首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to investigate quantitatively the interesterification reaction, triolein and stearic acid were used as substrates and eight commercially available lipases were tested for their suitability for the reaction. Three fungal lipase preparations were found to be suitable. The hydrolytic activity of the commercial lipases was tested with olive oil, and it 2was noted that there was no correlation between their hydrolytic and interesterification activities. Among the lipases tested, Mucor miehei lipase was chosen for further study because of it high protein content and its relatively high hydrolytic and interesterification activities, both of which are required for effective interesterification. The effect of water activity of the interesterification reaction was investigated. interesterification activity was shown to be maximum at the water activity of 0.25. As the water activity of the lipase increased, hydrolysis of triglyceride was accelerated. At zero water activity, high conversion was achieved, although interesterification activity was relatively lower than that at the water activity of 0.25. A new and simple immobilization method was developed in order to render hydrophobicity to the lipase and hence to improve the interesterification activity of the lipase. The lipase was immobilized covalently with glutaraldehyde or with six alkyl chains as spacers onto Florisil (magnesium silicate, a inorganic matrix). Interesterification activity of the immobilized lipase with the hydrophobic spacers were increased against that of re lipase. The increase of activity was up to 8-fold that of the original activity of free lipase when the spacer was 7-aminoheptanoic acids. Relatively high stability of the immobilized lipase was shown in a continuous packed bed column reactor with a half-life of 97 days. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
The industrial feasibility of an interesterification process using acetone-dried fungus (as a lipase catalyst) immobilized in biomass support particles (BSPs) was examined by continuous interesterification between olive oil and methyl stearate, where the water content of the reaction mixture (Cw) was controlled at a given value. The Cw affected not only the inactivation rate of lipase in the cells but also the production rate of the by-product (diglycerides). The optimal Cw was determined as about 100 ppm. The half-life of lipase in the cells was about 1200 h at the optimal Cw, suggesting that the interesterification process using the immobilized fungus is industrially feasible.  相似文献   

3.
Summary Oleic acid esterification by ethanol has been performed by an immobilized lipase fromMucor miehei in supercritical carbon dioxide and in n-hexane as solvents. In both media, determination of apparent kinetic constants has been achieved and influence of water content has been shown to be different due to various rates of water solubilities. Stability of the lipase has been proved to be correct and similar in both solvents. Inhibition by ethanol excess has been found but is greater in n-hexane. That can explain the higher initial velocities obtained in supercritical carbon dioxide for the highest ethanol concentrations.  相似文献   

4.
The enantioselective esterification of racemic ibuprofen with n-propanol by immobilized Mucor miehel lipase in supercritical carbon dioxide was studied. The enantiomeric excess of the product (eep) was 70 % at 15...20 % conversion. The enantioselectivity was faintly affected by temperature and the concentration of ibuprofen and lipase. The optimum temperature was 45 °C. The initial reaction rate increased with pressure, but enantioselectivity was not affected by pressure changes. The reaction rates in supercritical carbon dioxide at optimized conditions and in n-hexane were similar.  相似文献   

5.
Extracellular bacterial lipases are promising biocatalysts for industry, because they are stable and active enzymes from easily available sources. A lipase from Bacillus stearothermophilus MC7 was immobilized on four polymer carriers by physical adsorption: chitosan, DEAE-cellulose, polypropylene, and polyurethane. The four biocatalysts differ in their hydrolytic activity against long-chain and short-chain triglycerides. Lipase MC7 immobilized on polypropylene (PP-MC7) stands out with its high activity against tributirin. According to the preliminary data, all four preparations were suitable for application in the test reaction of acidolysis of triolein with caprylic acid. The highest degree of conversion of the initial triolein was achieved in the presence of PP-MC7 preparation—50%. But variation of the reaction conditions did not lead to synthesis of the target di-substituted product (dicapryloyl-oleoylglycerol, COC). Reaction proceeds as a selective mono-substitution in the glycerol backbone.  相似文献   

6.
Ten kinds of lipases were examined as biocatalysts for the incorporation of short-chain fatty acids (acetic, propionic, and butyric acids) into triolein in order to produce one kind of reduced-calorie structured lipids. Trans-esterification (acidolysis) was successfully done in n-hexane by several microbial lipases. Among them, lipase from Aspergillus oryzae was used to investigate the effects of incubation time, substrate molar ratio, and water content on acidolysis. Finally, more than 80% of triolein was incorporated by butyric acid (molar ratio of triolein to butyric acid, 1:10) in the dried n-hexane at 52 °C for 72 h. More than 90% of the products was monosubstituent, which was esterified with this short chain fatty acid at the 1-position of the glycerol moiety of triolein. These results suggest that A. oryzae lipase would be a powerful biocatalyst for the synthesis of low caloric oil, such as triacylglycerol containing a mixture of long- and short-chain aliphatic acids.  相似文献   

7.
From the comparation of esterification between oleic acid and oleyl alcohol, catalyzed by the Mucor miehei immobilized lipase in a batch stirred tank reactor, in a solvent free system and system where the solvent was supercritical carbon dioxide it is obvious that reaction rates are higher at supercritical conditions than in the solvent free system. To obtain the data on the solubility of substrates and product (oleyl oleate) in supercritical carbon dioxide, fluid phase equilibria measurements in the static equilibrium cell have been done. The results showed that the temperature change between 30 d`C and 50 d`C doesn't affect the solubility of the substances in SC CO2 very much, but with higher pressure (between 100 and 300 bar) the solubilities of oleic acid, oleyl alcohol and oleyl oleate slightly increase. From the data it is obvious that oleic acid and oleyl alcohol have better solubility in supercritical CO2 than oleyl oleate and therefore the separation of both substrates from oleyl oleate with supercritical CO2 is possible-Key words: esterification, supercritical fluids, lipase.  相似文献   

8.
Commercial lipase (triacylglycerol lipase, EC 3.1.1.3) of Pseudomonas cepacia (Amano) has been purified to homogeneity by a single chromatography on phenyl Sepharose. The eluted lipase crystallized spontaneously at 4°C in the eluent, containing 58–69% 2-propanol. The yield of the lipase was 87–100% and the specific activity during the hydrolysis of triolein 5800 U/mg protein. This protein has a molecular weight of 34.1 kDa as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Its purity was determined by SDS-Page and capillary zone electrophoresis to be ≥ 99%. Immobilization on Sepharose increased its stability in organic solvents. This lipase of P. cepacia differs from that of other Pseudomonas strains in respect of substrate specificity and during crystallization. It exhibits a high stability in organic solvents and supercritical carbon dioxide.  相似文献   

9.
Enzymatic hydrolysis of triglycerides of soy deodorized distillate (DOD), using immobilized Candida rugosa lipase under supercritical carbon dioxide (SC-CO2) medium, was carried out. Optimization of the reaction parameters using response surface methodology based on Box-Behnken model at three levels of pressure (120–180 bar), temperature (40–60 °C) and moisture content (40–80% of triglyceride content) for maximum hydrolysis of triglycerides was arrived by multilinear regression of the experimental results. The optimum conditions for maximum degree of triglyceride hydrolysis (94%) were found to be: pressure of 180 bar, temperature of 43 °C and moisture content of 40% to the triglyceride content. Maximum degree of hydrolysis was achieved with short incubation time of 1.5 h under SC-CO2. Whereas conventional method of hydrolysis in hexane under similar reaction conditions of temperature, moisture and enzyme concentration, needs 5 h to achieve 88% of triglyceride hydrolysis.  相似文献   

10.
Modified milkfats were produced via interesterification (acidolysis) reactions of butteroil and conjugated linoleic acid (CLA) in a packed bed reactor containing an immobilized lipase preparation from Candida antarctica. The rate expression for the interesterification reaction is of the generalized Michaelis–Menten form. Significant enrichment of butteroil in CLA residues was accomplished at reactor space times (fluid residence times) of 2–4 h at 40–60°C, but the optimum operating temperature was ca. 50°C. Approximately 80–90% of the free CLA fed to the reactor can be converted to its esterified form.  相似文献   

11.
Summary The enzymatic hydrolysis reaction with supercritical carbon dioxide(SC-CO2) as a reaction medium to make glucose from starch was investigated. The reaction rate was enhanced at higher temperature and pressure, especially near the critical point of the CO2. The -amylase and glucoamylase were found to be active in a SC-CO2.  相似文献   

12.
Organic solvents were rapidly extracted from penicillin G potassium and streptomycin sulfate with supercritical carbon dioxide (SC-CO2) at 200 atm and 35°C without loss of antibiotic activities. The amounts of organic solvents remaining in the antibiotics depended upon pressure and temperature for a given extraction time. A semilogarithmic plot of remaining amounts of organic solvents against extraction time gave a straight line in the early extraction stage, allowing prediction of the extraction time required for decreasing amounts of organic solvent. The addition of water as an entrainer to SC-CO2 resulted in a significant increase in extraction rates.  相似文献   

13.
An immobilized lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) suitable for fat interesterification has been prepared by precipitation onto diatomaceous earth (Celite) with acetone of a crude lipase preparation from an Aspergillus. Non-lipase material present in the preparation which precipitated at high acetone concentrations or ovalbumin added prior to the immobilization reduced the measured interesterification activity without affecting lipolytic activity. The non-lipase material reduced the interesterification activity by as much as 50%. The interesterification activity of immobilized preparations was enhanced by the use of higher concentrations of the crude lipase or, more substantially, by admixture of purified lipase.  相似文献   

14.
The current research examines the impact of agitation on deactivation of isoamylase and β-amylase under supercritical carbon dioxide (SC-CO2). Our experimental results showed that the activity of either enzyme decreased with increasing pressure or speed of agitation. The degree of enzymatic deactivation caused by pressure became more prominent in the presence of agitation, suggesting that the agitation plays an important role in enzymatic deactivation in SC-CO2 environment. Moreover, the enzymatic deactivation behavior associated with agitation and pressure was further quantitatively analyzed using a proposed inactivation kinetic model. Our analysis indicated that isoamylase and β-amylase exhibited significantly different relationships between the inverse of percentage residual activity and the product of number of revolution per time and time elapsed under pressurized carbon dioxide. We believe that the outcome from this work may provide a better understanding of the effects of agitation and pressure in enzyme deactivation behavior under SC-CO2.  相似文献   

15.
The kinetics of enzymatic interesterification of oils and fats, using acetone-dried cells of Rhizopus chinensis immobilized on biomass support particles as a lipase catalyst, were investigated in batch operations at several constant water concentrations.Even under microaqueous (i.e., low-water-content) conditions, not only interesterification but also hydrolysis occured, and the water content in the reaction system decreased. The reaction rates of interesterification and hydrolysis at constant water concentrations were determined.For the reactions between olive oil and methyl stearate at several water concentrations, the parameters involved in the reaction model were determined by a trial-and-error method so as to make the calculated results correlate with the experimental data. The relationship between the parameters obtained and water concentration were examined.The rate constants involved in the reaction model of both interesterification and hydrolysis increased or decreased monotonically with the increasing water content, while the apparent activity of the lipase catalyst for interesterification had a maximum value at a water concentration of about 50 ppm. This suggests that when the water content is excessive the hydrolysis activity of lipase is accelerated more than its interesterification activity, and that when the water content is too little lipase activity can not be activated for either hydrolysis or interesterification.  相似文献   

16.
Kinetics of lipase-catalyzed esterification in supercritical CO(2)   总被引:4,自引:0,他引:4  
This study compares two solvents for enzymatic reactions: supercritical carbon dioxide (SCCO(2)) and organic solvent (n-hexane). The model reaction that was chosen was the esterification of oleic acid by ethanol catalyzed by an immobilized lipase from Mucor miehei (Lypozyme). The stability of the enzyme appeared to be quite good and similar in both media but was affected by the water content. Partition of water between solvents and immobilized enzyme has been calculated from experimental adsorption isotherms. The water content of the solid phase has a dramatic influence on the activity of the enzyme and its optimum value for activity was about 10% (w/w) in both media. A kinetic study enabled a Ping-Pong Bi-Bi reaction mechanism with inhibition by ethanol to be suggested. Despite some differences in kinetic constants, activity was in the same range in both media. Hypotheses for explaining the kinetic constant variations have been proposed and particular attention has been paid to the pH effects.  相似文献   

17.
Free and immobilized Candida antarctica lipase B dispersed in ionic liquids (1-ethyl-3-methylimidazolium bistriflimide and 1-buthyl-3-methylimidazolium bistriflimide) were used as catalyst for the continuous kinetic resolution of rac-1-phenylethanol in supercritical carbon dioxide at 120 and 150 degrees C and 10 MPa. Excellent activity, stability and enantioselectivity levels were recorded in continuous operation.  相似文献   

18.
Summary The resolution of racemic citronellol and menthol by enzymatically catalyzed transesterification in supercritical carbon dioxide (SC-CO2) was investigated. Different lipases and an esterase in connection with various acylating reagents were employed. While the transesterification of (±)-menthol was reasonably fast and gave high enantiomeric excess, resolution of (±)-citronellol was not feasible.  相似文献   

19.
The aim of this work was to produce structured triacylglycerols (STAGs), with caprylic acid located at positions 1 and 3 of the glycerol backbone and docosohexaenoic acid (DHA) at position 2, by acidolysis of tuna oil and caprylic acid (CA) catalyzed by lipases Rd, from Rhizopus delemar, and Palatase 20000L from Mucor miehei immobilized on Accurel MP1000 in a packed bed reactor (PBR), working in continuous and recirculation modes. First, different lipase/support ratios were tested for the immobilization of lipases and the best results were obtained with ratios of 0.67 (w/w) for lipase Rd and 6.67 (w/w) for Palatase. Both lipases were stable for at least 4 days in the operational conditions. In the storage conditions (5 °C) lipases Rd and Palatase maintained constant activity for 5 months and 1 month, respectively.These catalysts have been used to obtain STAGs by acidolysis of tuna oil and CA in a PBR operating with recirculation of the reaction mixture through the lipase bed. Thus, STAGs with 52–53% CA and 14–15% DHA were obtained. These results were the basis for establishing the operational conditions to obtain STAGs operating in continuous mode. These new conditions were established maintaining constant intensity of treatment (IOT, lipase amount × reaction time/oil amount). In this way STAGs with 44–50% CA and 17–24% DHA were obtained operating in continuous mode. Although the compositions of STAGs obtained with both lipases were similar, Palatase required an IOT about four times higher than lipase Rd.To separate the acidolysis products (free fatty acids, FFAs, and STAGs) an extraction method of FFAs by water–ethanol solutions was tested. The following variables were optimized: water/ethanol ratio (the best results were attained with a water/ethanol ratio of 30:70, w/w), the solvent/FFA–STAG mixture ratio (3:1, w/w) and the number of extraction steps (3–5). In these conditions highly pure STAGs (93–96%) were obtained with a yield of 85%. The residual FFAs can be eliminated by neutralization with a hydroethanolic KOH solution to obtain pure STAGs. The positional analysis of these STAGs, carried out by alcoholysis catalyzed by lipase Novozym 435, has shown that CA represents 55% of fatty acids located at positions 1 and 3 and DHA represents 42% of fatty acids at position 2.  相似文献   

20.
The separation of oil by a suitable technique from the Pacific oyster muscle is important for the utilization of the oil as a ω-3 polyunsaturated fatty acids (ω-3 PUFAs) source and production of bio-functional peptides/ oligosaccharides from oil-free residue. This study was conducted to prepare ω-3 PUFAs concentrate from supercritical carbon dioxide (SC-CO2) extracted Pacific oyster oil by enzyme-catalyzed ethanolysis reactions. SC-CO2 extractions were done at different temperatures and pressures to optimize suitable extraction conditions and extracted oils were compared with Soxhlet (n-hexane) extracted oil to evaluate the yield and quality. Oil extracted by SC-CO2 at optimized conditions was used for ethanolysis reaction catalyzed by immobilized sn-1,3 specific lipases, namely Novozymes-435, Lipozyme TLIM, and Lipozyme RMIM to produce 2-monoacylglycerols (2-MAG) rich in ω-3 PUFAs. The optimum temperature and pressure for SC-CO2 extractions of oyster oil was 50°C and 30 MPa. In this condition, the yield of oil was 5.96% and the acid, peroxide, free fatty acid, and p-anisidine values were 4.49 mg KOH/g, 4.72 meq/kg, 3.42%, and 10.03, respectively. The ω-3 PUFAs content significantly increased in 2-MAG obtained from Novozymes 435, Lipozyme TLIM, and Lipozyme RMIM to 43.03 ± 0.36, 45.95 ± 0.29, and 40.50 ± 0.77%, respectively (p < 0.05). A thin layer chromatography (TLC) analysis confirmed the production and separation of 2-MAG in the ethanolysis process. The ratio of total ω-3 to ω-6 fatty acids was almost twice in 2-MAG of SC-CO2 extracted oyster oil. SC-CO2 extracted Pacific oyster oil can be used for sn-1,3 specific lipases catalyzed ethanolysis to produce ω-3 PUFAs rich in 2-MAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号