal DNA variation using molecular markers and lies in the upper range of the spontaneous gene mutation frequencies found in plants. The two probegenotype combinations showing independent polymorphisms, were further analysed using the restriction enzymes Bam HI, Eco RI, Eco RV and Hind III. Both polymorphisms are likely to result from structural rearrangements rather than from point mutations. Differences in methylation among 10 of the investigated somaclones were tested for by comparing Hpa II and Msp I generated RFLP patterns. The somaclones showed extensive methylation, but no differences in their degree of methylation. Cytological analysis revealed 34 diploid, 8 tetraploid, but no aneuploid plants.  相似文献   

18.
Under greenhouse conditions, a pot experiment was conducted to clarify the potential of using some legumes as intercropped plants for reducing the root-knot nematode Meloidogyne incognita infecting sugar beet (Beta vulgaris L.) cv. DS-9004 compared to non-legume plant, garlic and non-intercropped plants. The obtained results revealed that all legumes including chickpea, Egyptian clover, faba bean, fenugreek, lentil and lupin significantly (p ≤ 0.05) reduced nematode criteria on the roots of sugar beet at different degrees. Chickpea and Egyptian clover reduced the number of galls on the roots of sugar beet as the percentage of reductions were 54 and 50%, respectively, followed by lupin and fenugreek, while garlic achieved 72% reduction compared to non-intercropped plants. Lupin reduced the number of egg masses by 59% followed by Egyptian clover and fenugreek (32%), three months after the treatment. On the other hand, six months after the treatment, chickpea reduced the number of galls by 55.7% followed by lupin (53.4%) and Egyptian clover (52.3%) and the percentage of reduction of egg masses behaved the same trend. Also, the treatments improved plant growth criteria of sugar beet, weight of roots (tubers) and the percentage of total soluble solids (TSS).  相似文献   

19.
Influence of root density on the critical soil water potential   总被引:1,自引:1,他引:0  
Estimation of root water uptake in crops is important for making many other agricultural predictions. This estimation often involves two assumptions: (1) that a critical soil water potential exists which is constant for a given combination of soil and crop and which does not depend on root length density, and (2) that the local root water uptake at given soil water potential is proportional to root length density. Recent results of both mathematical modeling and computer tomography show that these assumptions may not be valid when the soil water potential is averaged over a volume of soil containing roots. We tested these assumptions for plants with distinctly different root systems. Root water uptake rates and the critical soil water potential values were determined in several adjacent soil layers for horse bean (Vicia faba) and oat (Avena sativa) grown in lysimeters, and for field-grown cotton (Gossypium L.), maize (Zea mays) and alfalfa (Medicago sativa L.) crops. Root water uptake was calculated from the water balance of each layer in lysimeters. Water uptake rate was proportional to root length density at high soil water potentials, for both horse bean and oat plants, but root water uptake did not depend on root density for horse bean at potentials lower than −25 kPa. We observed a linear dependency of a critical soil water potential on the logarithm of root length density for all plants studied. Soil texture modified the critical water potential values, but not the linearity of the relationship. B E Clothier Section editor  相似文献   

20.
Immunolabelling techniques with antibodies specific to partially methyl-esterified homogalacturonan (JIM5: unesterified residues flanked by methylesterified residues. JIM7: methyl-esterified residues flanked by unesterified residues), a blockwise de-esterified homogalacturonan (2F4), 1,4-galactan (LM5) and 1,5-arabinan (LM6) were used to map the distribution of pectin motifs in cell walls of sugar beet root (Beta vulgaris). PME and alkali treatments of sections were used in conjunction with JIM5-7 and 2F4. The JIM7 epitope was abundant and equally distributed in all cells. In storage parenchyma, the JIM5 epitope was restricted to some cell junctions and the lining of intercellular spaces while in vascular tissues it occurred at cell junctions in some phloem walls and in xylem derivatives. After secondary wall formation, the JIM5 epitope was restricted to inner cell wall regions between secondary thickenings. The 2F4 epitope was not detected without de-esterification treatment. PME treatments prior to the use of 2F4 indicated that HG at cell corners was not acetylated. The LM5 epitope was mainly present in the cambial zone and when present in storage parenchyma, it was restricted to the wall region closest to the plasma membrane. The LM6 epitope was widely distributed throughout primary walls but was more abundant in bundles than in medullar ray tissue and storage parenchyma. These data show that the occurrence of oligosaccharide motifs of pectic polysaccharides are spatially regulated in sugar beet root cell walls and that the spatial patterns vary between cell types suggesting that structural variants of pectic polymers are involved in the modulation of cell wall properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号