首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A new method is described for the large-scale reversible dissociation of flavoproteins into apoprotein and prosthetic group using hydrophobic-interaction chromatography. Lipoamide dehydrogenase from Azotobacter vinelandii and butyryl-CoA dehydrogenase from Megasphaera elsdenii are selected to demonstrate the usefulness of the method. In contrast to conventional methods, homogeneous preparations of apoproteins in high yields are obtained. The apoproteins show high reconstitutability. The holoenzymes are bound to phenyl-Sepharose CL-4B at neutral pH in the presence of ammonium sulfate. FAD is subsequently removed at pH 3.5-4.0 by addition of high concentrations of KBr. Large amounts of apoenzymes (200-500 mg), showing negligible residual activity, are eluted at neutral pH in the presence of 50% ethylene glycol. The holoenzyme of lipoamide dehydrogenase can be reconstituted while the apoprotein is still bound to the column or the apoenzyme can be isolated in the free state. In both cases the yield and degree of reconstitution of holoenzyme is more than 90% of starting material. Apo-lipoamide-dehydrogenase exists mainly as a monomer in solution and reassociates to the native dimeric structure in the presence of FAD. The apoenzyme is stable for a long period of time when kept in 50% ethylene glycol at -18 degrees C. Steady-state fluorescence-polarization measurements of protein-bound FAD indicate that reconstituted lipoamide dehydrogenase possesses a high stability which is governed by the low dissociation rate constant of the apoenzyme-FAD complex. The holoenzyme of butyryl-CoA dehydrogenase cannot be reconstituted when the apoenzyme is bound to the column. However, stable apoprotein can be isolated in the free state yielding 50-80% of starting material, depending on the immobilization conditions. The coenzyme A ligand present in native holoenzyme is removed during apoprotein preparation. The apoenzyme is relatively stable when kept in 50% ethylene glycol at -18 degrees C. From kinetic and gel filtration experiments it is concluded that the reconstitution reaction of butyryl-CoA dehydrogenase is governed by both the pH-dependent hydrodynamic properties of apoenzyme and the pH-dependent stability of reconstituted enzyme. At pH 7, the apoenzyme is in equilibrium between dimeric and tetrameric forms and reassociates to a native-like tetrameric structure in the presence of FAD. The stability of reconstituted enzyme is strongly influenced by the presence of CoA ligands as shown by fluorescence-polarization measurements. The degree of reconstitution of butyryl-CoA dehydrogenase is more than 80% of the original specific activity under certain conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Pyruvate oxidase from Lactobacillus plantarum is a homotetrameric flavoprotein with strong binding sites for FAD, TPP, and a divalent cation. Treatment with acid ammonium sulfate in the presence of 1.5 M KBr leads to the release of the cofactors, yielding the stable apoenzyme. In the present study, the effects of FAD, TPP, and Mn2+ on the structural properties of the apoenzyme and the reconstitution of the active holoenzyme from its constituents have been investigated. As shown by circular dichroism and fluorescence emission, as well as by Nile red binding, the secondary and tertiary structures of the apoenzyme and the holoenzyme do not exhibit marked differences. The quaternary structure is stabilized significantly in the presence of the cofactors. Size-exclusion high-performance liquid chromatography and analytical ultracentrifugation demonstrate that the holoenzyme retains its tetrameric state down to 20 micrograms/mL, whereas the apoenzyme shows stepwise tetramer-dimer-monomer dissociation, with the monomer as the major component, at a protein concentration of < 20 micrograms/mL. In the presence of divalent cations, the coenzymes FAD and TPP bind to the apoenzyme, forming the inactive binary FAD or TPP complexes. Both FAD and TPP affect the quaternary structure by shifting the equilibrium of association toward the dimer or tetramer. High FAD concentrations exert significant stabilization against urea and heat denaturation, whereas excess TPP has no effect. Reconstitution of the holoenzyme from its components yields full reactivation. The kinetic analysis reveals a compulsory sequential mechanism of cofactor binding and quaternary structure formation, with TPP binding as the first step. The binary TPP complex (in the presence of 1 mM Mn2+/TPP) is characterized by a dimer-tetramer equilibrium transition with an association constant of Ka = 2 x 10(7) M-1. The apoenzyme TPP complex dimer associates with the tetrameric holoenzyme in the presence of 10 microM FAD. This association step obeys second-order kinetics with an association rate constant k = 7.4 x 10(3) M-1 s-1 at 20 degrees C. FAD binding to the tetrameric binary TPP complex is too fast to be resolved by manual mixing.  相似文献   

3.
The covalently bound FAD in native monomeric sarcosine oxidase (MSOX) is attached to the protein by a thioether bond between the 8alpha-methyl group of the flavin and Cys315. Large amounts of soluble apoenzyme are produced by controlled expression in a riboflavin-dependent Escherichia coli strain. A time-dependent increase in catalytic activity is observed upon incubation of apoMSOX with FAD, accompanied by the covalent incorporation of FAD to approximately 80% of the level observed with the native enzyme. The spectral and catalytic properties of the reconstituted enzyme are otherwise indistinguishable from those of native MSOX. The reconstitution reaction exhibits apparent second-order kinetics (k = 139 M(-)(1) min(-)(1) at 23 degrees C) and is accompanied by the formation of a stoichiometric amount of hydrogen peroxide. A time-dependent reduction of FAD is observed when the reconstitution reaction is conducted under anaerobic conditions. The results provide definitive evidence for autoflavinylation in a reaction that proceeds via a reduced flavin intermediate and requires only apoMSOX and FAD. Flavinylation of apoMSOX is not observed with 5-deazaFAD or 1-deazaFAD, an outcome attributed to a decrease in the acidity of the 8alpha-methyl group protons. Covalent flavin attachment is observed with 8-nor-8-chloroFAD in an aromatic nucleophilic displacement reaction that proceeds via a quininoid intermediate but not a reduced flavin intermediate. The reconstituted enzyme contains a modified cysteine-flavin linkage (8-nor-8-S-cysteinyl) as compared with native MSOX (8alpha-S-cysteinyl), a difference that may account for its approximately 10-fold lower catalytic activity.  相似文献   

4.
Native DNA photolyase, as isolated from Escherichia coli, contains a neutral flavin radical (FADH.) plus a pterin chromophore (5,10-methenyltetrahydropteroylpolyglutamate) and can be converted to its physiologically significant form by reduction of FADH. to fully reduced flavin (FADH2) with dithionite or by photoreduction. Either FADH2 or the pterin chromophore in dithionite-reduced native enzyme can function as a sensitizer in catalysis. Various enzyme forms (EFADox, EFADH., EFADH2, EPteFADox, EPteFADH., EPteFADH2, EPte) containing stoichiometric amounts of FAD in either of its three oxidation states and/or 5,10-methenyltetrahydrofolate (Pte) have been prepared in reconstitution experiments. Studies with EFADox and EPte showed that these preparations retained the ability to bind the missing chromophore. The results suggest that there could be considerable flexibility in the biological assembly of holoenzyme since the order of binding of the enzyme's chromophores is apparently unimportant, the binding of FAD is unaffected by its redox state, and enzyme preparations containing only one chromophore are reasonably stable. The same catalytic properties are observed with dithionite-reduced native enzyme or EFADH2. These preparations do not exhibit a lag in catalytic assays whereas lags are observed with preparations containing FADox or FADH. in the presence or absence of pterin. Photochemical studies show that these lags can be attributed to enzyme activation under assay conditions in a reaction involving photoreduction of enzyme-bound FADox or FADH. to FADH2. EPte is catalytically inactive, but catalytic activity is restored upon reconstitution of EPte with FADox. The results show that pterin is not required for dimer repair when FADH2 acts as the sensitizer but that FADH2 is required when dimer repair is initiated by excitation of the pterin chromophore. The relative intensity of pterin fluorescence in EPte, EPteFADH., EPteFADox, or EPteFADH2 has been used to estimate the efficiency of pterin singlet quenching by FADH. (93%), FADox (90%), or FADH2 (58%). Energy transfer from the excited pterin to flavin is energetically feasible and may account for the observed quenching of pterin fluorescence and also explain why photoreduction of FADox or FADH. is accelerated by the pterin chromophore. An irreversible photobleaching of the pterin chromophore is accelerated by FADH2 in a reaction that is accompanied by a transient oxidation of FADH2 to FADH.. Both pterin bleaching and FADH2 oxidation are inhibited by substrate.  相似文献   

5.
The enzymatic function of succinate dehydrogenase (SDH) is dependent on covalent attachment of FAD on the ∼70-kDa flavoprotein subunit Sdh1. We show presently that flavinylation of the Sdh1 subunit of succinate dehydrogenase is dependent on a set of two spatially close C-terminal arginine residues that are distant from the FAD binding site. Mutation of Arg582 in yeast Sdh1 precludes flavinylation as well as assembly of the tetrameric enzyme complex. Mutation of Arg638 compromises SDH function only when present in combination with a Cys630 substitution. Mutations of either Arg582 or Arg638/Cys630 do not markedly destabilize the Sdh1 polypeptide; however, the steady-state level of Sdh5 is markedly attenuated in the Sdh1 mutant cells. With each mutant Sdh1, second-site Sdh1 suppressor mutations were recovered in Sdh1 permitting flavinylation, stabilization of Sdh5 and SDH tetramer assembly. SDH assembly appears to require FAD binding but not necessarily covalent FAD attachment. The Arg residues may be important not only for Sdh5 association but also in the recruitment and/or guidance of FAD and or succinate to the substrate site for the flavinylation reaction. The impaired assembly of SDH with the C-terminal Sdh1 mutants suggests that FAD binding is important to stabilize the Sdh1 conformation enabling association with Sdh2 and the membrane anchor subunits.  相似文献   

6.
R Hermann  R Jaenicke  N C Price 《Biochemistry》1985,24(8):1817-1821
The reconstitution of the tetrameric phosphoglycerate mutase from bakers' yeast after denaturation in guanidine hydrochloride has been studied. When assays are performed in the presence of trypsin, it is found that reactivation parallels the regain of tetrameric structure. However, in the absence of trypsin, the regain of activity is more rapid, suggesting that monomeric and dimeric intermediates possess partial activity (35% of the value of native enzyme) which is sensitive to trypsin. When reconstitution is studied in the presence of substrates, it is again found that monomeric and dimeric intermediates possess 35% activity. Under these latter conditions, the activity of the monomer but not of the dimer is sensitive to trypsin.  相似文献   

7.
The collagenases are a class of matrix degradative enzymes whose actions are important in physiological and pathological processes. The human 72-kDa type IV collagenase (matrix metalloproteinase-2) and its proteinase inhibitor, tissue inhibitor of metalloproteinases-2 (TIMP-2), are produced as a proenzyme-inhibitor complex by numerous cell lines. We analyzed the quaternary structure of and enzyme-inhibitor interactions in the native enzyme-inhibitor complex by studying the pattern of complexes demonstrated by molecular weight determination in nondenaturing polyacrylamide gels and evaluating the products formed by reaction of the native complexes with cross-linking agents. Electrophoresis in native polyacrylamide gels demonstrates that approximately 79% of the latent enzyme is present in a 1:1 bimolecular complex with the inhibitor TIMP-2, with 21% present as a complete tetrameric complex of two molecules of collagenase combined with two molecules of TIMP-2. The enzyme complex activated with organomercurials displays a shift to a higher proportion of the bimolecular complex with only 5% present as higher molecular weight complexes. Cross-linking of the latent and active forms of the complex with bis(sulfosuccinimidyl) suberate (BS3) and bis(sulfosuccinimidyl) tartarate demonstrates both the 1:1 and 2:2 complexes as well as an intermediate form that appears to be a complex composed of two molecules of collagenase and one of TIMP-2. The distribution of cross-linked products is unchanged with the addition of excess TIMP-2 to the reaction mix, implying that the binding sites for TIMP-2 to the initial enzyme-inhibitor complex are all occupied when the stoichiometry is 1 to 1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The time course of the overall reaction catalyzed by the pyruvate dehydrogenase multienzyme complex produces an unexpectedly high lag (tau = 8 S) even in the presence of saturating concentrations of its substrates. The preincubation of the pyruvate dehydrogenase complex with one of the substrates alone decreases the duration of this lag, and all the substrates of the pyruvate dehydrogenase component (E1) and dihydrolipoyl transacetylase component (E2) together (pyruvate, thiamine pyrophosphate, and CoA) result in the complete disappearance of the lag. The reduction of the dihydrolipoyl dehydrogenase component (E3) of the pyruvate dehydrogenase complex with the substrates of the complex in the absence of NAD+ produces significantly different quenching in the FAD fluorescence, and then the reduction with the substrates of E3 as dihydrolipoic acid and dithioerythritol. (The formation of FADH2 was not observed in the system.) The higher fluorescence quenching in the presence of substrates of pyruvate dehydrogenase complex compared to the effect caused by the substrates of the E3 component (dihydrolipoic acid and DTE) indicates conformational changes additionally manifested in the fluorescence properties of the enzyme complex. The substrate-induced quenching of the enzyme-bound FAD fluorescence shows biphasic kinetics. The rate constant of the slow phase is comparable with the rate constant calculated from the time duration of the lag phase observed in the overall reaction. The kinetic analysis of both intensity and anisotropy decrease of the FAD fluorescence suggests a consecutive transmittance of an all substrate-coordinated, induced conformational changes directed from the pyruvate dehydrogenase-via the lipoyl transacetylase--to the lipoyl dehydrogenase. Two simultaneous conformational effects caused by binding of the substrates can be distinguished; one of them results the fluorescence of the bound FAD to be more quenched, while the other makes the FAD more mobile. The first-order rate constants of both these conformational changes were determined. The present observations suggest that the pyruvate dehydrogenase complex exists in a partially inactive state in the absence of its substrates, and it becomes active due to conformational changes caused by the binding of its substrates.  相似文献   

9.
The characteristic green colour of native short-chain acyl-CoA dehydrogenases (EC 1.3.99.2) results from a charge transfer complex between the FAD prosthetic group and a tightly bound molecule of CoA-persulphide. The native enzyme from ox liver mitochondria was found to have about 60% of its FAD cofactor liganded with CoA-persulphide. When artificially fully liganded with CoA-persulphide, this enzyme was inhibited by 90% in comparison to unliganded enzyme. Enzymic activity could be slowly restored by displacing the CoA-persulphide with high concentrations of butyryl-CoA, the enzyme's physiological substrate. The results show that CoA-persulphide is a potent inhibitor of short-chain acyl-CoA dehydrogenase and may have a physiological role in the regulation of beta-oxidation.  相似文献   

10.
Zhang L  Lee J  Song L  Sun X  Shen J  Terracina G  Parker EM 《Biochemistry》2005,44(11):4450-4457
Gamma-secretase catalyzes the proteolytic processing of a number of integral membrane proteins, including amyloid precursor protein (APP) and Notch. The native gamma-secretase is a heterogeneous population of large membrane protein complexes containing presenilin 1 (PS1) or presenilin 2 (PS2), aph-1a or aph-1b, nicastrin, and pen-2. Here we report the reconstitution of a gamma-secretase complex in Sf9 cells by co-infection with baculoviruses carrying the PS1, nicastrin, pen-2, and aph-1a genes. The reconstituted enzyme processes C99 and the Notch-like substrate N160 and displays the characteristic features of gamma-secretase in terms of sensitivity to a gamma-secretase inhibitor, upregulation of Abeta42 production by a familial Alzheimer's disease (FAD) mutation in the APP gene, and downregulation of Notch processing by PS1 FAD mutations. However, the ratio of Abeta42:Abeta40 production by the reconstituted gamma-secretase is significantly higher than that of the native enzyme from 293 cells. Unlike in mammalian cells where PS1 FAD mutations cause an increase in Abeta42 production, PS1 FAD missense mutations in the reconstitution system alter the cleavage sites in the C99 substrate without changing the Abeta42:Abeta40 ratio. In addition, PS1DeltaE9 is a loss-of-function mutation in both C99 and N160 processing. Reconstitution of gamma-secretase provides a homogeneous system for studying the individual gamma-secretase complexes and their roles in Abeta production, Notch processing and AD pathogenesis. These studies may provide important insight into the development of a new generation of selective gamma-secretase inhibitors with an improved side effect profile.  相似文献   

11.
Inhibition of milk xanthine oxidase by fluorodinitrobenzene   总被引:1,自引:0,他引:1  
Milk xanthine oxidase reacted with fluorodinitrobenzene resulting in the modification of two lysine residues with a 6-fold decrease in catalytic activity. Continued reaction with fluorodinitrobenzene up to a total of 11 dinitrophenyl residues/equivalent of enzyme-bound FAD resulted in no further decrease in activity. Stopped flow studies revealed that the modification perturbed the reduction of the enzyme by xanthine; this was 6-fold lower with modified than with native enzyme. The reaction of the reduced modified enzyme with oxygen was qualitatively and quantitatively the same as with native enzyme. One nitro group of each dinitrophenyl lysine residue is slowly reduced by xanthine; reduction of both nitro groups is achieved by dithionite. The two dinitrophenyl lysine reduces can be distinguished on the basis of their kinetics of reduction. One appears to be located on the protein surface and is reduced in an intermolecular reaction, while the other appears to be located in a pocket of the enzyme and is reduced in a slow intramolecular reaction.  相似文献   

12.
The flavoprotein NADH oxidase from Streptococcus faecalis 10C1, which catalyzes the tetravalent reduction of O2-->2H2O, has been purified as the apoenzyme to allow reconstitution studies with both native and artificial flavins. Turnover numbers for the enzyme containing 1-deaza-, 2-thio-, and 4-thio-FAD range from 51 to 4% of that of the native FAD enzyme; these reconstituted oxidases also catalyze the four-electron reduction of oxygen. Dithionite and NADH titrations of the native FAD oxidase require 1.7 eq of reductant/FAD and follow spectral courses very similar to those previously reported for the purified holoenzyme. Azide is a linear mixed-type inhibitor with respect to NADH, and dithionite titrations in the presence of azide yield significant stabilization of the neutral blue semiquinone. Redox stoichiometries for the oxidase containing modified flavins range from 1.1 to 1.4 eq of reductant/FAD. Spectrally distinct reduced enzyme.NAD+ complexes result with all but the 2-thio-FAD enzyme on titration with NADH. The reduced 4-thio-FAD oxidase shows little or no evidence of desulfurization to native FAD on reduction and reoxidation. Both the 8-mercapto- (E'o = -290 mV) and 8-hydroxy-FAD (E'o = -335 mV) oxidase are readily reduced by excess NADH. These results offer a further basis for analysis of the active-site structure and oxygen reactivity of this unique flavoprotein oxidase.  相似文献   

13.
D-Amino-acid oxidase is a flavoprotein using FAD as cofactor. The enzyme has been immobilized in the presence of FAD on a non-porous matrix: chitosan. This support is covalently bound to the enzyme with glutaraldehyde as cross-linking reagent. It is characterized by a good mechanical resistance to mechanical stirring. The enzymatic assays have been performed in batch reactor with D-phenylglycine as substrate by a spectrophotometric method which is based on the variation of the absorbance at 252 or 280 nm. The behaviour of the biocatalysts has been studied during repeated assays of 1 h at 25 degrees C in the absence of exogenous FAD. The experimental results have been compared with those obtained with the soluble enzyme tested in the presence or in the absence of FAD. The dependence of D-amino-acid oxidase on FAD concentration has been studied. Immobilized enzyme on chitosan appears to be less sensitive to the association-dissociation equilibrium of FAD. This property and the capacity of the enzyme to polymerize spontaneously in solution according to the experimental conditions have been established. The fact that the enzyme can exist in various oligomeric forms is of major importance because its catalytic expression is dependent of this phenomenon. The polymerization is known to be responsible for a decrease of the maximal rate V of the enzyme. It has also been shown that in the same way this decrease was accompanied by an improvement of the affinity of enzyme for substrates. Furthermore, the value of the dissociation constant of the apoenzyme-FAD complex is significantly smaller as the degree of polymerization is high. The conclusion is that the dissociation of the cofactor can be avoided if the immobilization step is carried out at high concentration of enzyme which is favourable to its polymerization.  相似文献   

14.
Two different pyridoxal 5'-phosphate-containing l-threonine deaminases (EC 4.3.1.19), biosynthetic and biodegradative, which catalyze the deamination of l-threonine to alpha-ketobutyrate, are present in Escherichia coli and Salmonella typhimurium. Biodegradative threonine deaminase (TdcB) catalyzes the first reaction in the anaerobic breakdown of l-threonine to propionate. TdcB, unlike the biosynthetic threonine deaminase, is insensitive to l-isoleucine and is activated by AMP. In the present study, TdcB from S. typhimurium was cloned and overexpressed in E. coli. In the presence of AMP or CMP, the recombinant enzyme was converted to the tetrameric form accompanied by significant enzyme activation. To provide insights into ligand-mediated oligomerization and enzyme activation, crystal structures of S. typhimurium TdcB and its complex with CMP were determined. In the native structure, TdcB is in a dimeric form, whereas in the TdcB.CMP complex, it exists in a tetrameric form with 222 symmetry and appears as a dimer of dimers. Tetrameric TdcB binds to four molecules of CMP, two at each of the dimer interfaces. Comparison of the dimer structure in the ligand (CMP)-free and -bound forms suggests that the changes induced by ligand binding at the dimer interface are essential for tetramerization. The differences observed in the tertiary and quaternary structures of TdcB in the absence and presence of CMP appear to account for enzyme activation and increased binding affinity for l-threonine. Comparison of TdcB with related pyridoxal 5'-phosphate-dependent enzymes points to structural and mechanistic similarities.  相似文献   

15.
Frataxin is an iron binding mitochondrial matrix protein that has been shown to mediate iron delivery during iron-sulfur cluster and heme biosynthesis. There is a high degree of structural homology for frataxin proteins from diverse sources, and all possess an anionic surface defined by acidic residues. In the human protein these residues principally lie on a surface defined by the alpha1 helix and beta1 sheet and the impact of multiple substitutions of these carboxylate residues on iron binding is described. Full-length human frataxin has previously been shown to undergo self-cleavage to produce a truncated form both in vitro and in vivo. This truncated protein has been shown to bind approximately seven iron centers that are presumably associated with the acidic patch. Relative to this native protein, the stoichiometry decreases according to the number and sites of mutations. Nevertheless, the iron-dependent binding affinity of each frataxin derivative to the iron-sulfur cluster scaffold protein ISU is found to be similar to that of native frataxin, as defined by isothermal titration calorimetry experiments, requiring only one iron center to promote nanomolar binding. While frataxins from various cell types appear to bind differing numbers of iron centers, the physiologically relevant number of bound irons appears to be small, with significantly higher binding affinity following complex formation with partner proteins (micromolar compared with nanomolar binding). By contrast, in reconstitution assays for frataxin-promoted [2Fe-2S](2+) cluster assembly on ISU, one derivative does display a modestly lower reconstitution rate. The overall consensus from these data is to consider a pool of potential sites that can stably bind an iron center when bridged to a variety of physiological targets.  相似文献   

16.
5-DeazaFAD bound to a hydrophobic site in apophotolyase and formed a stable reconstituted enzyme, similar to that observed with FAD. Although stoichiometric incorporation was observed, the flavin ring modification in 1-deazaFAD interfered with normal binding, decreased protein stability, and prevented formation of a stable flavin radical, unlike that observed with FAD. The results suggest that an important hydrogen bond is formed between the protein and N (1) in FAD, but not N (5), and that there is sufficient space at the normal flavin binding site near N (5) to accommodate an additional hydrogen but not near N (1). Catalytic activity was observed with enzyme containing 5-deazaFADH2 (42% of native enzyme) or 1-deazaFADH2 (11% of native enzyme) as its only chromophore, but no activity was observed with the corresponding oxidized flavins, similar to that observed with FAD and consistent with a mechanism where dimer cleavage is initiated by electron donation from excited reduced flavin to substrate. The protein environment in photolyase selectively enhanced photochemical reactivity in the fully reduced state, as evidenced by comparison with results obtained in model studies with the corresponding free flavins. Phosphorescence was observed with free or photolyase-bound 5-deazaFADH2, providing the first example of a flavin that exhibits phosphorescence in the fully reduced state. Formation of an enzyme-substrate complex resulted in a nearly identical extent of quenching of 5-deazaFADH2 phosphorescence (85.1%) and fluorescence (87.5%). The data are consistent with a mechanism involving exclusive reaction of substrate with the excited singlet state of 5-deazaFADH2, analogous to that proposed for FADH2 in native enzyme. Direct evidence for singlet-singlet energy transfer from enzyme-bound 5-deazaFADH2 to 5,10-CH(+)-H4folate was provided by the fact that pterin fluorescence was observed upon excitation of 5-deazaFADH2, accompanied by a decrease in 5-deazaFADH2 fluorescence. On the other hand, the fluorescence of enzyme-bound pterin was quenched by 5-deazaFADox, consistent with energy transfer from pterin to 5-deazaFADox. In each case, the spectral properties of the chromophores were consistent with the observed direction of energy transfer and indicated that transfer in the opposite direction was energetically unlikely. Unlike 5-deazaFAD, energy transfer from pterin to FAD is energetically feasible with FADH2 or FADox. The results indicate that the direction of flavin-pterin energy transfer at the active site of photolyase can be manipulated by changes in the flavin ring or redox state which alter the energy level of the flavin singlet.  相似文献   

17.
A scheme for the detoxification of superoxide in Pyrococcus furiosus has been previously proposed in which superoxide reductase (SOR) reduces (rather than dismutates) superoxide to hydrogen peroxide by using electrons from reduced rubredoxin (Rd). Rd is reduced with electrons from NAD(P)H by the enzyme NAD(P)H:rubredoxin oxidoreductase (NROR). The goal of the present work was to reconstitute this pathway in vitro using recombinant enzymes. While recombinant forms of SOR and Rd are available, the gene encoding P. furiosus NROR (PF1197) was found to be exceedingly toxic to Escherichia coli, and an active recombinant form (rNROR) was obtained via a fusion protein expression system, which produced an inactive form of NROR until cleavage. This allowed the complete pathway from NAD(P)H to the reduction of SOR via NROR and Rd to be reconstituted in vitro using recombinant proteins. rNROR is a 39.9-kDa protein whose sequence contains both flavin adenine dinucleotide (FAD)- and NAD(P)H-binding motifs, and it shares significant similarity with known and putative Rd-dependent oxidoreductases from several anaerobic bacteria, both mesophilic and hyperthermophilic. FAD was shown to be essential for activity in reconstitution assays and could not be replaced by flavin mononucleotide (FMN). The bound FAD has a midpoint potential of -173 mV at 23 degrees C (-193 mV at 80 degrees C). Like native NROR, the recombinant enzyme catalyzed the NADPH-dependent reduction of rubredoxin both at high (80 degrees C) and low (23 degrees C) temperatures, consistent with its proposed role in the superoxide reduction pathway. This is the first demonstration of in vitro superoxide reduction to hydrogen peroxide using NAD(P)H as the electron donor in an SOR-mediated pathway.  相似文献   

18.
Ferredoxin-NAD(P)(+) reductase [EC 1.18.1.3, 1.18.1.2] was isolated from the green sulfur bacterium Chlorobium tepidum and purified to homogeneity. The molecular mass of the subunit is 42 kDa, as deduced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular mass of the native enzyme is approximately 90 kDa, estimated by gel-permeation chromatography, and is thus a homodimer. The enzyme contains one FAD per subunit and has absorption maxima at about 272, 385, and 466 nm. In the presence of ferredoxin (Fd) and reaction center (RC) complex from C. tepidum, it efficiently catalyzes photoreduction of both NADP(+) and NAD(+). When concentrations of NADP(+) exceeded 10 microM, NADP(+) photoreduction rates decreased with increased concentration. The inhibition by high concentrations of substrate was not observed with NAD(+). It also reduces 2,6-dichlorophenol-indophenol (DPIP) and molecular oxygen with either NADPH or NADH as efficient electron donors. It showed NADPH diaphorase activity about two times higher than NADH diaphorase activity in DPIP reduction assays at NAD(P)H concentrations less than 0.1 mM. At 0.5 mM NAD(P)H, the two activities were about the same, and at 1 mM, the former activity was slightly lower than the latter.  相似文献   

19.
On the basis of the homodimeric X-ray structure of dihydrolipoamide dehydrogenase from Azotobacter vinelandii we demonstrate by protein modeling techniques that two dimeric units of this enzyme can associate to a tetrameric structure with intense contacts between the building blocks. Complementary structures of the respective other unit in the tetramer contribute to the active sites. The coenzyme FAD becomes shielded from the environment, thus its binding is stabilized. By energy minimization techniques binding energies and RMS-values were computed and the contact areas between the building blocks were determined to quantify the interaction. In the cell tetramerization of dihydrolipoamide dehydrogenase will be realized upon its incorporation as an enzyme component into the pyruvate dehydrogenase multienzyme complex and will have consequences for the structure and subunit stoichiometry of the complex. Especially, the multiplicity of the three enzyme components, i.e. pyruvate dehydrogenase, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase in the enzyme complex must be 24:24:24 instead of 24:24:12 assumed so far.Electronic Supplementary Material available.  相似文献   

20.
Monomeric sarcosine oxidase (MSOX) is a prototypical member of a recently recognized family of amine-oxidizing enzymes that all contain covalently bound flavin. Mutation of the covalent flavin attachment site in MSOX produces a catalytically inactive apoprotein (apoCys315Ala) that forms an unstable complex with FAD (K(d) = 100 muM), similar to that observed with wild-type apoMSOX where the complex is formed as an intermediate during covalent flavin attachment. In situ reconstitution of sarcosine oxidase activity is achieved by assaying apoCys315Ala in the presence of FAD or 8-nor-8-chloroFAD, an analogue with an approximately 55 mV higher reduction potential. After correction for an estimated 65% reconstitutable apoprotein, the specific activity of apoCys315Ala in the presence of excess FAD or 8-nor-8-chloroFAD is 14% or 80%, respectively, of that observed with wild-type MSOX. Unlike oxidized flavin, apoCys315Ala exhibits a high affinity for reduced flavin, as judged by results obtained with reduced 5-deazaFAD (5-deazaFADH(2)) where the estimated binding stoichiometry is unaffected by dialysis. The Cys315Ala.5-deazaFADH(2) complex is also air-stable but is readily oxidized by sarcosine imine, a reaction accompanied by release of weakly bound oxidized 5-deazaFAD. The dramatic difference in the binding affinity of apoCys315Ala for oxidized and reduced flavin indicates that the protein environment must induce a sizable increase in the reduction potential of noncovalently bound flavin (DeltaE(m) approximately 120 mV). The covalent flavin linkage prevents loss of weakly bound oxidized FAD and also modulates the flavin reduction potential in conjunction with the protein environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号