首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene expression analysis has become a ubiquitous tool for studying a wide range of human diseases. In a typical analysis we compare distinct phenotypic groups and attempt to identify genes that are, on average, significantly different between them. Here we describe an innovative approach to the analysis of gene expression data, one that identifies differences in expression variance between groups as an informative metric of the group phenotype. We find that genes with different expression variance profiles are not randomly distributed across cell signaling networks. Genes with low-expression variance, or higher constraint, are significantly more connected to other network members and tend to function as core members of signal transduction pathways. Genes with higher expression variance have fewer network connections and also tend to sit on the periphery of the cell. Using neural stem cells derived from patients suffering from Schizophrenia (SZ), Parkinson's disease (PD), and a healthy control group, we find marked differences in expression variance in cell signaling pathways that shed new light on potential mechanisms associated with these diverse neurological disorders. In particular, we find that expression variance of core networks in the SZ patient group was considerably constrained, while in contrast the PD patient group demonstrated much greater variance than expected. One hypothesis is that diminished variance in SZ patients corresponds to an increased degree of constraint in these pathways and a corresponding reduction in robustness of the stem cell networks. These results underscore the role that variation plays in biological systems and suggest that analysis of expression variance is far more important in disease than previously recognized. Furthermore, modeling patterns of variability in gene expression could fundamentally alter the way in which we think about how cellular networks are affected by disease processes.  相似文献   

2.
Li X  Li C  Shang D  Li J  Han J  Miao Y  Wang Y  Wang Q  Li W  Wu C  Zhang Y  Li X  Yao Q 《PloS one》2011,6(6):e21131
One of the challenging problems in the etiology of diseases is to explore the relationships between initiation and progression of diseases and abnormalities in local regions of metabolic pathways. To gain insight into such relationships, we applied the "k-clique" subpathway identification method to all disease-related gene sets. For each disease, the disease risk regions of metabolic pathways were then identified and considered as subpathways associated with the disease. We finally built a disease-metabolic subpathway network (DMSPN). Through analyses based on network biology, we found that a few subpathways, such as that of cytochrome P450, were highly connected with many diseases, and most belonged to fundamental metabolisms, suggesting that abnormalities of fundamental metabolic processes tend to cause more types of diseases. According to the categories of diseases and subpathways, we tested the clustering phenomenon of diseases and metabolic subpathways in the DMSPN. The results showed that both disease nodes and subpathway nodes displayed slight clustering phenomenon. We also tested correlations between network topology and genes within disease-related metabolic subpathways, and found that within a disease-related subpathway in the DMSPN, the ratio of disease genes and the ratio of tissue-specific genes significantly increased as the number of diseases caused by the subpathway increased. Surprisingly, the ratio of essential genes significantly decreased and the ratio of housekeeping genes remained relatively unchanged. Furthermore, the coexpression levels between disease genes and other types of genes were calculated for each subpathway in the DMSPN. The results indicated that those genes intensely influenced by disease genes, including essential genes and tissue-specific genes, might be significantly associated with the disease diversity of subpathways, suggesting that different kinds of genes within a disease-related subpathway may play significantly differential roles on the diversity of diseases caused by the corresponding subpathway.  相似文献   

3.
A greater understanding of the causes of human disease can come from identifying characteristics that are specific to disease genes. However, a full understanding of the contribution of essential genes to human disease is lacking, due to the premise that these genes tend to cause developmental abnormalities rather than adult disease. We tested the hypothesis that human orthologs of mouse essential genes are associated with a variety of human diseases, rather than only those related to miscarriage and birth defects. We segregated human disease genes according to whether the knockout phenotype of their mouse ortholog was lethal or viable, defining those with orthologs producing lethal knockouts as essential disease genes. We show that the human orthologs of mouse essential genes are associated with a wide spectrum of diseases affecting diverse physiological systems. Notably, human disease genes with essential mouse orthologs are over-represented among disease genes associated with cancer, suggesting links between adult cellular abnormalities and developmental functions. The proteins encoded by essential genes are highly connected in protein-protein interaction networks, which we find correlates with an over-representation of nuclear proteins amongst essential disease genes. Disease genes associated with essential orthologs also are more likely than those with non-essential orthologs to contribute to disease through an autosomal dominant inheritance pattern, suggesting that these diseases may actually result from semi-dominant mutant alleles. Overall, we have described attributes found in disease genes according to the essentiality status of their mouse orthologs. These findings demonstrate that disease genes do occupy highly connected positions in protein-protein interaction networks, and that due to the complexity of disease-associated alleles, essential genes cannot be ignored as candidates for causing diverse human diseases.  相似文献   

4.
Proteins targeting the same subcellular localization tend to participate in mutual protein–protein interactions (PPIs) and are often functionally associated. Here, we investigated the relationship between disease‐associated proteins and their subcellular localizations, based on the assumption that protein pairs associated with phenotypically similar diseases are more likely to be connected via subcellular localization. The spatial constraints from subcellular localization significantly strengthened the disease associations of the proteins connected by subcellular localizations. In particular, certain disease types were more prevalent in specific subcellular localizations. We analyzed the enrichment of disease phenotypes within subcellular localizations, and found that there exists a significant correlation between disease classes and subcellular localizations. Furthermore, we found that two diseases displayed high comorbidity when disease‐associated proteins were connected via subcellular localization. We newly explained 7584 disease pairs by using the context of protein subcellular localization, which had not been identified using shared genes or PPIs only. Our result establishes a direct correlation between protein subcellular localization and disease association, and helps to understand the mechanism of human disease progression.  相似文献   

5.
MOTIVATION: The inference of genes that are truly associated with inherited human diseases from a set of candidates resulting from genetic linkage studies has been one of the most challenging tasks in human genetics. Although several computational approaches have been proposed to prioritize candidate genes relying on protein-protein interaction (PPI) networks, these methods can usually cover less than half of known human genes. RESULTS: We propose to rely on the biological process domain of the gene ontology to construct a gene semantic similarity network and then use the network to infer disease genes. We show that the constructed network covers about 50% more genes than a typical PPI network. By analyzing the gene semantic similarity network with the PPI network, we show that gene pairs tend to have higher semantic similarity scores if the corresponding proteins are closer to each other in the PPI network. By analyzing the gene semantic similarity network with a phenotype similarity network, we show that semantic similarity scores of genes associated with similar diseases are significantly different from those of genes selected at random, and that genes with higher semantic similarity scores tend to be associated with diseases with higher phenotype similarity scores. We further use the gene semantic similarity network with a random walk with restart model to infer disease genes. Through a series of large-scale leave-one-out cross-validation experiments, we show that the gene semantic similarity network can achieve not only higher coverage but also higher accuracy than the PPI network in the inference of disease genes.  相似文献   

6.
Gene expression profiling offers a great opportunity for studying multi-factor diseases and for understanding the key role of genes in mechanisms which drive a normal cell to a cancer state. Single gene analysis is insufficient to describe the complex perturbations responsible for cancer onset, progression and invasion. A deeper understanding of the mechanisms of tumorigenesis can be reached focusing on deregulation of gene sets or pathways rather than on individual genes. We apply two known and statistically well founded methods for finding pathways and biological processes deregulated in pathological conditions by analyzing gene expression profiles. In particular, we measure the amount of deregulation and assess the statistical significance of predefined pathways belonging to a curated collection (Molecular Signature Database) in a colon cancer data set. We find that pathways strongly involved in different tumors are strictly connected with colon cancer. Moreover, our experimental results show that the study of complex diseases through pathway analysis is able to highlight genes weakly connected to the phenotype which may be difficult to detect by using classical univariate statistics. Our study shows the importance of using gene sets rather than single genes for understanding the main biological processes and pathways involved in colorectal cancer. Our analysis evidences that many of the genes involved in these pathways are strongly associated to colorectal tumorigenesis. In this new perspective, the focus shifts from finding differentially expressed genes to identifying biological processes, cellular functions and pathways perturbed in the phenotypic conditions by analyzing genes co-expressed in a given pathway as a whole, taking into account the possible interactions among them and, more importantly, the correlation of their expression with the phenotypical conditions.  相似文献   

7.

Background

Previous studies of network properties of human disease genes have mainly focused on monogenic diseases or cancers and have suffered from discovery bias. Here we investigated the network properties of complex disease genes identified by genome-wide association studies (GWAs), thereby eliminating discovery bias.

Principal findings

We derived a network of complex diseases (n = 54) and complex disease genes (n = 349) to explore the shared genetic architecture of complex diseases. We evaluated the centrality measures of complex disease genes in comparison with essential and monogenic disease genes in the human interactome. The complex disease network showed that diseases belonging to the same disease class do not always share common disease genes. A possible explanation could be that the variants with higher minor allele frequency and larger effect size identified using GWAs constitute disjoint parts of the allelic spectra of similar complex diseases. The complex disease gene network showed high modularity with the size of the largest component being smaller than expected from a randomized null-model. This is consistent with limited sharing of genes between diseases. Complex disease genes are less central than the essential and monogenic disease genes in the human interactome. Genes associated with the same disease, compared to genes associated with different diseases, more often tend to share a protein-protein interaction and a Gene Ontology Biological Process.

Conclusions

This indicates that network neighbors of known disease genes form an important class of candidates for identifying novel genes for the same disease.  相似文献   

8.
Taylor IW  Wrana JL 《Proteomics》2012,12(10):1706-1716
The physical interaction of proteins is subject to intense investigation that has revealed that proteins are assembled into large densely connected networks. In this review, we will examine how signaling pathways can be combined to form higher order protein interaction networks. By using network graph theory, these interaction networks can be further analyzed for global organization, which has revealed unique aspects of the relationships between protein networks and complex biological phenotypes. Moreover, several studies have shown that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer progression. These relationships suggest a novel paradigm for treatment of complex multigenic disease where the protein interaction network is the target of therapy more so than individual molecules within the network.  相似文献   

9.
Africa is the ultimate source of modern humans and as such harbors more genetic variation than any other continent. For this reason, studies of the patterns of genetic variation in African populations are crucial to understanding how genes affect phenotypic variation, including disease predisposition. In addition, the patterns of extant genetic variation in Africa are important for understanding how genetic variation affects infectious diseases that are a major problem in Africa, such as malaria, tuberculosis, schistosomiasis, and HIV/AIDS. Therefore, elucidating the role that genetic susceptibility to infectious diseases plays is critical to improving the health of people in Africa. It is also of note that recent and ongoing social and cultural changes in sub-Saharan Africa have increased the prevalence of non-communicable diseases that will also require genetic analyses to improve disease prevention and treatment. In this review we give special attention to many of the past and ongoing studies, emphasizing those in Sub-Saharan Africans that address the role of genetic variation in human disease. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

10.
Readily-accessible and standardised capture of genotypic variation has revolutionised our understanding of the genetic contribution to disease. Unfortunately, the corresponding systematic capture of patient phenotypic variation needed to fully interpret the impact of genetic variation has lagged far behind. Exploiting deep and systematic phenotyping of a cohort of 197 patients presenting with heterogeneous developmental disorders and whose genomes harbour de novo CNVs, we systematically applied a range of commonly-used functional genomics approaches to identify the underlying molecular perturbations and their phenotypic impact. Grouping patients into 408 non-exclusive patient-phenotype groups, we identified a functional association amongst the genes disrupted in 209 (51%) groups. We find evidence for a significant number of molecular interactions amongst the association-contributing genes, including a single highly-interconnected network disrupted in 20% of patients with intellectual disability, and show using microcephaly how these molecular networks can be used as baits to identify additional members whose genes are variant in other patients with the same phenotype. Exploiting the systematic phenotyping of this cohort, we observe phenotypic concordance amongst patients whose variant genes contribute to the same functional association but note that (i) this relationship shows significant variation across the different approaches used to infer a commonly perturbed molecular pathway, and (ii) that the phenotypic similarities detected amongst patients who share the same inferred pathway perturbation result from these patients sharing many distinct phenotypes, rather than sharing a more specific phenotype, inferring that these pathways are best characterized by their pleiotropic effects.  相似文献   

11.
Recent advances in genome sequencing techniques have improved our understanding of the genotype-phenotype relationship between genetic variants and human diseases. However, genetic variations uncovered from patient populations do not provide enough information to understand the mechanisms underlying the progression and clinical severity of human diseases. Moreover, building a high-resolution genotype-phenotype map is difficult due to the diverse genetic backgrounds of the human population. We built a cross-species genotype-phenotype map to explain the clinical severity of human genetic diseases. We developed a data-integrative framework to investigate network modules composed of human diseases mapped with gene essentiality measured from a model organism. Essential and nonessential genes connect diseases of different types which form clusters in the human disease network. In a large patient population study, we found that disease classes enriched with essential genes tended to show a higher mortality rate than disease classes enriched with nonessential genes. Moreover, high disease mortality rates are explained by the multiple comorbid relationships and the high pleiotropy of disease genes found in the essential gene-enriched diseases. Our results reveal that the genotype-phenotype map of a model organism can facilitate the identification of human disease-gene associations and predict human disease progression.  相似文献   

12.
Once degenerative aortic valve disease becomes symptomatic, valve replacement is necessary for prognostic and symptomatic reasons. In elderly patients, symptoms of degenerative aortic valve can often be doubtful. Therefore, it is difficult but important to distinguish patients who need surgery from those who do not. Estimation of the rate of the progression of this disease can be helpful herein because one needs to bear in mind that aortic valve degeneration is an active process, which can influence the rate of progression. Recently, autophagy was discovered as a mechanism of cell death in different cardiovascular diseases such as atherosclerosis, aortic valve degeneration, heart failure and at regions around heart infarctions. Thus understanding autophagy in all its details can be helpful to contribute insights into the cell death machinery of cardiovascular diseases. This could open ways for inhibition of cell death in cardiovascular disease and possibly define targets for future drug design.  相似文献   

13.
An analysis of human microRNA and disease associations   总被引:2,自引:0,他引:2  
Lu M  Zhang Q  Deng M  Miao J  Guo Y  Gao W  Cui Q 《PloS one》2008,3(10):e3420
It has been reported that increasingly microRNAs are associated with diseases. However, the patterns among the microRNA-disease associations remain largely unclear. In this study, in order to dissect the patterns of microRNA-disease associations, we performed a comprehensive analysis to the human microRNA-disease association data, which is manually collected from publications. We built a human microRNA associated disease network. Interestingly, microRNAs tend to show similar or different dysfunctional evidences for the similar or different disease clusters, respectively. A negative correlation between the tissue-specificity of a microRNA and the number of diseases it associated was uncovered. Furthermore, we observed an association between microRNA conservation and disease. Finally, we uncovered that microRNAs associated with the same disease tend to emerge as predefined microRNA groups. These findings can not only provide help in understanding the associations between microRNAs and human diseases but also suggest a new way to identify novel disease-associated microRNAs.  相似文献   

14.
15.
It is believed that oxidative stress (OS) plays a central role in the pathogenesis of metabolic diseases like diabetes mellitus (DM) and its complications (like peripheral neuropathy) as well as in neurodegenerative disorders like sporadic Alzheimer’s disease (sAD). Representative experimental models of these diseases are streptozotocin (STZ)-induced diabetic rats and STZ-intracerebroventricularly (STZ-icv) treated rats, in which antioxidant capacity (AC) against peroxyl (ORAC-ROO ) and hydroxyl (ORAC-OH ) free radicals (FR) was measured in three different brain regions: the hippocampus (HPC), the cerebellum (CB), and the brain stem (BS) by means of oxygen radical absorbance capacity (ORAC) assay. In the brain of both STZ-induced diabetic and STZ-icv treated rats decreased AC has been found demonstrating regionally specific distribution. In the diabetic rats these abnormalities were not associated with the development of peripheral diabetic neuropathy (PDN). Also, these abnormalities were not prevented by the intracerebroventricularly (icv) pretreatment of glucose transport inhibitor 5–thio-d-glucose (TG) in the STZ-icv treated rats, suggesting different mechanism of STZ-induced central effects from those at the periphery. Similarities of the OS alterations in the brain of STZ-icv rats and humans with sAD could be useful in the search for the new drugs in the treatment of sAD that have antioxidant activity. In the STZ-induced diabetic animals the existence of PDN was tested by the paw pressure test, 3 weeks following the diabetes induction. Mechanical nociceptive thresholds were measured three times at 10–min intervals by applying increased pressure to the hind paw until the paw-withdrawal or overt struggling was elicited. Only those diabetic animals which demonstrated decreased withdrawal threshold values in comparison with the control non-diabetic animals (C) were considered to have developed the PDN. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

16.
Ecological network theory predicts that in mutualistic systems specialists tend to interact with a subset of species with which generalists interact (i.e. nestedness). Approaching plant-arbuscular mycorrhizal fungi (AMF) association using network analyses will allow the generality of this pattern to be expanded to the ubiquitous plant-AMF mutualism. Based on certain plant-AMF specificity recently suggested, networks are expected to be nested as a result of their mutualistic nature, and modular, with certain species interacting more tightly than others. Network analyses were used to test for nestedness and modularity and to compare the different contribution of plant and AMF to the overall nestedness. Plant-AMF networks share general network properties with other mutualisms. Plant species with few AMFs in their roots tend to associate with those AMFs recorded in most plant species. AMFs present in a few plant species occur in plant species sheltering most AMF (i.e. nestedness). This plant-AMF network presents weakly interlinked subsets of species, strongly connected internally (i.e. modularity). Both plants and AMF show a nested structure, although AMFs have lower nestedness than plants. The plant-AMF interaction pattern is interpreted in the context of how plant-AMF associations can be underlying mechanisms shaping plant community assemblages.  相似文献   

17.
Animal models that represent human diseases constitute an important tool in understanding the pathogenesis of the diseases, and in developing effective therapies. Neurodegenerative diseases are complex disorders involving neuropathologic and psychiatric alterations. Although transgenic and knock-in mouse models of Alzheimer's disease, (AD), Parkinson's disease (PD) and Huntington's disease (HD) have been created, limited representation in clinical aspects has been recognized and the rodent models lack true neurodegeneration. Chemical induction of HD and PD in nonhuman primates (NHP) has been reported, however, the role of intrinsic genetic factors in the development of the diseases is indeterminable. Nonhuman primates closely parallel humans with regard to genetic, neuroanatomic, and cognitive/behavioral characteristics. Accordingly, the development of NHP models for neurodegenerative diseases holds greater promise for success in the discovery of diagnoses, treatments, and cures than approaches using other animal species. Therefore, a transgenic NHP carrying a mutant gene similar to that of patients will help to clarify our understanding of disease onset and progression. Additionally, monitoring disease onset and development in the transgenic NHP by high resolution brain imaging technology such as MRI, and behavioral and cognitive testing can all be carried out simultaneously in the NHP but not in other animal models. Moreover, because of the similarity in motor repertoire between NHPs and humans, it will also be possible to compare the neurologic syndrome observed in the NHP model to that in patients. Understanding the correlation between genetic defects and physiologic changes (e.g. oxidative damage) will lead to a better understanding of disease progression and the development of patient treatments, medications and preventive approaches for high risk individuals. The impact of the transgenic NHP model in understanding the role which genetic disorders play in the development of efficacious interventions and medications is foreseeable.  相似文献   

18.
目的:探讨甲氨蝶呤(MTX)或来氟米特(LEF)联合泼尼松(PDN)对老年类风湿关节炎的疗效。方法:选取112例老年RA患者,按随机数表法将患者分为LEF组(n=28)、MTX组(n=28)、LET+PDN组(n=28)、MTX+PDN组(n=28),治疗3个月后统计四组关节肿胀数、关节压痛数、DAS28评分、VAS评分、RF、晨僵时间,并记录不良反应事件。结果:MTX组和LEF组治疗后各项指标均低于治疗前(P0.05);MTX+PDN组与LEF+PDN组治疗后各项指标均明显低于治疗前(P0.001);MTX+PDN组治疗效果明显优于MTX组(P0.001);LEF+PDN组治疗效果明显优于LEF组(P0.001);MTX+PDN组治疗总有效率为53.57%,高于LEF+PDN组的42.86%,但差异无统计学意义(x~2=2.426,P=0.119)。结论:四组对RA均有治疗效果,联合使用效果更佳,且服药后无严重不良反应,安全性较高。  相似文献   

19.
20.
Ferrada E  Wagner A 《PloS one》2010,5(11):e14172
The organization of protein structures in protein genotype space is well studied. The same does not hold for protein functions, whose organization is important to understand how novel protein functions can arise through blind evolutionary searches of sequence space. In systems other than proteins, two organizational features of genotype space facilitate phenotypic innovation. The first is that genotypes with the same phenotype form vast and connected genotype networks. The second is that different neighborhoods in this space contain different novel phenotypes. We here characterize the organization of enzymatic functions in protein genotype space, using a data set of more than 30,000 proteins with known structure and function. We show that different neighborhoods of genotype space contain proteins with very different functions. This property both facilitates evolutionary innovation through exploration of a genotype network, and it constrains the evolution of novel phenotypes. The phenotypic diversity of different neighborhoods is caused by the fact that some functions can be carried out by multiple structures. We show that the space of protein functions is not homogeneous, and different genotype neighborhoods tend to contain a different spectrum of functions, whose diversity increases with increasing distance of these neighborhoods in sequence space. Whether a protein with a given function can evolve specific new functions is thus determined by the protein's location in sequence space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号