首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribeiro EA  Ramos CH 《Biochemistry》2005,44(12):4699-4709
We studied the effect of deleted and circularly permuted mutations in sperm whale myoglobin and present here results on three classes of mutants: (i) a deletion mutant, Mb(1)(-)(99), in which the C-terminal helices, G and H, were removed; (ii) two circular permutations, Mb-B_GHA, in which helix B is N-terminal and helix A is C-terminal, and Mb-C_GHAB, in which helix C is N-terminal and helices A and B are C-terminal; and (iii) a deleted circular permutation, Mb-HAB_F, in which helix H is N-terminal, helix F is C-terminal, and helix G is deleted. The conformational characteristics of the apo and holo forms of these mutants were determined at neutral pH, by spectroscopic and hydrodynamic methods. The apo form of the deleted and permuted mutants exhibited a stronger tendency to aggregate and had lower ellipticity than the wild type. The mutants retained the ability to bind heme, but only the circularly permuted holoproteins had native-like heme binding and folding. These results agree with the theory that myoglobin has a central core that is able to bind heme, but also indicate that the presence of N- and C-terminal helices is necessary for native-like heme pocket formation. Because the holopermuteins were less stable than the wild-type protein and aggregated, we propose that the native position of the N-terminus is important for the precise structural architecture of myoglobin.  相似文献   

2.
The inhibition of carboxypeptidase A (CPA) by its natural inhibitor from potato (PCI) has been widely analysed with theoretical and experimental methods. Several mutants of PCI have been obtained in order to study the physico-chemical properties related to the inhibition. Point mutations were performed in the C-tail of PCI given its fundamental role in the inhibition. The inhibition constant and the dissociation free energy of the complexes PCI-CPA was experimentally obtained for each mutant. The mutants were divided in two sets, those where the mutation was intrinsically affecting the conformation of the PCI C-tail, and those where the mutation affected the interaction between PCI and CPA. The crystallographic structure of PCI, as found in its complex with bovine carboxypeptidase A, was used to model the structure of these mutants. Two theoretical approaches were performed to explain both sets of experimental results: 1) study of the structural features of wt PCI and mutant forms by molecular dynamics (MD) simulation, and 2) modelling of the interaction of the C-tail of PCI with CPA. The first approach provides an explanation of the observed behaviour of the mutants of PCI, if the hypothesis is made of a direct relationship between the entropy of inhibition and the mobility of the C-tail of PCI. For the second set of mutants, the experimentally measured dissociation energies for the complexes PCI- CPA can be related to the theoretically estimated exposure to the solvent of the side chain of the mutated residue in the complex. In the case of the double mutation G35P+P36G, the importance of the main chain hydrogen bond between Gly 35 and Ala26, anchoring the C-tail to the core of PCI, as predicted by the MD simulations, was also supported by the experimental result. The agreement between the theoretical approaches and the experimental results shows the appropriateness of our hypotheses and also the relevance of such a combined effort of experimental and computational molecular biology in protein engineering.  相似文献   

3.
The contribution of each residue of the potato carboxypeptidase inhibitor (PCI) secondary binding site to the overall properties of this protein has been examined using alanine-scanning mutagenesis. Structural and enzymatic studies, performed on a series of PCI mutants, demonstrate that the proper positioning of the primary site for efficient binding and inhibition of carboxypeptidase A is significantly dependent on such a secondary contact region. The aromatic residues in this region play a key role in the stabilization of the PCI-enzyme complex, whereas polar residues contribute little to this task. A comparative study of the oxidative folding of these PCI mutants has been carried out using the disulfide quenching approach. The data, together with the structural characterization of some of these mutants, clearly indicate that noncovalent forces drive the refolding of this small disulfide-rich protein at the reshuffling stage, the rate-limiting step of the process. Moreover, it reveals that by introducing new noncovalent intramolecular contacts in PCI, we may create more stable variants, which also show improved folding efficiency. Taken together, the collected results clarify the folding determinants of the primary and secondary binding sites of PCI and their contribution to the inhibition of the carboxypeptidase, providing clues about PCI evolution and knowledge for its biotechnological redesign.  相似文献   

4.
Human gammaD-crystallin (HgammaD-Crys) is a monomeric eye lens protein composed of two highly homologous beta-sheet domains. The domains interact through interdomain side chain contacts forming two structurally distinct regions, a central hydrophobic cluster and peripheral residues. The hydrophobic cluster contains Met43, Phe56, and Ile81 from the N-terminal domain (N-td) and Val132, Leu145, and Val170 from the C-terminal domain (C-td). Equilibrium unfolding/refolding of wild-type HgammaD-Crys in guanidine hydrochloride (GuHCl) was best fit to a three-state model with transition midpoints of 2.2 and 2.8 M GuHCl. The two transitions likely corresponded to sequential unfolding/refolding of the N-td and the C-td. Previous kinetic experiments revealed that the C-td refolds more rapidly than the N-td. We constructed alanine substitutions of the hydrophobic interface residues to analyze their roles in folding and stability. After purification from E. coli, all mutant proteins adopted a native-like structure similar to wild type. The mutants F56A, I81A, V132A, and L145A had a destabilized N-td, causing greater population of the single folded domain intermediate. Compared to wild type, these mutants also had reduced rates for productive refolding of the N-td but not the C-td. These data suggest a refolding pathway where the domain interface residues of the refolded C-td act as a nucleating center for refolding of the N-td. Specificity of domain interface interactions is likely important for preventing incorrect associations in the high protein concentrations of the lens nucleus.  相似文献   

5.
Apomyoglobin folds by a sequential mechanism in which the A, G, and H helix regions undergo rapid collapse to form a compact intermediate onto which the central portion of the B helix subsequently docks. To investigate the factors that frustrate folding, we have made mutations in the N-terminus of the B helix to stabilize helical structure (in the mutant G23A/G25A) and to promote native-like hydrophobic packing interactions with helix G (in the mutant H24L/H119F). The kinetic and equilibrium intermediates of G23A/G25A and H24L/H119F were studied by hydrogen exchange pulse labeling and interrupted hydrogen/deuterium exchange combined with NMR. For both mutants, stabilization of helical structure in the N-terminal region of the B helix is confirmed by increased exchange protection in the equilibrium molten globule states near pH 4. Increased protection is also observed in the GH turn region in the G23A/G25A mutant, suggesting that stabilization of the B helix facilitates native-like interactions with the C-terminal region of helix G. These interactions are further enhanced in H24L/H119F. The kinetic burst phase intermediates of both mutants show increased protection, relative to wild-type protein, of amides in the N-terminus of the B helix and in part of the E helix. Stabilization of the E helix in the intermediate is attributed to direct interactions between E helix residues and the newly stabilized N-terminus of helix B. Stabilization of native packing between the B and G helices in H24L/H119F also favors formation of native-like interactions in the GH turn and between the G and H helices in the ensemble of burst phase intermediates. We conclude that instability at the N-terminus of the B helix of apomyoglobin contributes to the energetic frustration of folding by preventing docking and stabilization of the E helix.  相似文献   

6.
This study examines a novel method to reduce the probability of disulfide mismatches during the refolding process by the replacement of cysteines within a protein. Specifically, Cys383 of recombinant rat procarboxypeptidase B was replaced by other amino acids to increase the refolding efficiency in vitro. Mutants C383G, C383A and C383S could refold successfully, but mutants C383R, C383E, C383L and C383Y failed to refold correctly. Compared with wild type, the refolding efficiencies of mutants C383G and C383A were enhanced. The Cys383 mutations changed some of the properties of rat carboxypeptidase B. Mutants C383G, C383A had higher kcat/Km values which indicated increased catalytic abilities. And both had higher thermal stability. pH had different effects on the activities and stabilities of the mutant and wild type proteins. The studies suggested that mutating Cys383 of rat procarboxypeptidase B could improve the renaturation process by increasing the refolding efficiency. This new method could be taken as a new attempt to improve the refolding efficiency of other recombinant proteins containing disulfide bonds that are expressed as inclusion bodies. While the results also claimed that the potential effects of the substituted amino acid on the protein itself should be seriously considered in addition to its ability to reduce the probability of disulfide mismatches.  相似文献   

7.
The role of each residue of the potato carboxypeptidase inhibitor (PCI) C-terminal tail, in the interaction with carboxypeptidase A (CPA), has been studied by the analysis of two main kinds of site-directed mutants: the point substitution of each C-terminal residue by glycine and the sequential deletions of the C-terminal residues. The mutant PCI-CPA interactions have been characterized by the measurement of their inhibition constant, Ki, in several cases, by their kinetic association and dissociation constants determined by presteady-state analysis, and by computational approaches. The role of Pro36 appears to be mainly the restriction of the mobility of the PCI C-tail. In addition, and unexpectedly, both Gly35 and Pro36 have been found to be important for folding of the protein core. Val38 has the greatest enthalpic contribution to the PCI-CPA interaction. Although Tyr37 has a minor contribution to the binding energy of the whole inhibitor, it has been found to be essential for the interaction with the enzyme following the cleavage of the C-terminal Gly39 by CPA. The energetic contribution of the PCI secondary binding site has been evaluated to be about half of the total free energy of dissociation of the PCI-CPA complex.  相似文献   

8.
X Lu  H F Gilbert  J W Harper 《Biochemistry》1992,31(17):4205-4210
Protein disulfide isomerase (PDI) catalyzes the oxidative folding of proteins containing disulfide bonds by increasing the rate of disulfide bond rearrangements which normally occur during the folding process. The amino acid sequences of the N- and C-terminal redox active sites (PWCGHCK) in PDI are completely conserved from yeast to man and display considerable identity with the redox-active center of thioredoxin (EWCGPCK). Available data indicate that the two thiol/disulfide centers of PDI can function independently in the isomerase reaction and that the cysteine residues in each active site are essential for catalysis. To evaluate the role of residues flanking the active-site cysteines of PDI in function, a variety of mutations were introduced into the N-terminal active site of PDI within the context of both a functional C-terminal active site and an inactive C-terminal active site in which serine residues replaced C379 and C382. Replacement of non-cysteine residues (W34 to Ser, G36 to Ala, and K39 to Arg) resulted in only a modest reduction in catalytic activity in both the oxidative refolding of RNase A and the reduction of insulin (10-27%), independent of the status of the C-terminal active site. A somewhat larger effect was observed with the H37P mutation where approximately 80% of the activity attributable to the N-terminal domain (approximately 40%) was lost. However, the H37P mutant N-terminal site expressed within the context of an inactive C-terminal domain exhibits 30% activity, approximately 70% of the activity of the N-terminal site alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The C-terminal amino acid residues of bovine pancreatic ribonuclease A (RNase A) form a core structure in the initial stage of the folding process that leads to the formation of the tertiary structure. In this paper, roles of the C-terminal four amino acids in the structure, function, and refolding were studied by use of recombinant mutant enzymes in which these residues were deleted or replaced. Purified mutant enzymes were analyzed for their secondary structure, thermal stability, and ability to regenerate from the denatured and reduced state. The C-terminal deleted mutant enzymes showed lower hydrolytic activity for C>p and nearly identical CD spectra compared with the wild-type enzyme. The rate of recovery of activity was significantly different among the C-terminal deleted mutant enzymes when air oxidation was employed in the absence of GSH and GSSG: the rates decreased in the order of des-124-, des-(123-124)-, and des-(122-124)-RNase A. It is noteworthy that the regeneration rates of mutant RNase A in the presence of GSH and GSSG were nearly the same. Des-(121-124)-RNase A failed to recover activity both in the presence and absence of glutathione, due to the mismatched formation of disulfide bonds. The mutant enzyme in which all of the C-terminal four amino acid residues were replaced by alanine residues showed lower hydrolytic activity and an indistinguishable CD spectrum compared with the wild-type enzyme, and also recovered its activity from the denatured and reduced state by air oxidation. The D121 mutant enzymes showed decreased hydrolytic activity and identical CD spectra compared with the wild type. The recovery rates of activity of D121A and D121K were determined to be lower than that of the wild-type enzyme, while the rate of recovery of D121E was comparable to that of the wild type. The C-terminal amino acids play a significant role in the formation of the correct disulfide bonds during the refolding process, and the interaction of amino acid residues and the existence of the main chain around the C-terminal region are both important for achieving the efficient packing of the RNase A molecule.  相似文献   

10.
T Herning  K Yutani  Y Taniyama  M Kikuchi 《Biochemistry》1991,30(41):9882-9891
The unfolding and refolding kinetics of six proline mutants of the human lysozyme (h-lysozyme) were carried out and compared to that of the wild-type protein. Our results show that the slow refolding phase observed in the h-lysozyme refolding kinetics cannot be ascribed to proline isomerization reactions. The h-lysozyme contains two proline residues at positions 71 and 103, both in the trans conformation in the native state. The refolding kinetics of the P71G/P103G mutant, in which both prolines have been replaced by a glycine, were found to be similar to those of the wild-type protein. The same slow phase amplitude of about 10% was found for both proteins, and the slow phase rate constants were also identical within experimental error. Other mutants such as P103G or P71G, in which only one of the two prolines has been replaced by a glycine, and A47P with its three prolines, gave identical slow refolding phases. The X-ray structure analysis and scanning microcalorimetric study of each protein (Herning et al., unpublished experiments) have confirmed that none of the considered mutations affects significantly protein structure and that no major changes in protein stability were brought about by these mutations. Therefore, comparison of the properties of the mutant and wild-type proteins is legitimate. Interestingly, the refolding kinetics of the V110P mutant, in which a proline residue has been introduced at position 110 (N-terminus of an alpha-helix), were clearly triphasic. For this mutant an additional very slow phase with properties similar to those expected from the proline hypothesis was detected. Equilibrium denaturation studies were conducted for each protein, and the refolding pathway of h-lysozyme is partly presented. We also discuss the effect of proline mutations on the energetics of the folding pathway of the h-lysozyme in water.  相似文献   

11.
An important role of C-terminal amino acid residues of bovine pancreatic ribonuclease A (RNase A) in the formation of the three-dimensional structure was previously implied. In this study, we replaced the C-terminal amino acid, Val124, with amino acid residues with different properties by site-directed mutagenesis. The recombinant mutant enzymes were purified and subjected to a refolding study after being converted to a fully reduced and denatured state. There was a significant difference among the mutant enzymes in the rate of recovery of the activity when air oxidation was performed: the rate decreased in the order of V124E, V124L, V124G, V124K, V124A, and V124W. On the other hand, the recovery rates for all the mutant RNase A in the presence of GSH and GSSG were almost the same. The recovered activity of V124E after 24 h incubation reached approximately 90% of that of the wild type enzyme, followed by V124L 80%, V124A and V124W 65%, and V124K and V124G 50%. The duration of the initial lag phase became shorter in the order of V124W, V124A, V124K or V124G, V124E, or V124L. The results imply that the C-terminal amino acid significantly influences the formation of correct disulfide bonds during the refolding process and that the hydrophobic interaction of Val124 is important for efficient packing of the RNase A molecule.  相似文献   

12.
We have investigated the in vitro refolding process of human proinsulin (HPI) and an artificial mini-C derivative of HPI (porcine insulin precursor, PIP), and found that they have significantly different disulfide-formation pathways. HPI and PIP differ in their amino acid sequences due to the presence of the C-peptide linker found in HPI, therefore suggesting that the C-peptide linker may be responsible for the observed difference in folding behaviour. However, the manner in which the C-peptide contributes to this difference is still unknown. We have used both the disulfide scrambling method and a redox-equilibrium assay to assess the stability of the disulfide bridges. The results show that disulfide reshuffling is easier to induce in HPI than in PIP by the addition of thiol reagent. Thus, the C-peptide may affect the unique folding pathway of HPI by allowing the disulfide bonds of HPI to be easily accessible. The detailed processes of HPI unfolding by reduction of its disulfide bonds and by disulfide scrambling methods were also investigated. In the reductive unfolding process no accumulation of intermediates was detected. In the process of unfolding by disulfide scrambling, HPI gradually rearranged its disulfide bonds to form three major isomers G1, G2 and G3. The most abundant isomer, G1, contains the B7-B19 disulfide bridge. Based on far-UV CD spectra, native gel analysis and cleavage by endoproteinase V8, the G1 isomer has been shown to resemble the intermediate P4 found in the refolding process of HPI. Finally, the major isomer G1 is allowed to refold to native protein HPI by disulfide rearrangement, which indicates that a similar molecular mechanism may exist for the unfolding and refolding process of HPI.  相似文献   

13.
Three mutants of the alga Chlamydomonas reinhardtii affected in the nuclear PETC gene encoding the Rieske iron-sulfur protein 2Fe-2S subunit of the chloroplast cytochrome b(6)f complex have been characterized. One has a stable deletion that eliminates the protein; two others carry substitutions Y87D and W163R that result in low accumulation of the protein. Attenuated expression of the stromal protease ClpP increases accumulation and assembly into b(6)f complexes of the Y87D and W163R mutant Rieske proteins in quantities sufficient for analysis. Electron-transfer kinetics of these complexes were 10- to 20-fold slower than those for the wild type. The deletion mutant was used as a recipient for site-directed mutant petC alleles. Six glycine residues were replaced by alanine residues (6G6A) in the flexible hinge that is critical for domain movement; substitutions were created near the 2Fe-2S cluster (S128 and W163); and seven C-terminal residues were deleted (G171och). Although the 6G6A and G171och mutations affect highly conserved segments in the chloroplast Rieske protein, photosynthesis in the mutants was similar to that of the wild type. These results establish the basis for mutational analysis of the nuclear-encoded and chloroplast-targeted Rieske protein of photosynthesis.  相似文献   

14.
We investigated the role of W140 in the folding of Staphylococcal nuclease. For this purpose, we constructed the 19 possible substitution mutations at residue 140. Only three mutants, W140F, W140H, and W140Y, adopted native-like structures under physiological conditions and showed native-like enzymatic activities. In contrast, the other 16 mutants took on compact unfolded structures under physiological conditions and the enzymatic activities of these mutants were decreased to approximately 70% of wild-type levels. These 16 mutants maintained substrate-induced foldability. These results strongly indicate that the side-chain information encoded by residue 140 is essential to maintain a stable native structure, and that this residue must be an aromatic side chain. The order of thermal stability was wild type > W140H > W140F = W140Y. Therefore, the five-membered nitrogen-containing ring of the indole is thought to bear the essential information. In the crystal structure of staphylococcal nuclease, the five-membered ring is at the local center of the C-terminal cluster through hydrophobic interactions. This cluster plays a key role in the interaction connecting the C-terminal region and the N-terminal beta-core. Mutants other than W140H, W140F, and W140Y lost the ability to form the local core, which caused the loss of the long-range interactions between the C-terminal and N-terminal regions. Inhibitor or substrate binding to these mutants compensates for the lack of long-range interactions generated by W140.  相似文献   

15.
We have previously shown that the human somatostatin receptor type 1 (hSSTR1) does not undergo agonist-induced internalization, but is instead up-regulated at the membrane upon prolonged somatostatin (SST) exposure. The deletion of the carboxyterminal C-tail of the receptor completely abolishes up-regulation. To identify molecular signals that mediate hSSTR1 up-regulation, we created mutant receptors with progressive C-tail deletions. Up-regulation was found to be absent in mutants lacking residues Lys359-Ser360-Arg361. Moreover, point mutation of Ser360 to Ala completely abolished up-regulation. The coexpression of wild type hSSTR1 with V53D, a dominant negative mutant of beta-arrestin-1, completely blocked hSSTR1 up-regulation. Further analysis demonstrated that calcium-calmodulin (CaM) dependent kinases were essential for the SST-induced up-regulation response. Like wild type receptors, all mutants failed to internalize after agonist exposure and were able to inhibit forskolin-stimulated cAMP accumulation. Taking these data together, we suggest that SST-induced hSSTR1 up-regulation is critically dependent upon a specific Lys-Ser-Arg sequence in the C-tail of the receptor, with Ser360 being essential. Up-regulation also requires the participation of CaM protein kinases and interactions with beta-arrestins. In contrast, coupling to adenyl cyclase (AC) and internalization occur independently of molecular signals in the receptor's C-tail.  相似文献   

16.
The purpose of this investigation is to characterize the reduced state of RNase A (r-RNase A) in terms of (i) intramolecular distances, (ii) the sequence of formation of stable loops in the initial stages of folding, and (iii) the unfolding transitions induced by GdnHCl. This is accomplished by identifying specific subdomain structures and local and long-range interactions that direct the folding process of this protein and lead to the native fold and formation of the disulfide bonds. Eleven pairs of dispersed sites in the RNase A molecule were labeled with fluorescent donor and acceptor probes, and the distributions of intramolecular distances (IDDs) were determined by means of time-resolved dynamic nonradiative excitation energy transfer (TR-FRET) measurements. The mutants were designed to search for (a) a possible nonrandom fold of the backbone in the collapsed state and (b) possible loops stabilized by long-range interactions. It was found that, under folding conditions, (i) the labeled mutants of r-RNase A in refolding buffer (the R(N) state) exhibit features of specific (nonrandom) compact but very dispersed subdomain structures (indicated by short mean distances, broad IDDs, and a weak dependence of the mean distances on segment length), (ii) the backbone fold in the C-terminal beta-like portion of the molecule appears to adopt a native-like overall fold, (iii) the N-terminal alpha-like portion of the chain is separated from the C-terminal core by very large intramolecular distances, larger than those in the crystal structure, and (iv) perturbations by addition of GdnHCl reveal several conformational transitions in different sections of the chain. Addition of GdnHCl to the native disulfide-intact protein provided a reference state for the extent of expansion of intramolecular distances under denaturing conditions. In conclusion, r-RNase A under folding conditions (the R(N) state) is poised for the final folding step(s) with a native-like trace of the chain fold but a large separation between the two subdomains which is then decreased upon introduction of three of the four native disulfide cross-links.  相似文献   

17.
Site-directed mutagenesis has been used to probe the interactions that stabilize the equilibrium and burst phase kinetic intermediates formed by apomyoglobin. Nine bulky hydrophobic residues in the A, E, G and H helices were replaced by alanine, and the effects on protein stability and kinetic folding pathways were determined. Hydrogen exchange pulse-labeling experiments, with NMR detection, were performed for all mutants. All of the alanine substitutions resulted in changes in proton occupancy or an increased rate of hydrogen-deuterium exchange for amides in the immediate vicinity of the mutation. In addition, most mutations affected residues in distant parts of the amino acid sequence, providing insights into the topology of the burst phase intermediate and the interactions that stabilize its structure. Differences between the pH 4 equilibrium molten globule and the kinetic intermediate are evident: the E helix region plays no discernible role in the equilibrium intermediate, but contributes significantly to stabilization of the ensemble of compact intermediates formed during kinetic refolding. Mutations that interfere with docking of the E helix onto the preformed A/B/G/H helix core substantially decrease the folding rate, indicating that docking and folding of the E helix region occurs prior to formation of the apomyoglobin folding transition state. The results of the mutagenesis experiments are consistent with rapid formation of an ensemble of compact burst phase intermediates with an overall native-like topological arrangement of the A, B, E, G, and H helices. However, the experiments also point to disorder in docking of the E helix and to non-native contacts in the kinetic intermediate. In particular, there is evidence for translocation of the H helix by approximately one helical turn towards its N terminus to maximize hydrophobic interactions with helix G. Thus, the burst phase intermediate observed during kinetic refolding of apomyoglobin consists of an ensemble of compact, kinetically trapped states in which the helix docking appears to be topologically correct, but in which there are local non-native interactions that must be resolved before the protein can fold to the native structure.  相似文献   

18.
The N-terminal large fragments of staphylococcal nuclease (SNase), SNase110 (1-110 residues), SNase121 (1-121 residues), and SNase135 (1-135 residues), and the fragment mutants G88W110, G88W121, V66W110 and V66W121 were studied by heteronuclear multidimensional NMR spectroscopy. Ensembles of co-existent native-like partially folded and unfolded states were observed for fragments. The persistent native-like tertiary interaction drives fragments to be in partially folded states, which reveal native-like beta-barrel conformations. G88W and V66W mutations modulate the extent of inherent native-like tertiary interaction in fragment molecules, and in consequence, fragment mutants fold into native-like beta-subdomain conformations. In cooperation with the inherent tertiary interaction, 2 M TMAO (trimethylamine N-oxide) can promote the folding reaction of fragments through the changes of unfolding free energy, and a native-like beta-subdomain conformation is observed when the chain length contains 135 residues. Heterogeneous partially folded conformations of 1-121 and 1-135 fragments due to cis and trans X-prolyl bond of Lys116-Pro117 make a non-unique folding pathway of fragments. The folding reaction of fragments can be characterized as a hierarchical process.  相似文献   

19.
Bann JG  Frieden C 《Biochemistry》2004,43(43):13775-13786
The folding of the two-domain bacterial chaperone PapD has been studied to develop an understanding of the relationship between individual domain folding and the formation of domain-domain interactions. PapD contains six phenylalanine residues, four in the N-terminal domain and two in the C-terminal domain. To examine the folding properties of PapD, the protein was both uniformly and site-specifically labeled with p-fluoro-phenylalanine ((19)F-Phe) for (19)F NMR studies, in conjunction with those of circular dichroism and fluorescence. In equilibrium denaturation experiments monitored by (19)F NMR, the loss of (19)F-Phe native intensity for both the N- and C-terminal domains shows the same dependence on urea concentration. For the N-terminal domain the loss of native intensity is mirrored by the appearance of separate denatured resonances. For the C-terminal domain, which contains residues Phe 168 and Phe 205, intermediate as well as denatured resonances appear. These intermediate resonances persist at denaturant concentrations well beyond the loss of native resonance intensity and appear in kinetic refolding (19)F NMR experiments. In double-jump (19)F NMR experiments in which proline isomerization does not affect the refolding kinetics, the formation of domain-domain interactions is fast if the protein is denatured for only a short time. However, with increasing time of denaturation the native intensities of the N- and C-terminal domains decrease, and the denatured resonances of the N-terminal domain and the intermediate resonances of the C-terminal domain accumulate. The rate of loss of the N-terminal domain resonances is consistent with a cis to trans isomerization process, indicating that from an equilibrium denatured state the slow refolding of PapD is due to the trans to cis isomerization of one or both of the N-terminal cis proline residues. The data indicate that both the N- and C-terminal domains must fold into a native conformation prior to the formation of domain-domain interactions.  相似文献   

20.
Molecular dynamics simulations were carried out to calculate free energy differences between the folded and unfolded states of wild type and mutant collagen model peptides. The calculated stability of the collagen models was compared with the severity of osteogenesis imperfecta. Free energy differences of Gly → Xaa (Xaa: Ser, Cys, Glu, and Asp) mutations between the wild type and the mutants at position 15 of the model peptide were 3.8, 4.2, 5.6, and 8.8 kcal/mol, respectively. The corresponding free energy differences of a second Gly mutation at the same position in different chains were, on average, 1.3, 1.5, 2.9, and 5.4 kcal/mol, respectively. Free energy simulations were also performed to estimate the relative stability between an oxidized form and a reduced form of the mutants containing two Cys residues, which indicated that the mutant of the collagen-like peptide containing an intramolecular disulfide bond was more stable than the mutant containing one Cys residue but less stable than the wild type. The calculated free energy differences between an oxidized and a reduced form of the mutants containing two Cys residues are 0.8 and 2.6 kcal/mol for the disulfide bonds between Chains A and B and between Chains A and C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号