首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The activation of C55-isoprenoid alcohol phosphokinase by a variety of lipids has been investigated. A number of amphipathic lipids can serve as effective kinase activators. Both the nature of the polar and nonpolar groups are important, but kinase activation does not depend on any particular chemical structure or charge on the lipid. The structure of those lipids which are most effective, as well as an analysis of their temperature profiles, suggests that bulk physical properties are significant. Lipids which provide a hydrated, loosely packed, highly fluid environment are often effective activators.  相似文献   

3.
4.
5.
1. A direct method for determining the binding of triated water to lipids is described. The experimental conditions were practically identical to those previously employed (1974) in the determination of the cofactor activities of a series of oleyl-lipids in reactivation of the C55-isoprenoid alcohol phosphokinase apoprotein. 2. Active cofactor lipids (dioleyl lecithin, sodium oleate, 1-monoolein, 1-monomyristin)bound between 2.3 and 5.3 nmol 3H2O per nmol lipid, whereas less than 0.14 nmol 3H2O were bound per nmol of the inactive lipids (1,2- and 1,3-diolein, triolein, oleyl alcohol, methyl oleate, cholesteryl oleate). 3. When exposed to 3H2O vapour, the active lipids adsorbed between 1 and 2 nmol 3H2O per nmol lipid, whereas the inactive lipids adsorbed less than 0.1 nmol 3H2O per nmol lipid. 4. The active lipid cofactor, egg lecithin, bound more than twice as much 3H2O as egg phosphatidylethanolamine which was devoid of cofactor activity in the absence of detergent. 5. Appropriately hydrated lipid polar groups are concluded to be required for an alignment with polar amino acid side chains of the enzyme apoprotein in the formation of a mixed micellar lipoprotein complex. The enzyme reaction might occur at the resulting lipoprotein/water interface.  相似文献   

6.
7.
8.
Staphylococcus aureus C55 was shown to produce bacteriocin activity comprising three distinct peptide components, termed staphylococcins C55α, C55β, and C55γ. The three peptides were purified to homogeneity by a simple four-step purification procedure that consisted of ammonium sulfate precipitation followed by XAD-2 and reversed-phase (C8 and C18) chromatography. The yield following C8 chromatography was about 86%, with a more-than-300-fold increase in specific activity. When combined in approximately equimolar amounts, staphylococcins C55α and C55β acted synergistically to kill S. aureus or Micrococcus luteus but not S. epidermidis strains. The N-terminal amino acid sequences of all three peptides were obtained and staphylococcins C55α and C55β were shown to be lanthionine-containing (lantibiotic) molecules with molecular weights of 3,339 and 2,993, respectively. The C55γ peptide did not appear to be a lantibiotic, nor did it augment the inhibitory activities of staphylococcin C55α and/or C55β. Plasmids of 2.5 and 32.0 kb are present in strain C55, and following growth of this strain at elevated temperature (42°C), a large proportion of the progeny failed to produce strong bacteriocin activity and also lost the 32.0-kb plasmid. Protoplast transformation of these bacteria with purified 32-kb plasmid DNA regenerates the ability to produce the strong bacteriocin activity.  相似文献   

9.
The genome size and a partial physical and genetic map have been defined for the phage group II Staphylococcus aureus Ps55. The genome size was estimated to be 2,771 kb by pulsed-field gel electrophoresis (PFGE) using the restriction enzymes SmaI, CspI, and SgrAI. The Ps55 chromosome map was constructed by transduction of auxotrophic and cryptic transposon insertions, with known genetic and physical locations in S. aureus NCTC 8325, into the Ps55 background. PFGE and DNA hybridization analysis were used to detect the location of the transposon in Ps55. Ps55 restriction fragments were then ordered on the basis of genetic conservation between the two strains. Cloned DNA probes containing the lactose operon (lac) and genes encoding staphylococcal protein A (spa), gamma hemolysin (hlg), and coagulase (coa) were also located on the map by PFGE and hybridization analysis. This methodology enabled a direct comparison of chromosomal organization between NCTC 8325 and Ps55 strains. The chromosome size, gene order, and some of the restriction sites are conserved between the two phage group strains.  相似文献   

10.
The effect of a variety of structurally diverse antibiotics on C55-isoprenoid-alcohol kinase (EC 2.7.1.66) from Staphylococcus aureus has been examined. Only moenomycin was found to be inhibitory (Ki = 0.2 mM). Moenocinol, the C25 lipid component of moenomycin, did not serve as a substrate of the kinase reaction and was less inhibitory than the intact antibiotic. It is concluded that the observed inhibition may be due to the structural similarity between C55-isoprenylmonophosphate and the substituted moenocinol moiety of moenomycin.  相似文献   

11.
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of a myriad of insidious and intractable infections in humans, especially in patients with compromised immune systems and children. Here, we report the apo- and CoA-bound crystal structures of a member of the galactoside acetyltransferase superfamily from methicillin-resistant S. aureus SACOL2570 which was recently shown to be down regulated in S. aureus grown in the presence of fusidic acid, an antibiotic used to treat MRSA infections. SACOL2570 forms a homotrimer in solution, as confirmed by small-angle X-ray scattering and dynamic light scattering. The protein subunit consists of an N-terminal alpha-helical domain connected to a C-terminal LβH domain. CoA binds in the active site formed by the residues from adjacent LβH domains. After determination of CoA-bound structure, molecular dynamics simulations were performed to model the binding of AcCoA. Binding of both AcCoA and CoA to SACOL2570 was verified by isothermal titration calorimetry. SACOL2570 most likely acts as an acetyltransferase, using AcCoA as an acetyl group donor and an as-yet-undetermined chemical moiety as an acceptor. SACOL2570 was recently used as a scaffold for mutations that lead the generation of cage-like assemblies, and has the potential to be used for the generation of more complex nanostructures.  相似文献   

12.
13.
W Vogt  A Willberg  G Bochert  G Sieber  H Rühl 《Blut》1979,39(4):245-555
Cowan I strain Staphylococcus aureus bacteria were found to be mitogenic for human peripheral and cord blood lymphocytes. Experiments with lymphocyte supopulations otained by nylon wool filtration and/or E-rosette separation revealed that T-lymphocytes are the main target cells, whereas isolated B cells did not respond significantly. Further experiments suggested that B cells could be activated in the presence of mitomycin-treated T cells. Null cell-enriched lymphocyte suspensions could be stimulated by Con A but not by the bacteria or by PHA.  相似文献   

14.
The recently identified type II isopentenyl diphosphate (IPP):dimethylallyl diphosphate (DMAPP) isomerase (IDI-2) is a flavoenzyme that requires FMN and NAD(P)H for activity. IDI-2 is an essential enzyme for the biosynthesis of isoprenoids in several pathogenic bacteria including Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis, and thus is considered as a potential new drug target to battle bacterial infections. One notable feature of the IDI-2 reaction is that there is no net change in redox state between the substrate (IPP) and product (DMAPP), indicating that the FMN cofactor must start and finish each catalytic cycle in the same redox state. Here, we report the characterization and initial mechanistic studies of the S. aureus IDI-2. The steady-state kinetic analyses under aerobic and anaerobic conditions show that FMN must be reduced to be catalytically active and the overall IDI-2 reaction is O2-sensitive. Interestingly, our results demonstrate that NADPH is needed only in catalytic amounts to activate the enzyme for multiple turnovers of IPP to DMAPP. The hydride transfer from NAD(P)H to reduce FMN is determined to be pro-S stereospecific. Photoreduction and oxidation-reduction potential studies reveal that the S. aureus IDI-2 can stabilize significant amounts of the neutral FMN semiquinone. In addition, reconstitution of apo-IDI-2 with 5-deazaFMN resulted in a dead enzyme, whereas reconstitution with 1-deazaFMN led to the full recovery of enzyme activity. Taken together, these studies appear to support a catalytic mechanism in which the reduced flavin coenzyme mediates a single electron transfer to and from the IPP substrate during catalysis.  相似文献   

15.
16.
The first crystal structure of Class II peptide deformylase has been determined. The enzyme from Staphylococcus aureus has been overexpressed and purified in Escherichia coli and the structure determined by x-ray crystallography to 1.9 A resolution. The purified iron-enriched form of S. aureus peptide deformylase enzyme retained high activity over many months. In contrast, the iron-enriched form of the E. coli enzyme is very labile. Comparison of the two structures details many differences; however, there is no structural explanation for the dramatic activity differences we observed. The protein structure of the S. aureus enzyme reveals a fold similar, but not identical to, the well characterized E. coli enzyme. The most striking deviation of the S. aureus from the E. coli structure is the unique conformation of the C-terminal amino acids. The distinctive C-terminal helix of the latter is replaced by a strand in S. aureus which wraps around the enzyme, terminating near the active site. Although there are no differences at the amino acid level near the active site metal ion, significant changes are noted in the peptide binding cleft which may play a role in the design of general peptide deformylase inhibitors.  相似文献   

17.
A restriction endonuclease from Staphylococcus aureus.   总被引:23,自引:10,他引:13       下载免费PDF全文
A specific endonuclease, Sau 3AI, has been partially purified from Staphylococcus aureus strain 3A by DEAE-cellulose chromatography. The enzyme cleaves adenovirus type 5 DNA many times, SV40 DNA eight times but does not cleave double-stranded phi X174 DNA. It recognizes the sequence (see article) and cleaves as indicated by the arrows. Evidence is presented that this enzyme plays a role in the biological restriction-modification system of Staphylococcus aureus strain 3A.  相似文献   

18.
Exfoliative toxin (ET) produced by Staphylococcus aureus is closely associated with the onset of bullous impetigo. To date, three ETs (ETA, ETB and ETD) have been identified. The gene encoding ETB is located in a plasmid designated pETB. Bacteriocin synthesis genes are also located in this plasmid and pETB‐positive strains reportedly produce the C55 bacteriocin. In this study, the antibacterial activity against S. aureus strains of the bacteriocin produced by the pETB‐positive strain TY4 was investigated. This bacteriocin demonstrated antibacterial activity against all pETB‐negative but not pETB‐positive strains, including TY4. Additionally, a TY4? strain from which the pETB plasmid had been deleted exhibited susceptibility to the bacteriocin. Further experiments revealed that two immunity factors (orf 46‐47 and orf 48) downstream of the bacteriocin synthesis genes in the pETB plasmid are associated with immunity against the bacteriocin produced by TY4. The TY4? with orf46‐47 strain exhibited complete resistance to bacteriocin, whereas the TY4? with orf48 strain exhibited partial resistance. Whether bacteriocin affects the proportion of each strain when co‐cultured with S. aureus strains was also investigated. When TY4 or TY4? was co‐cultured with 209P strain, which is susceptible to the bacteriocin, the proportion of 209P co‐cultured with TY4 was significantly less than when 209P was co‐cultured with TY4?, whereas the proportion of TY4? with orf46‐48 co‐cultured with TY4 was greater than with TY4?. These results suggest that the C55 bacteriocin produced by pETB‐positive strains affects the proportion of each strain when pETB‐positive and ‐negative strains co‐exist.
  相似文献   

19.
20.
Characterization of small plasmids from Staphylococcus aureus.   总被引:8,自引:0,他引:8  
Small molecular weight plasmids from Staphylococcus aureus were characterized with respect to size, restriction enzyme cleavage pattern and transforming capacity. The plasmids pS194 and pC194 which encode streptomycin and chloramphenicol resistance respectively contained 3.0 and 2.0 megadaltons of DNA as determined by zonal rate centrifugation and electron-microscopy. Both plasmids transformed S. aureus with high efficiency. Plasmid pC194 contained only one cleavage site for endonuclease HindIII and pS194 contained single cleavage sites for HindIII and EcoRI. A natural recombinant between these two plasmids, pSC194, shared the high transforming capacity of the parental plasmids and contained one EcoRI site And two HindIII sites. pSC194 DNA also transformed B. subtilis with high efficiency. The recombinant plasmid pSC194 may be used as an EcoRI vector for construction and propagation of hybrid DNA in S. aureus as shown in the following paper (Löfdahl et al., 1978).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号