首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysozyme is a globular protein which is known to bind to negatively charged phospholipid vesicles. In order to study the relationship between binding of the protein and the subsequent destabilization of the phospholipid vesicles a set of experiments was performed using phospholipid monolayers and vesicles. Using microelectrophoresis the binding of lysozyme to phospholipid vesicles made of PS was determined. At low ionic strength and mild acidic pH of the solution lysozyme reduced the magnitude of the negative zeta potential of PS vesicles at lower concentrations compared to neutral pH and high ionic strength. In contrast, the bound fraction of lysozyme to PS vesicles was nearly constant at acidic and neutral pH. At low pH, the binding of lysozyme was accompanied by a strong aggregation of the vesicles. Lysozyme binding to PS vesicles is accompanied by its penetration into the PL monolayer. This was measured by surface tension and film balance measurements at low pH and low ionic strength. The interaction of lysozyme with negatively charged vesicles lead to a decrease of the vesicle surface hydration as measured by the shift of the emission peak of the fluorescent probe DPE. The binding of bis-ANS increased at low pH after addition of lysozyme to the vesicles. This indicates that more hydrophobic patches of the lysozyme-PS complex are exposed at low pH. At low pH the binding process of lysozyme to PS vesicles was followed by an extensive intermixing of phospholipids between the aggregated vesicles, accompanied by a massive leakage of the aqueous content of vesicles.  相似文献   

2.
We studied fusion induced by a 20-amino acid peptide derived from the amino-terminal segment of hemagglutinin of influenza virus A/PR/8/34 [Murata, M., Sugahara, Y., Takahashi, S., & Ohnishi, S. (1987) J. Biochem. (Tokyo) 102, 957-962]. To extend the study, we have prepared several water-soluble amphiphilic peptides derived from the HA peptide; the anionic peptides D4, E5, and E5L contain four and five acidic residues and the cationic peptide K5 has five Lys residues in place of the five Glu residues in E5. Fusion of egg phosphatidylcholine large unilamellar vesicles induced by these peptides is assayed by two different fluorescence methods, lipid mixing and internal content mixing. Fusion is rapid in the initial stage (12-15% within 20 s) and remains nearly the same or slightly increasing afterward. The anionic peptides cause fusion at acidic pH lower than 6.0-6.5, and the cationic peptide causes fusion at alkaline pH higher than 9.0. Leakage and vesiculation of vesicles are also measured. These peptides are bound and associated with vesicles as shown by Ficoll discontinuous gradients and by the blue shift of tryptophan fluorescence. They take an alpha-helical structure in the presence of vesicles. They become more hydrophobic in the pH regions for fusion. When the suspension is made acidic or alkaline, the vesicles aggregate, as shown by the increase in light scattering. The fusion mechanism suggests that the amphiphilic peptides become more hydrophobic by neutralization due to protonation of the carboxyl groups or deprotonation of the lysyl amino groups, aggregate the vesicles together, and interact strongly with lipid bilayers to cause fusion. At higher peptide concentrations, E5 and E5L cause fusion transiently at acidic pH followed by vesiculation.  相似文献   

3.
Association of protein kinase C with phospholipid vesicles   总被引:7,自引:0,他引:7  
The Ca2+- and phospholipid-dependent protein kinase, protein kinase C (PKC), was purified from bovine brain by a modified procedure that provided sufficient quantities of stable protein for analysis of physical properties of protein-membrane binding. The binding of PKC to phospholipid vesicles of various compositions was investigated by light-scattering and fluorescence energy transfer measurements. The binding properties for membranes of low phosphatidylserine (PS) content were consistent with a peripheral membrane association; PKC showed Ca2+ -dependent binding to phospholipid vesicles containing phosphatidylserine, phosphatidylinositol, or phosphatidylglycerol. Membranes containing 0-20% PS (the remainder of the phospholipid was phosphatidylcholine) bound less protein than membranes containing greater than 20% PS; the factor limiting protein binding to membranes containing low PS appeared to be the availability of acidic phospholipids. Increasing the PS content above 20% did not increase the amount of membrane-bound protein at saturation, and the limiting factor was probably steric packing of protein on the membrane surface. The membranes bound about 1 g of protein/g of phospholipid at steric saturation. Binding was of relatively high affinity (Kd less than 5 nM), and the association rate was rapid on the time scale of the experiments. Addition of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid to phospholipid-bound PKC caused dissociation of the complex, and the properties of this dissociation indicated an equilibrium binding of protein to membrane. However, only partial dissociation of PKC was achieved when the PS content of the vesicles exceeded 20%. A number of comparisons revealed that binding of protein to the membrane, even in the presence of phorbol esters, was insufficient for development of enzyme activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Recently the pH gradient evoked by a K+ diffusion potential was shown to translocate a synthetic monobasic amphipathic hexapeptide across the bilayer of lipid vesicles (De Kroon, A.I.P.M., Vogt, B., Van 't Hof, R., De Kruijff, B. and De Gier, J. (1991) Biophys. J. 60, in press). Here this observation is extended by studying the effect of a membrane potential on a set of bioactive peptides. The panel of peptides comprises the toxin mastoparan X, a tryptophan-containing analogue of the presequence of the mitochondrial protein cytochrome oxidase subunit IV (preCoxIV(1-25)W18), and the regulatory peptides ACTH(1-24), alpha-MSH, ACTH(1-10), dynorphin A, bombesin, and LHRH. The interaction of these peptides with phospholipid vesicles has been measured using the intrinsic tryptophan residue as fluorescent probe. In the absence of a K+ diffusion potential only mastoparan X and the presequence show considerable binding to vesicles consisting of phosphatidylcholine (PC). In contrast, under these conditions all peptides display affinity for vesicles consisting of the acidic phospholipid cardiolipin (CL), the extent of which depends on the net positive charge of the peptide. Application of a K+ diffusion potential to large unilamellar vesicles (LUV) consisting of PC results in a time dependent tryptophan fluorescence increase for mastoparan X, which is accelerated upon incorporating increasing amounts of CL into the LUV. A similar fluorescence increase in response to a K+ diffusion potential was observed for the above model peptide. Yet the mechanism resulting in the fluorescence increase of mastoparan X is completely different from that of the hexapeptide. Binding experiments indicate that a membrane potential-induced enhanced binding of the peptide to the outer surface of the vesicles contributes to the fluorescence increase. PreCoxIV(1-25)W18, dynorphin A, and ACTH(1-24) show fluorescence responses upon applying a membrane potential that are consistent with that of mastoparan X, whereas the other peptides tested do not respond up to a LUV CL content of 50%. The results tentatively suggest that the membrane potential only affects a peptide when it has the ability to adopt a stable membrane bound conformation.  相似文献   

5.
A synthetic peptide corresponding to the signal sequence of wild type Escherichia coli lambda-receptor protein (LamB) inhibits in vitro translocation of precursors of both alkaline phosphatase and outer membrane protein A into E. coli membrane vesicles (half-maximal inhibition at 1-2 microM). By contrast, the inhibitory effect was nearly absent in a synthetic peptide corresponding to the signal sequence from a mutant strain that harbors a deletion mutation in the LamB signal region and displays an export-defective phenotype for this protein in vivo. Two peptides derived from pseudorevertant strains that arose from the deletion mutant and exported LamB in vivo were found to inhibit in vitro translocation with effectiveness that correlated with their in vivo export ability. Controls indicated that these synthetic signal peptides did not disrupt the E. coli membrane vesicles. These results can be interpreted to indicate that the presequences of exported proteins interact specifically with a receptor either in the E. coli inner membrane or in the cytoplasmic fraction. However, biophysical data for the family of signal peptides studied here reveal that they will spontaneously insert into a lipid membrane at concentrations comparable to those that cause inhibition. Hence, an indirect effect mediated by the lipid bilayer of the membrane must be considered.  相似文献   

6.
The alpha isoform of phosphatidylinositol-specific phospholipase C (alpha-PI-PLC, Mr 62,000) was purified from bovine brain. Enzyme activity was dependent on calcium, sodium cholate and showed the anticipated specificity for the phosphatidylinositols. Calcium interaction with this protein, investigated by gel filtration chromatography, showed no detectable binding at calcium concentrations adequate to activate the enzyme. Association of alpha-PI-PLC with phospholipid vesicles was studied by light scattering, fluorescence energy transfer and gel-filtration chromatography. The enzyme readily associated with vesicles of high charge density, with vesicles of crude acidic phospholipids and with PIP2. Interaction was characterized by a rapid association followed by slower addition of more protein to the phospholipid. Complexes containing 20-30 percent protein (by weight) were readily obtained. Calcium had only a small effect on this interaction. The protein-phospholipid complexes appeared to bind less calcium than a similar amount of phospholipid alone. Thus, alpha-PI-PLC did not appear to be a calcium-binding protein in either its free or membrane-associated states. Although alpha-PI-PLC showed the highest propensity to bind to phospholipids, a number of other proteins also associated with phospholipids under the conditions used. Thus, whether or not the observed interaction of alpha-PI-PLC with membranes was specific and biologically important or whether it was a process common to many proteins, was not known. Knowledge of this interaction may enhance our understanding of possible mechanisms for protein-membrane interactions in general.  相似文献   

7.
8.
Osmotic-swelling experiments were conducted on a variety of preparations of "uniform" unilamellar vesicle systems. The synthetic lipid preparations included both vesicles produced by extrusion through polycarbonate ultrafiltration membranes and vesicles produced by the pH-adjustment method. The vesicles were monitored by photon correlation spectroscopy during swelling as the osmolarity of the external solution was decreased. Contrary to our previously reported results [Aurora, T. S., Li, W., Cummins, H. Z., & Haines, T. H. (1985) Biochim. Biophys. Acta 820, 250-258; Li, W., & Haines, T. H. (1986) Biochemistry 25, 7477-7483; Li, W., Aurora, T. S., Haines, T. H., & Cummins, H. Z. (1986) Biochemistry 25, 8220-8229; Haines, T. H., Li, W., Green, M., & Cummins, H. Z. (1987) Biochemistry 26, 5439-5447] large unilamellar vesicles produced from acidic lipids by the pH-adjustment technique were highly polydisperse and did not swell in a manner that permitted the computation of a Young's modulus, presumably due to the polydispersity. Also contrary to our previous reports, membranes derived from bovine submitochondrial particles did not produce evidence of swelling when subjected to similar protocols. Analysis of osmotic swelling of extruded unilamellar vesicles has allowed us to assign Young's moduli for bilayers of dioleoylphosphatidylcholine and dioleoylphosphatidylglycerol, in the range (5-8) x 10(8) and (3-6) x 10(8) dyn/cm2, respectively. The diameters and polydispersites obtained with electron microscopy and photon correlation spectroscopy were compared directly and with computer-modeling techniques. While excellent agreement was obtained for distributions with low polydispersity (approximately greater than 0.1), serious disagreement was found when the polydispersity exceeded approximately 0.2.  相似文献   

9.
Changes in membrane fluidity induced by lectin addition to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) vesicles containing synthetic glycopeptides were measured by depolarization of the fluorescent probes 8-anilino-1-naphthalenesulfonate (ANS) and 1,6-diphenyl-1,3,5-hexatriene (DPH). In the present synthesized glycopeptides, N-acetylglucosamine (GlcNAc) and a tripeptide were connected by aliphatic chains of different lengths. A pyrenyl group, which is introduced to the peptide moiety, acted as a probe to characterize the distribution of glycopeptides in the membrane on the basis of its excimer formation. The glycopeptide was shown to be distributed to DPPC vesicles with the peptide moiety buried in the hydrophobic core of the lipid bilayer and the glyco moiety exposed to the outside of the membrane. By the addition of wheat germ agglutinin (WGA) to the vesicles containing the glycopeptides, intravesicular cross-linking of glycopeptides in the membrane and aggregation of vesicles were observed. The intravesicular cross-linking was antagonized by GlcNAc above the phase transition temperature. However, the dissociation of aggregation required the addition of a stronger antagonist, N,N'-diacetylchitobiose. The addition of the glycopeptide to DPPC vesicles above the phase transition temperature decreased the membrane fluidity. However, a succeeding addition of WGA caused a large increase of membrane fluidity at either the surface or the hydrophobic core of the lipid bilayer membrane. This increase of membrane fluidity was attributed to two factors by use of two kinds of antagonists having different potencies: one is a WGA-mediated cross-linking of glycopeptides in the membrane, and the other is a close contact of vesicles on aggregation.  相似文献   

10.
Incubation of human platelets with unilamellar vesicles composed of dilauroylphosphatidylcholine (DLPC) induces shedding of small vesicular structures from the platelet plasma membrane. No significant cell lysis is observed during the process of shedding. Isolated spicules contain the major membrane glycoproteins, Ib, IIb, and IIIa, which are used to define the sidedness of the spicule membrane. These glycoproteins are completely susceptible to chymotrypsin treatment, whereas cytoskeletal proteins are inaccessible towards this enzyme. This demonstrates that the spicule membranes have a right-side-out orientation in as far as membrane proteins are concerned. Isolated spicules were 30-fold more active than platelets in stimulating prothrombin conversion to thrombin by the prothrombinase complex (factors Xa, Va and Ca2+). The increased prothrombinase activity reflects an increased amount of phosphatidylserine in the outer leaflet of the spicule membrane. Protein analysis of platelet spicules and native platelets reveals a number of differences, the most conspicuous of which is the virtual absence of myosin in the spicule preparations. It is proposed that a lack of myosin produces a different cytoskeletal organization in the spicules. This enables phosphatidylserine to become exposed at the outer surface of the spicule membrane.  相似文献   

11.
Studies of rapid (N-type) inactivation induced by different synthetic inactivating peptides in several voltage-dependent cation channels have concluded that the channel inactivation "entrance" (or "receptor" site for the inactivating peptide) consists of a hydrophobic vestibule within the internal mouth of the channel, separated from the cytoplasm by a region with a negative surface potential. These protein domains are conformed from alternative sequences in the different channels and thus are relatively unrestricted in terms of primary structure. We are reporting here on the interaction between the inactivating peptide of the Shaker B K+ channel (ShB peptide) or the noninactivating ShB-L7E mutant with anionic phospholipid vesicles, a model target that, as the channel's inactivation "entrance," contains a hydrophobic domain (the vesicle bilayer) separated from the aqueous media by a negatively charged vesicle surface. When challenged by the anionic phospholipid vesicles, the inactivating ShB peptide 1) binds to the vesicle surface with a relatively high affinity, 2) readily adopts a strongly hydrogen-bonded beta-structure, likely an intramolecular beta "hairpin," and 3) becomes inserted into the hydrophobic bilayer by its folded N-terminal portion, leaving its positively charged C-terminal end exposed to the extravesicular aqueous medium. Similar experiments carried out with the noninactivating, L7E-ShB mutant peptide show that this peptide 1) binds also to the anionic vesicles, although with a lower affinity than does the ShB peptide, 2) adopts only occasionally the characteristic beta-structure, and 3) has completely lost the ability to traverse the anionic interphase at the vesicle surface and to insert into the hydrophobic vesicle bilayer. Because the negatively charged surface and the hydrophobic domains in the model target may partly imitate those conformed at the inactivation "entrance" of the channel proteins, we propose that channel inactivation likely includes molecular events similar to those observed in the interaction of the ShB peptide with the phospholipid vesicles, i.e., binding of the peptide to the region of negative surface potential, folding of the bound peptide as a beta-structure, and its insertion into the channel's hydrophobic vestibule. Likewise, we relate the lack of channel inactivation seen with the mutant ShB-L7E peptide to the lack of ability shown by this peptide to cross through the anionic interphase and insert into the hydrophobic domains of the model vesicle target.  相似文献   

12.
Fusion of phospholipid vesicles induced by alpha-lactalbumin at acidic pH   总被引:4,自引:0,他引:4  
J Kim  H Kim 《Biochemistry》1986,25(24):7867-7874
Alpha-Lactalbumin (alpha-LA), lysozyme, and ribonuclease are found to induce fusion of phosphatidylserine/phosphatidylethanolamine vesicles at low pH. The fusogenic behavior and the binding to phospholipid vesicles of one of these proteins, alpha-LA, are studied at a wide range of conditions. The initial rate of fusion in the presence of alpha-LA increases with increasing acidity below pH 6, and the extent of alpha-LA binding to the vesicles is also found to increase with decreasing pH. Once bound to the vesicles in acidic media, the neutralization to pH 7 fails to dislodge the alpha-LA from the vesicles, and this irreversible binding also increases with decreasing pH. A segment of alpha-LA is found to be resistant to the proteolytic digestion when initially incubated with the vesicles at low pH. The amino acid composition of this fragment was determined, and from this the sequence of alpha-LA fragment, which appears to be inserted into the bilayer, is deduced. Hydrophobic labeling with dansyl chloride renders support that this segment indeed penetrates into the hydrophobic interior of bilayer. Since both the N-terminal and the C-terminal of this vesicle-bound protein are accessible to the externally added proteolytic enzymes, it is concluded that a loop of the polypeptide segment goes into the bilayer. These observations, taken together, suggest a possibility that the penetration by a loop of alpha-LA segment into the phospholipid bilayer is responsible for the fusion.  相似文献   

13.
The mechanism by which phospholipids translocate (flop) across the E. coli inner membrane remains to be elucidated. We tested the hypothesis that the membrane-spanning domains of proteins catalyze phospholipid flop by their mere presence in the membrane. As a model, peptides mimicking the transmembrane stretches of proteins, with the amino acid sequence GXXL(AL)(n)XXA (with X = K, H, or W and n = 8 or 12), were incorporated in large unilamellar vesicles composed of E. coli phospholipids. Phospholipid flop was measured by assaying the increase in accessibility to dithionite of a 2,6-(7-nitro-2,1,3-benzoxadiazol-4-yl)aminocaproyl (C(6)NBD)-labeled phospholipid analogue, initially exclusively present in the inner leaflet of the vesicle membrane. Fast flop of C(6)NBD-phosphatidylglycerol (C(6)NBD-PG) was observed in vesicles in which GKKL(AL)(12)KKA was incorporated, with the apparent first-order flop rate constant (K(flop)) linearly increasing with peptide:phospholipid molar ratios, reaching a translocation half-time of approximately 10 min at a 1:250 peptide:phospholipid molar ratio at 25 degrees C. The peptides of the series GXXL(AL)(8)XXA also induced flop of C(6)NBD-PG, supporting the hypothesis that transmembrane parts of proteins mediate phospholipid translocation. In this series, K(flop) decreased in the order X = K > H > W, indicating that peptide-lipid interactions in the interfacial region of the membrane modulate the efficiency of a peptide to cause flop. For the peptides tested, flop of C(6)NBD-phosphatidylethanolamine (C(6)NBD-PE) was substantially slower than that of C(6)NBD-PG. In vesicles without peptide, flop was negligible both for C(6)NBD-PG and for C(6)NBD-PE. A model for peptide-induced flop is proposed, which takes into account the observed peptide and lipid specificity.  相似文献   

14.
Nystatin is a membrane-active polyene antibiotic that is thought to kill fungal cells by forming ion-permeable channels. In this report we have investigated nystatin interaction with phosphatidylcholine liposomes of different sizes (large and small unilamellar vesicles) by time-resolved fluorescence measurements. Our data show that the fluorescence emission decay kinetics of the antibiotic interacting with gel-phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine vesicles is controlled by the mean number of membrane-bound antibiotic molecules per liposome, . The transition from a monomeric to an oligomeric state of the antibiotic, which is associated with a sharp increase in nystatin mean fluorescence lifetime from approximately 7-10 to 35 ns, begins to occur at a critical concentration of 10 nystatin molecules per lipid vesicle. To gain further information about the transverse location (degree of penetration) of the membrane-bound antibiotic molecules, the spin-labeled fatty acids (5- and 16-doxyl stearic acids) were used in depth-dependent fluorescence quenching experiments. The results obtained show that monomeric nystatin is anchored at the phospholipid/water interface and suggest that nystatin oligomerization is accompanied by its insertion into the membrane. Globally, the experimental data was quantitatively described by a cooperative partition model which assumes that monomeric nystatin molecules partition into the lipid bilayer surface and reversibly assemble into aggregates of 6 +/- 2 antibiotic molecules.  相似文献   

15.
Fusion of multilamellar phospholipid vesicles with planar phospholipid bilayer membranes was monitored by the rate of appearance in the planar membrane of an intrinsic membrane protein present in the vesicle membranes. An essential requirement for fusion is an osmotic gradient across the planar membrane, with the cis side (the side containing the vesicles) hyperosmotic to the opposite (trans) side; for substantial fusion rates, divalent cation must also be present on the cis side. Thus, the low fusion rates obtained with 100 mM excess glucose in the cis compartment are enhanced orders of magnitude by the addition of 5-10 mM CaCl2 to the cis compartment. Conversely, the rapid fusion rates induced by 40 mM CaCl2 in the cis compartment are completely suppressed when the osmotic gradient (created by the 40 mM CaCl2) is abolished by addition of an equivalent amount of either CaCl2, NaCl, urea, or glucose to the trans compartment. We propose that fusion occurs by the osmotic swelling of vesicles in contact with the planar membrane, with subsequent rupture of the vesicular and planar membranes in the region of contact. Divalent cations catalyze this process by increasing the frequency and duration of vesicle-planar membrane contact. We argue that essentially this same osmotic mechanism drives biological fusion processes, such as exocytosis. Our fusion procedure provides a general method for incorporating and reconstituting transport proteins into planar phospholipid bilayer membranes.  相似文献   

16.
Staphylococcal delta-toxin, a 26-residue amphiphilic peptide is lytic for cells and phospholipid vesicles and is assumed to insert as an amphipathic helix and oligomerize in membranes. For the first time, the relationship between these properties and toxin structure is investigated by means of eight synthetic peptides, one identical in sequence to the natural toxin, five 26-residue analogues and two shorter peptides corresponding to residues 1-11 and 11-26. These peptides were designed by the Edmundson wheel axial projection in order to maintain: (a) the hydrophilic/hydrophobic balance while rationalizing the sequence, (b) the alpha-helical configuration and (c) the common epitopic structure. The fluorescence of the single Trp residue was used to monitor the behaviour of the natural toxin and analogues. All 26-residue analogues were hemolytically active although to a lesser extent than natural toxin. The peptide of residues 11-26 bound lipids weakly and was hemolytic at high concentration. The peptide of residues 1-11 did not bind lipids and was hemolytically inactive. All peptides except the latter cross-reacted in immunoprecipitation tests with the natural toxin. The study of a 26-residue analogue by circular dichroism revealed an alpha-helical configuration in both the free and lipid-bound state. Changes in the fluorescence of the peptides in the presence of lipid micelles and bilayers varied according to the position of the reporter group. When bound to lipids, Trp5, Trp16 and the Fmoc-1 positions of the analogues became buried while Trp15 of the natural toxin and its synthetic replicate remained more exposed. All changes are rationalized by the proposal of an amphipathic helix whose hydrophobic face is embedded within the apolar core of bilayers while the hydrophilic and charged face remains more exposed to solvent.  相似文献   

17.
The interaction with phospholipid bilayers of two synthetic peptides with sequences corresponding to a segment next to the native N-terminus and an internal region of the E2 structural hepatitis G virus (HGV/GBV-C) protein [E2(7-26) and E2(279-298), respectively] has been characterized. Both peptides are water soluble but associate spontaneously with bilayers, showing higher affinity for anionic than zwitterionic membranes. However, whereas the E2(7-26) peptide is hardly transferred at all from water to the membrane interface, the E2(279-298) peptide is able to penetrate into negatively charged bilayers remaining close to the lipid/water interface. The nonpolar environment clearly induces a structural transition in the E2(279-298) peptide from random coil to alpha-helix, which causes bilayer perturbations leading to vesicle permeabilization. The results indicate that this internal segment peptide sequence is involved in the fusion of HGV/GBV-C to membrane.  相似文献   

18.
The magainins, peptide antibiotics secreted by the frog Xenopus laevis, have previously been shown to permeabilize phospholipid vesicles. To elucidate the mechanism of permeabilization, we have conducted detailed kinetic studies of magainin 2 amide (mgn2a)-induced release of 6-carboxyfluorescein from vesicles of phosphatidylserine. The results show that dye release occurs in (at least) two stages--an initial rapid phase, with t1/2 approximately 3 s, followed by a much slower phase that approaches zero leakage rate before all the dye is released. Light-scattering studies showed that mgn2a does not cause gross changes in vesicle structure. The peptide was found to rapidly equilibrate between vesicles; this was demonstrated by determining a binding isotherm for the peptide-lipid interaction, and by showing that addition of unloaded vesicles rapidly quenches peptide-induced leakage from loaded vesicles. Transient dye release in the presence of an equilibrating peptide can be explained in two ways: (1) the peptide exists only transiently in an active form; (2) the vesicles are only transiently leaky. Preincubation of mgn2a at assay concentrations in buffer alone or with unloaded vesicles did not inactivate the peptide. Therefore, rapid leakage is probably due to transient destabilization of the vesicle upon addition of mgn2a.  相似文献   

19.
Lysozyme induced fusion of negatively charged phospholipid vesicles   总被引:1,自引:0,他引:1  
Lysozyme promotes fusion of negatively charged phospholipid vesicles prepared by ethanolic injection. Vesicle fusion was a leaky process as revealed by the release of encapsulated carboxyfluorescein or Tb-DPA complex. Extensive proteolysis of lysozyme inhibited the fusion process. The fusion process was critically dependent on the medium ionic strength; 100 mM of any salt was sufficient to inhibit totally the fusion activity of the protein. The high efficiency of lysozyme (80% RET) was almost constant in the pH range from 4.0 to 9.0, but it was sharply diminished when the pH of the medium was at the isoelectric point of the protein (pI 11.0). Fusion induced by chemically modified lysozyme, showed that the pH profile changed according to the isoelectric point of the protein derivative. These observations stress the importance of electrostatic interactions in the process of fusion induced by lysozyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号