首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of thymus and bone marrow-derived cells in the in vitro response to the dinitrophenyl (DNP) determinant was studied using the millipore filter well technique for spleen organ cultures. Antibodies to DNP were assayed by the technique of inactivation of DNP-coupled T-4 bacteriophage. It was found that spleens of mice total-body irradiated at 750 R, treated with bone marrow and thymus cells after exposure and immunized against rabbit serum albumin (RSA) were able to produce antibodies to DNP when challenged in vitro with DNP-RSA. Such a response was not produced by spleen explants from x-irradiated mice treated with either thymus or bone marrow cells. Neither were antibodies to DNP produced by spleens of animals repopulated with thymus and bone marrow cells, but not immunized with the carrier. This carrier effect was manifested when the irradiated mice were treated with RSA and thymus cells 6–8 days before administration of the bone marrow cells. Yet, such an effect was not observed when the RSA and bone marrow cells were given 6–8 days before injection of the thymus cells. Thus, the thymus-derived cells appear to play the role of cells sensitive to the carrier (RSA), whereas the bone marrow seems to be involved in the production of antibodies.  相似文献   

2.
Mice, rendered tolerant to rabbit gamma globulin (RGG), were immunized with RGG or with dinitrophenylated RGG (DNP40-RGG), incorporated in adjuvant. The resulting response was evaluated in terms of the half-life of trace labeled RGG (131I-RGG). An antibody response against the tolerance inducing macromolecule could be elicited with DNP40-RGG, but not with RGG. Reconstitution experiments revealed that thymus derived (T) cells from tolerant donors could cooperate with bone marrow cells from normal donors in the response elicited by DNP40-RGG, but could not effectively cooperate with bone marrow derived (B) cells from tolerant donors. Such B cells could cooperate with T cells from normal donors. The relative difference between native and chemically modified proteins played an important role in this tolerance circumvention, since analogous experiments with human instead of rabbit gamma globulin did not result in an effective response to determinants of the tolerance-inducing proteins. It was suggested that the number of effectively immunogenic determinants on DNP40-RGG was low in B and in T cells of animals tolerant to RGG and that the probability of effective cooperation was consequently extremely low. If one of the two cell types came from a normal animal and thus could respond to a large number of determinants, the probability of effective cooperation increased so as to reveal the responsiveness of the “tolerant” cell population. There was no indication that the responsiveness of the tolerant T cell population was directed against tolerance-inducing determinants.  相似文献   

3.
Lethally irradiated (900 R) mice were reconstituted with bone marrow cells from syngeneic donors that had been tolerized 2 to 3 wk earlier to either DNP or TNP compounds. Five weeks after reconstitution, these animals were tested for their ability to mount a delayed hypersensitivity (DH) response to the tolerizing haptens. Recipient mice were specifically tolerant to the hapten that was used to induce tolerance in the marrow donor. Mixing experiments in which mice were reconstituted with marrow from DNP-tolerant and TNP-tolerant donors showed no indication of active suppression or effective antigen carry-over in this system. This observation held true even in experiments in which mice were reconstituted with a mixture of marrow from tolerant and normal donors at a ratio of 5:1. Thus the reduced responsiveness in recipient mice seemed to be due to the functional elimination of hapten-responsive T cell precursor (pre-T) clones. Recipient unresponsiveness was also shown to be MHC restricted. Maintenance of unresponsiveness appeared to be due to the restricted access of regenerating pre-T cell clones to the maturational influence of the recipient's thymus.  相似文献   

4.
Tolerance to the DNP haptenic determinant was induced with a single i.v. injection of trinitrophenylated syngeneic red blood cells. The tolerant state lasted 1 month and was stable on transfer to irradiated thymectomized syngeneic recipients. Suppressor activity was found soon after injection of tolerogen but was lost before the termination of tolerance. The unresponsive state could be reversed by adding normal thymus cells to tolerant spleen cells but not by normal bone marrow cells. LPS when given with immunogen restored the normal immune response in tolerant mice. Thus the injection of TNP-MRBC induced partial immune unresponsiveness which was characterized by the induction of T cell suppressor activity and by a hapten-specific helper T cells tolerance. Finally, these studies suggest a cooperative interaction between DNP-specific T lymphocytes and DNP-specific B lymphocytes in the immune response to DNP-BGG.  相似文献   

5.
Normal bone marrow cells from Wistar Furth rats were competent to transfer immune responsiveness to bovine serum albumin to thymectomised, irradiated, syngeneic recipients. When the bone marrow cells were taken from donors thymectomised early in life they were incompetent, but competence was restored by addition of normal thymus cells. It was concluded that normal Wistar Furth bone marrow cells contain some thymus-derived cells. Thymus cells from tolerant donors were less effective in cooperation with bone marrow cells, however the thymus cells appeared less tolerant than their donors.  相似文献   

6.
Tolerance to the TNP haptenic determinant was induced by a single intravenous injection of trinitrophenylated syngeneic cells. Syngeneic spleen or thymus cells were capable of acting as carriers for tolerance induction while syngeneic bone marrow cells were not. Syngeneic spleen cells depleted of θ-positive and adherent cells were also suitable carriers for tolerance induction. Sonicated haptenated spleen cells, but not sonicated haptenated bone marrow cells induced tolerance. The ability of haptenated cells to induce tolerance was not correlated with their localization in lymphoid organs. Furthermore, cells recovered from the spleens of lethally irradiated animals reconstituted with bone marrow cells 1 week previously were incapable of inducing tolerance after hapten-modification. However, after 3 weeks, spleen cells from bone marrow-reconstituted mice had acquired the ability to induce tolerance. These results suggest that only certain types of syngeneic cells have the ability to act as carriers for tolerance induction; merely being syngeneic, and therefore presumably nonimmunogenic, is not sufficient to permit the cell to act as a carrier for tolerance induction.  相似文献   

7.
New born and 3-week-old SJL mice but not 8–12-week-old animals could be rendered tolerant to rabbit γ-globulin. Animals reconstituted with thymus cells from 12-week-old donors and bone marrow cells from 3-week-old donors showed resistance to tolerance induction. Animals reconstituted with bone marrow cells from 12-week-old animals and thymus cells from 3-week-old donors could be rendered tolerant. Earlier work has shown that tolerance could be induced in older animals, if they were deprived of competent accessory cells. It was suggested that a lesion in the thymus cell population is expressed through the mediation of accessory cells. The possibility of a relation between resistance to tolerance induction and lymphoid malignancies was discussed.  相似文献   

8.
Spleen and thymus cell populations from normal or allograft tolerant mice have been cultured for 5 days with specific alloantigens and examined for their reactivity in three assay systems. No consistent correlation was observed between the production of cytotoxic T cells (CTL) in these cultures and the ability of such cultured cells to inhibit specifically a CML response from fresh normal spleen cells directed to the priming alloantigens. Furthermore, suppressor cells measured in this latter assay were apparently distinct from those able to inhibit the production of cytotoxic lymphocyte precursors (CTLp) from bone marrow stem cells in lethally irradiated bone marrow protected mice. Velocity sedimentation experiments confirmed that both the precursor and effector cells for the two suppressor systems were physically separable, and were distinct from CTLp or CTL, respectively. Precursor cells for the two suppressor systems investigated belong to the short-lived cortical thymus cell population.  相似文献   

9.
Cellular events during the development of thymic lymphomas in young B10.BR mice given leukemogenic split-dose irradiation were studied by examining the differentiation of functional T lymphocyte precursors in the regenerating thymus. It was found that leukemogenic radiation treatment resulted in a sustained depression of the level of thymic cytotoxic T lymphocyte precursors (CTLp) and of mixed lymphocyte reactivity of thymus cells when assessed between 1 and 4 mo after irradiation, in spite of the fact that the total number of thymocytes was restored to the normal level within 2 mo and continued to increase thereafter. In vitro mixing studies of normal thymocytes with thymus cells from split-dose irradiated mice provided no evidence for active suppression as a mechanism for this depressed activity. The ability of bone marrow cells from split-dose irradiated mice to regenerate the thymus and to differentiate into functional CTLp was examined by use of supralethally irradiated Thy-1 congenic recipients. Reconstitution of supralethally irradiated B10.BR Thy-1.2 mice with normal bone marrow from B10.BR Thy-1.1 mice resulted in the complete repopulation of host-thymus with donor-derived cells when assessed at 4 wk after reconstitution. Lymphocytes from the regenerating thymus of these animals were shown to contain high levels of CTLp which were donor-derived. On the other hand, when the recipient mice were reconstituted with bone marrow cells from donor mice which had been split-dose irradiated 1 mo earlier, regeneration of the recipient thymus was severely depressed when assessed at 4 wk to 3 mo after reconstitution. Although variable but small numbers of donor-derived Thy-1+ cells were detected, CTL activity for alloantigen could not be induced in these donor-derived cells. The results suggest that T cell precursors derived from split-dose irradiated donor mice were unable to undergo active proliferation and differentiation into functional CTLp. The significance of these findings on radiation-induced thymic leukemogenesis is discussed.  相似文献   

10.
The cellular mechanism by which an injection of sheep red blood cells (SRBC) results in an increased production of B lymphocytes in mouse bone marrow has been studied by adoptive cell transfer and the use of two in vivo assays of bone marrow B-cell genesis. Proliferation of B progenitor cells was examined by immunofluorescent labeling combined with mitotic arrest, while small lymphocyte renewal was measured by [3H]thymidine labeling and radioautography. In C3H/HeJ mice the administration of SRBC resulted in increased proliferation among bone marrow pre-B cells which contained cytoplasmic mu heavy chains but lacked kappa light chains and surface mu chains. The turnover of small lymphocytes also increased. These stimulatory effects were transferred to naive recipient mice by organ fragments and by cell suspensions harvested from the spleens of donor mice injected with SRBC. In contrast, spleen cells and thymus cells from saline-injected donors and thymus cells from SRBC-injected donors had no such stimulatory effects. The results demonstrate that spleen cells mediate the stimulatory effect of SRBC on bone marrow B-lymphocyte production. Spleen cell transfer provides a system to study further the cells and factors involved in the regulation by external environmental agents of the rate of primary B-cell genesis in vivo.  相似文献   

11.
Irradiated mice reconstituted with bone marrow from sheep gamma-globulin- (SGG) tolerant syngeneic donors display reduced IgG responsiveness to challenge with trinitrophenylated (TNP)-SGG compared with recipients of normal marrow. This effect is SGG-specific and is due neither to suppressor T cells nor to antigen carryover. "Helper T cell precursor tolerance" can be induced with as little as 40 micrograms tolerogen (SGG). Unlike mature helper T cells, these precursors show both a rapid induction and rapid waning patterns, suggesting a high rate of turnover. Our results imply that marrow helper T cell precursors bear antigen-specific receptors and that the T cell repertoire must be at least partially generated before residence in the thymus.  相似文献   

12.
A common prediction of clonal deletion/inactivation hypotheses is that cells with high avidity for tolerogen are preferentially eliminated, with low avidity cells being most likely to escape the tolerance induction mechanism. Thus it would be expected that the tolerogen-specific cells in tolerant mice would have a different repertoire than those in normal mice. To find evidence in favor of this prediction, neonatal B10.A mice were rendered tolerant to B10 by the injection of 15 X 10(6) (B10.A X B10)F1 spleen and bone marrow cells, and tolerance was assessed by the acceptance of B10 skin grafts for greater than 50 days. Mice rendered tolerant in this manner contain severely reduced (to less than 10% of normal) but detectable numbers of tolerogen-specific cytotoxic cell precursors that can be activated in the presence, but not absence, of exogenous interleukin 2. Spleen cells from the tolerant animals were compared with those of normal B10.A mice with respect to the expression of differentiation markers on the surface of B10-specific cytotoxic cells and their precursors, and the relative strength of the anti-B10 response toward Kb and Db as a measure of the repertoire of the cytotoxic cell populations. The T cell nature of the tolerogen-specific cytotoxic cells in both normal and tolerant mice was confirmed by their susceptibility to lysis by anti-Thy-1 or Lyt-2 antibody and complement. More importantly, cold target inhibition experiments showed that cytotoxic T cells from tolerant mice were inhibited to a greater degree by B10.A(2R) (KkDb) cold targets than B10.A(5R) (KbDd), suggesting that the response was preferentially directed at the D end of H-2, in direct contrast to normal B10.A spleen cells, which show a preferential response against Kb. Measurement of the frequency of anti-Kb and anti-Db cytotoxic T cell precursors in the spleens of normal and tolerant mice confirmed the differential specificities seen in the cold target experiments. The data suggest that neonatal tolerance induction results in repertoire modification of the anti-tolerogen response rather than a uniform decrease in anti-tolerogen reactivity. Possible mechanisms to explain the alteration in the repertoire of tolerant mice are discussed.  相似文献   

13.
Cell transfer studies in cyclophosphamide-induced tolerance   总被引:1,自引:0,他引:1  
Thymectomized, irradiated adult CBA mice were restored with various combinations of bone marrow and thymus cells from nontolerant animals and from animals made tolerant to sheep erythrocytes or to hemocyanin with the drug cyclophosphamide. Mice reconstituted with tolerant marrow and thymus responded as well as those that received nontolerant cells. Thus it is concluded that the tolerant state of the transferred marrow and thymus cells is not a significant factor in the tolerant state of the recipient, and that antigenic diversity is restored in the interaction and proliferation of bone marrow and thymus cells that follow transfer.Thymectomized irradiated mice restored with thymocytes, in contrast to unoperated animals, require multiple antigen injections to demonstrate comparable immune response, but develop tolerance normally when treated with cyclophosphamide and antigen. Reconstitution with tolerant marrow and thymus cells resembles the recovery of immune responsiveness seen after lethal irradiation of tolerant mice; in both instances a complete breakdown of immunological tolerance is observed.  相似文献   

14.
Spleens of adult mice immunized with either RSA or RGG responded in vitro to DNP-RSA or DNP-RGG, respectively, at a significantly higher rate than spleens of untreated mice. Stimulation in vitro could be achieved by short pulses of the antigen (5–15 min). It was found that thymectomy prior to injection of the carrier protein interfered with the subsequent response in vitro to the hapten-carrier conjugate, and that this was much more pronounced in 8- to 10-day-old mice than in older mice. It is suggested that antigen stimulation in vivo triggers thymus cell migration. Although this is by no means the only mechanism accountable for manifestation of the carrier effect, it may represent a device for amplification of the immune response in vivo.  相似文献   

15.
Specific antisera were used for the purification of thymus dependent and thymus independent or bursa equivalent lymphoid cells in the mouse. Spleen cells from mice immune to sheep erythrocytes, a thymus dependent antigen, or to E. coli 055:B5 lipopolysaccharide, a thymus independent antigen, were treated with anti-θ (C3H) serum or anti-MBLA serum and complement prior to their adoptive transfer into lethally irradiated syngeneic recipients. Syngeneic thymocytes, bone marrow cells, or spleen cells from nonimmune donors were appropriately added to antiserum treated cells prior to transfer. The secondary response to these antigens was assayed in recipient spleens six days after cell transfer. The kinetics of the primary response to SRBC was investigated as to its effect on origin of specific hyper-reactive T or B lymphoid cells.The adoptive response to CPS originated in the B lymphoid cell population. Immunologic memory to CPS was demonstrated in recipients of immune cells, compared to recipients of normal cells, by a five fold increase in antibody forming cells.The IgM and IgG adoptive immune response to high doses of SRBC depended upon an increased number of specifically hyper-reactive T-lymphoid cells to facilitate cooperation between T and B lymphocytes. High doses of SRBC initially stimulated T cell memory but at 42 days after priming an increased number of specifically hyper-reactive B lymphoid cells were present.  相似文献   

16.
Embryonic bone marrow of normal and hormonally bursectomized chicks was examined for the presence of hematopoietic precursor cells capable of migrating to the thymus and bursa and of differentiating into functional T and B cells, respectively. Following transfer of chromosomally marked bone marrow of normal and in ovo bursectomized 14-day-old embryos to 14-day-old γ-irradiated embryonic recipients, donor cells proliferated in the marrow, thymus, and bursa of recipients, and differentiated to PHA- and Con A-responsive T cells as well as to dextran sulfate- and anti-immunoglobulin-responsive B cells. In contrast, when marrow of 2-day-old hatched normal and in ovo-bursectomized donors was transferred to 14-day-old embryonic recipients, donor cells repopulated only the marrow and thymus of recipients which was followed by differentiation to Con A- or PHA-responsive T cells, but the same donor cells failed to proliferate in the bursa and there was no differentiation to functional B cells of donor type. The data were fitted to a model of T- and B-cell differentiation from the stem cell level and they suggest the presence of separate populations of committed precursor T (PT) and precursor B (PB) cells in the marrow of normal and in ovo bursectomized embryos with a bursa-independent selective disappearance of PB cells from the marrow during the late embryonic period.  相似文献   

17.
Unresponsiveness of T cells in thymus and spleen of tolerant animals was determined by reconstitution of lethally irradiated recipients. The degree of responsiveness of these animals was assessed by antigen elimination and two types of plaque assays (liquid and agar) with different sensitivity. Unresponsiveness occurred more rapidly in T spleen cells than in thymus cells. Unresponsiveness of T cells could be induced in the spleens of thymectomized animals and in T cell repopulated thymectomized lethally irradiated recipients. Induction of unresponsiveness did not depend on proliferating bone marrow cells or on accessory cells.  相似文献   

18.
Newly hatched F1 hybrid chicks isogenic for the strong B histocompatibility locus were rendered immunologically incompetent by cyclophosphamide treatment and x-irradiation. They were then injected intravenously with thymus, bone marrow, or bursa cells together with sheep erythrocytes (SE) and received another iv injection of SE 3 days later. Splenic plaque-forming cells (PFC) and serum hemagglutinins were assayed 7 days after transfer. At donor ages of 14–26 days, cells from thymus (T) and bone marrow (BM) showed synergism when injected together, as indicated by a significantly higher geometric mean of PFC per recipient spleen in the BM + T group than in the BM group. The response of the T group was extremely low. With thymus and bursa cells from 6- to 28-day-old donors, significant synergism was demonstrated in 3 of 9 individual experiments. However, almost all the other 6 experiments showed marked differences in the same direction, and the combined probability for all experiments was < 0.001. The most striking demonstration of thymus + bursa synergism was made in 2 experiments using 1-week-old donors. Bone marrow cells from 1-week-old donors failed to cooperate with thymus, as did BM cells from older bursectomized agammaglobulinemic donors. This suggests that B cells from bone marrow originate in the bursa. Thymus-bursa cooperation was somewhat difficult to demonstrate in individual experiments using donors over 1 week of age, owing to the occurrence of some responses with bursal cells alone and to variability of response within bursa or bursa + thymus recipient groups. Synergism between thymus and bursa cells was more consistently demonstrable when irradiated normal spleen or low doses of bone marrow cells were added. These additions led to an increased response and a lowered coefficient of variation in the thymus + bursa recipient groups. The ‘third’ cell type needed for optimal response by the thymus and bursa cells together was tentatively identified as a macrophage.  相似文献   

19.
Cellular aspects of tolerance. II. Unresponsiveness of B cells   总被引:2,自引:0,他引:2  
The responsiveness of bone marrow cells from tolerant donors was examined by reconstitution of lethally irradiated tolerogen-free recipients. In these animals, stem cells from tolerant donors gave rise to immunologically competent antigen sensitive B cells. The antibody produced by these cells could be detected by a sensitive plaque assay in liquid and by antigen elimination. The antibody was not demonstrable by an assay which only detected plaque forming antibody which was highly avid or was formed in large quantity per cell. In lethally irradiated animals, partially purified B cells from a tolerant animal could not cooperate with T cells from normal donors to reconstitute immunological responsiveness to immunogenic doses of the tolerance inducing antigen. We concluded that antigen sensitive B cells in the bone marrow become unresponsive following administration of tolerogenic forms of antigen. Responsiveness of the reconstituted recipient animals was due to the differentiation of donor stem cells and subsequent antibody production by their descendants. Earlier contradictory findings could be unified in terms of these observations and conclusions.  相似文献   

20.
Neonatal transplantation tolerance was induced in B10.A mice by the injection of spleen and bone marrow cells from semiallogeneic [C57BL/10(B10) x B10.A] F1 donors. The neonatally treated mice accepted skin grafts from B10 donors. Spleen cells from tolerant animals did not respond by proliferation to tolerated B10 antigens in vitro. However, spleen cells from tolerant mice recognized specific (B10) antigens and synthesized mRNA for the inducible 55-kDa interleukin-2 receptor (IL-2R) as did cells from normal animals. Maintenance of this early phase of cell activation upon contact with tolerated antigens is direct evidence against clonal deletion as a mechanism, in this particular model of neonatally induced transplantation tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号