首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five hetercyclic analogs of adenosine cyclic 3',5'-phosphate (cyclic AMP) were examined for their ability (1) to stimulate type II cyclic AMP-dependent kinases from bovine brain, bovine heart, and rat liver; (2) to serve as substrates for "high Km" (Km for cyclic AMP = 0.13-0.43 mM) cyclic nucleotide phosphodiesterases from bovine heart, rabbit kidney, and rat liver; and (3) to inhibit the hydrolysis of cyclic AMP catalyzed by "low Km" (Km for cAMP = 0.32-1.5 muM) cyclic nucleotide phosphodiesterases from bovine brain, bovine heart, dog heart, rabbit liver, rat brain and rat liver. The analogs all had a purine ring system which had been modified by replacement of a ring carbon with nitrogen or vice versa to yield 2-aza-cAMP (7-amino-4-beta-D-ribofuranosylimidazo [4,5-d] -v-triazine cyclic 3',5'-phosphate); 8-aza-cAMP (7-amino-3-beta-D-ribofuranosyl-v-triazolo-[4,5-d]-pyrimidine cyclic 3',5'-phosphate); 1 deaza-cAMP (7-amino-3-beta-D-ribofuranosylimidazo [4,5-b[pyridine cyclic 3',5'-phosphate); 3-deaza-cAMP (4-amino-1-beta-D-ribofuranosylimidazo[4,5-c]pyridine cyclic 3',5'-phosphate) and 7-deaza-cAMP (7-amino-4-beta-D-ribofuranosylpyrrolo[2,3-d]pyrimidine cyclic 3',5'-phosphate).  相似文献   

2.
A series of representative derivatives of guanosine cyclic 3',5'-phosphate (cGMP) and inosine cyclic 3',5'-phosphate (cIMP) which contained modifications in either the 2' position or the 8 and 2' positions were synthesized. Three types of derivatives were investigated: (1) derivatives in which the 2' position has been altered to produce a 2'-deoxynucleoside cyclic 3',5'-phosphate or a 9-beta-D-arabinofuranosylpurine cyclic 3',5'-phosphate; (2) 2'-omicron-acyl derivatives; and (3) doubly modified derivatives containing a 2' modification [as in (1) and (2)] and an 8-substitution. 2'-Deoxyinosine cyclic 3',5'-phosphate and 9-beta-D-arabinofuranosylhypoxanthine cyclic 3',5'-phosphate were obtained by HNO2 deamination of 2'-deoxyadenosine cyclic 3',5'-phosphate and 9-beta-D-arabinofuranosyladenine cyclic 3',5'-phosphate (ara-cAMP), respectively. Treatment of 8-bromo-2'-omicron-(p-toluenesulfonyl) adenosine cyclic 3',5'-phosphate with NaSH yielded the intermediate 8,2'-anhydro-9-beta-D-arabinofuranosyl-8-mercaptoadenine cyclic 3',5-phosphate, which was converted directly to 2'-deoxyadenosine cyclic 3',5'-phosphate (dcAMP) by treatment with Raney nickel. 8-Bromo-2'-omicron-(p-toluenesulfonyl) guanosine cyclic 3',5'-phosphate was converted to 8,2'-anhydro-9-beta-D-arabinofuranosyl-8-mercaptoguanine cyclic 3',5'-phosphate, and the latter was desulfurized with Raney nickel to give 2-deoxyguanosine cyclic 3',5'-phosphate. Ara-cAMP, 9-beta-D-arabinofuranosylguanine cyclic 3',5'-phosphate, and 9-beta-D-arabinofuranosyl-8-mercaptoguanine cyclic 3',5'-phosphate have been previously reported (Mian et al. (1974), J. Med. Chem. 17, 259). 8-Bromo-2'-omicron-acetylinosine cyclic 3',5'-phosphate and 8-[(p-chlorophenyl)thio]-2'-omicron-acetylinosine cyclic 3',5'-phosphate were produced by acylation of 8-bromoinosine cyclic 3',5'-phosphate and 8-[(p-chlorophenyl)thio]inosine cyclic 3',5'-phosphate, respectively; while 8-bromo-2'-omicron-butyrylguanosine cyclic 3',5'-phosphate was synthesized by bromination of 2'-omicron-butyrylguanosine cyclic 3',5'-phosphate.  相似文献   

3.
The sulphatase A (aryl-sulphate sulphohydrolase, EC 3.1.6.1) of ox liver hydrolyses adenosine 3',5'-monophosphate (cyclic AMP) to adenosine 5'-phosphate at an optimum pH of approx. 4.3, close that for the hydrolysis of cerebroside sulphate, a physiological substrate for sulphatase A. The Km is 11.6 mM for cyclic AMP. On polyacrylamide gel electrophoresis sulphatase A migrates as a single protein band which coincides with both the arylsulphatase and phosphodiesterase activities, suggesting that these are due to a single protein. Cyclic AMP competitively inhibits the arylsulphatase activity of sulphatase A, showing that both activities are associated with a single active site on the enzyme. sulphatase A also hydrolyses guanosine 3',5'-monophosphate, but not uridine 3',5'-monophosphate nor adenosine 2',3'-monophosphate.  相似文献   

4.
S-Adenosylhomocysteine hydrolase (AdoHcyase) has previously been identified as a cytoplasmic adenosine and cyclic AMP binding protein. In order to examine the relationship between the adenosine and cyclic AMP binding sites on this enzyme we have explored the use of 8-azido analogues of adenosine and cyclic AMP as photoaffinity reagents for covalently labelling AdoHcyase purified from human placenta. 8-Azidoadenosine (8-N3-Ado), like adenosine, inactivated AdoHcyase, and the rate of inactivation was greatly increased by periodate oxidation. In addition, 8-N3-Ado was found to participate in the first step in the catalytic mechanism for AdoHcyase, resulting in conversion of enzyme-bound NAD+ to NADH, although it was not a substrate for the full enzyme-catalysed reaction. Radioactively labelled 8-N3-Ado, its periodate-oxidized derivative and 8-azidoadenosine 3', 5'-phosphate (8-N3-cAMP) bound specifically to adenosine binding sites on AdoHcyase and, after irradiation, became covalently linked to the enzyme. Photoaffinity-labelled enzyme could be precipitated by monoclonal antibody to human AdoHcyase. Two observations suggested that cyclic AMP and adenosine bind to the same sites on AdoHcyase. First cyclic AMP and adenosine each blocked binding of both radioactively labelled 8-N3-Ado and 8-N3-cAMP, and second, digestion with V8 proteinase generated identical patterns of peptides from AdoHcyase that had been photolabelled with [32P]8-N3-cAMP and [3H]8-N3-Ado. Binding sites for cyclic AMP on AdoHcyase were found to differ functionally and structurally from cyclic AMP binding sites on the R1 regulatory subunit of cyclic AMP-dependent protein kinase.  相似文献   

5.
The formation of adenosine cyclic 3',5'-phosphate by Brevibacterium liquefaciens ATCC 14929 was studied with the use of nonproliferating cells and cell-free extract. With nonproliferating cells provided by deprivation of sulfate, the formation of this nucleotide was accelerated by adding some amino acids and sugars. Among amino acids tested, alanine and asparagine were most effective. Pentoses were more favorable than hexoses and other sugars. Formation of adenosine cyclic 3',5'-phosphate was observed also with chloramphenicol-treated cells. Experiments on cell-free extract showed that addition of alanine or pyruvate stimulated the formation of adenosine cyclic 3',5'-phosphate from adenosine-5'-triphosphate. When alanine was added to the cell-free system, shaking of the reaction mixture further increased the amount of the nucleotide, but pyruvate was far more effective than alanine. No synergistic effect of alanine and pyruvate was observed. Some enzyme activity was observed which decomposed adenosine cyclic 3',5'-phosphate, but it was weak as compared with adenyl cyclase activity in the presence of pyruvate. From the results obtained, it appears that pyruvate may act as an activating factor of adenyl cyclase in Brevibacterium liquefaciens.  相似文献   

6.
Contact of rat platelets with thrombin or the divalent cation ionophore A-23187, in the presence of extracellular calcium, resulted in the secretion of adenosine 3':5'-monophosphate (cyclic AMP) and guanosine 3':5'-monophosphate (cyclic GMP) phosphodiesterases. Significant association of calcium with platelets occurred during platelet surface contact with thrombin. Thrombin concentration to induce association of calcium virtually agreed with that to release the enzyme. The finding that A-23187 (5 to 20 muM) also provoked a rapid and marked association of extracellular calcium with platelets suggests that calcium mobilization into the intracellular environment may account, at least in part, for this association between platelet and calcium. Two different phosphodiesterases, a relatively specific cyclic AMP and a relatively specific cyclic GMP phosphodiesterase were secreted from platelets into the plasma in soluble form. The amounts of the phosphodiesterases secreted were dose- or time-dependent on thrombin (0.1 to 2 units) or A-23187 (5 to 20 muM) within 30 min. The enzyme release by thrombin was completely inhibited by heparin but the release by A-23187 was not. The two phosphodiesterases secreted seemed to correspond to the two enzymes isolated from platelet homogenates in many respects. Rat platelets contained, at least, three cyclic 3':5'-nucleotide phosphodiesterases, namely, two relatively specific cyclic AMP phoshodiesterases and a relatively specific cyclic GMP phosphodiesterase which were clearly separated from each other by Sepharose 6B or DEAE-cellulose column chromatography or sucrose gradient centrifugation. The two platelet cyclic AMP phosphodiesterase (Mr = 180,000 and 280,000) had similar apparent Km values of 0.69 and 0.75 muM with different sedimentation coefficient values of 4.9 S and 7.1 S, respectively. They did not hydrolyze cyclic GMP significantly. A cyclic GMP phosphodiesterase (Mr - 260,000) exhibited abnormal kinetics for cyclic GMP with an apparent Km value of 1.5 muM and normal kinetics for cyclic AMP with a Km of 300 muM. The properties of a platelet cyclic AMP phosphodiesterase (Mr = 180,000) and a platelet cyclic GMP phosphodiesterase were found to agree with those of the two phosphodiesterases released from platelets by thrombin or A-23187. Depletion of extracellular calcium by an addition of citrate, EDTA, or ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) to the blood or platelet suspension resulted in a loss of the activity of the smaller form of platelet cyclic AMP phosphodiesterase (Mr = 180,000) and addition of calcium restored the activity of this cyclic AMP phosphodiesterase. Thus, calcium seemed to be involved in the mechanism of an occurrence of this smaller form of cyclic AMP phosphodiesterase as well as the secretion of this enzyme. Contact of human platelets with thrombin also resulted in the secretion of cyclic nucleotide phosphodiesterase which was dependent on the concentration of calcium. No species difference was observed in this respect.  相似文献   

7.
8.
A number of 2-substituted cyclic nucleotide derivatives were synthesized and investigated as activators of cAMP-dependent protein kinase and as substrates for and inhibitors of cAMP phosphodiesterase. Ring closure of 5-amino-1-beta-D-ribofuranosylimidazol-4-carboxamide cyclic 3',5'-phosphate (1) with various aldehydes according to a new procedure (Meyer, R. B., Jr., Shuman, D.A., and Robins, R. K. (1974), J. Am. Chem. Soc. 96, 4962) gave new derivatives of adenosine cyclic 3',5'-phosphate with the following 2-substituents: n-propyl, n-hexl, n-octyl, n-decyl, styryl, o-methoxyphenyl, and 2-thienyl. Alkylation of 2-mercaptoadenosine cyclic 3',5'-phosphate (20, Meyer et al., 1974) gave new cAMP derivatives with the following 2-substituent: ethylthio, n-propylthio, isopropylthio, allylthio, n-decylthio, and benzylthio. Deamination of 2-methyl-,2-n-butyl-, and 2-ethylthioadenosine cyclic 3',5'-phosphate. Using multiple regression analysis, a striking relationship was found between the relative potency of the compounds as activators of bovine brain cAMP-dependent protein kinase and parameters describing the hydrophobic, steric, and electronic character of the substituents on these compounds. All compounds were substrates for a cyclic nucleotide phosphodiesterase preparation from rabbit kidney. Additionally, the compounds were as a group, good inhibitors of the hydrolysis of cAMP by phosphodiesterase preparations from rabbit lung, beef heart, and dog heart.  相似文献   

9.
The 5' AP endodeoxyribonucleases hydrolyze the phosphodiester bond 5' to AP (apurinic or apyrimidinic) sites in double-stranded DNA leaving 3'-OH and 5'-phosphate ends. These nicks are sealed by T4 DNA ligase although the 5'-phosphate end belongs to a base-free deoxyribose.  相似文献   

10.
Enzyme fraction A from Chlorella which catalyzes the formation of adenosine 5'-phosphosulfate from adenosine 3'-phosphate 5'-phosphosulfate is further characterized. Fraction A is found to contain an Mg2+ -activated and Ca2+ -inhibited 3' (2')-nucleotidase specific for 3' (2'), 5'-biphosphonucleosides. This activity has been named 3' (2), 5'-biphosphonucleoside 3' (2')-phosphohydrolase. The A fraction is also found to contain an activity which catalyzes the formation of adenosine 3':5'-monophosphate (cyclic AMP) from adenosine 5'-phosphosulfate (adenosine 5'-phosphosulfate cyclase). Under the same conditions of assay, 5'-ATP and 5'-ADP are not substrated for cyclic AMP formation. Unlike the 3' (2'), 5'-biphosphonucleoside 3' (2')-phosphohydrolase activity, the adenosine 5'-phosphosulfate cyclase activity does not require Mg2+, requires NH+4 or Na+, and is not inhibited by Ca2+. The A fraction also contains an adenosine 5'-phospho sulfate sulfohydrolase activity which forms 5'-AMP and sulfate. The three activities remain together during purification and acrylamide gel electrophoresis of the purified preparation yields a pattern where only one protein band has all three activities. The phosphohydrolase can be separated from the other two activities by affinity chromatography on agarose-hexyl-adenosine 3'n5'-bisphosphate yielding a phosphohydrolase preparation showing a single band on gel electrophoresis. The adenosine 5'-phosphosulfate cyclase may provide an alternate route of cyclic AMP formation from sulfate via ATP sulfurylase, but its regulatory significance in Chlorella, if any, remains to be demonstrated. In sulfate reduction, the phosphohydrolase may serve to provide a readily utilized pool of adenosine 5'-phosphosulfate as needed by the adenosine 5'-phosphosulfate sulfotransferase. The cyclase and sulfohydrolase activities would be regarded as side reactions incidental to this pathway, but may be of importance in other metabolic and regulatory reactions.  相似文献   

11.
We have isolated a mutant of the luminous bacterium Beneckea harveyi, which requires exogenous adenosine 3',5'-monophosphate (cyclic AMP) to synthesize luciferase and emit light. The mutant was pleiotropic, lacking not only the ability to luminesce, but also the capacities to form flagella and the ability to utilize a variety of carbohydrates for growth. All these deficiencies could be corrected by added cyclic AMP. The cyclic AMP-induced de novo synthesis of luciferase was possible only after autoinduction had occurred. The induction time by cyclic AMP ranged between 6 and 10 min at 27 degrees C.  相似文献   

12.
Cyclic 3',5'-mononucleotide phosphodiesterase (cyclic nucleotide PDEase) activity was studied histo- and cytochemically in the retinal rod photoreceptor cells of the rat by means of a newly developed technique utilizing the intrinsic 5' nucleotidase activity instead of an exogenous 5' nucleotidase source (snake venom). Cyclic GMP and was used as a substrate, the intense activity of phosphodiesterase (PDEase) was distributed over the entire rod outer segments; reaction product was observed on the plasmalemma and on the disk membranes of the outer segments. A slight reaction was also observed on the plasmalemma of the inner segments. However, no precipitate was found in the perinuclear and synaptic regions of the rod photoreceptors. In contrast, when cyclic AMP was utilized as a substrate, a moderate reaction was seen in the synaptic region of the plexiform layer. The intensity of the reaction in the outer segments was much reduced in comparison to the results with cyclic GMP. The enzyme activity was almost completely inhibited by 2 mM 3-isobutyl-1-methylxanthine (IBMX) or 2 mM theophylline, which were potent inhibitors of PDEase. To confirm the propriety of our new cytochemical method, the localization of 5' nucleotidase was also studied utilizing 5' AMP or 5' GMP as substrates. In contrast to the activity of cyclic nucleotide PDEase, the activity of 5' nucleotidase was distributed on all membranes of the photoreceptors from the synaptic outer plexiform layer to the tip of outer segments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
RNA 3'-phosphate cyclase (Rtc) enzymes are a widely distributed family that catalyze the synthesis of RNA 2',3'-cyclic phosphate ends via an ATP-dependent pathway comprising three nucleotidyl transfer steps: reaction of Rtc with ATP to form a covalent Rtc-(histidinyl-N)-AMP intermediate and release PP(i); transfer of AMP from Rtc to an RNA 3'-phosphate to form an RNA(3')pp(5')A intermediate; and attack by the terminal nucleoside O2' on the 3'-phosphate to form an RNA 2',3'-cyclic phosphate product and release AMP. The chemical transformations of the cyclase pathway resemble those of RNA and DNA ligases, with the key distinction being that ligases covalently adenylylate 5'-phosphate ends en route to phosphodiester synthesis. Here we show that the catalytic repertoire of RNA cyclase overlaps that of ligases. We report that Escherichia coli RtcA catalyzes adenylylation of 5'-phosphate ends of DNA or RNA strands to form AppDNA and AppRNA products. The polynucleotide 5' modification reaction requires the His(309) nucleophile, signifying that it proceeds through a covalent RtcA-AMP intermediate. We established this point directly by demonstrating transfer of [(32)P]AMP from RtcA to a pDNA strand. RtcA readily adenylylated the 5'-phosphate at a 5'-PO(4)/3'-OH nick in duplex DNA but was unable to covert the nicked DNA-adenylate to a sealed phosphodiester. Our findings raise the prospect that cyclization of RNA 3'-ends might not be the only biochemical pathway in which Rtc enzymes participate; we discuss scenarios in which the 5'-adenylyltransferase of RtcA might play a role.  相似文献   

14.
2'-O-Chloroacetyl cyclic AMP, 2'-O-acrylyl cyclic AMP and N-6, 2'-O-diacrylyl cyclic AMP were synthesized by the reaction of cyclic AMP with chloroacetic and acrylic anhydrides, respectively. Selective O-deacylation of N-6, 2'-O-diacrylyl cyclic AMP yielded N-6 -monoacrylyl cyclic AMP. In the reaction of gamma-mercaptobutyric acid with 8-bromo cyclic AMP, 8-(gamma-carboxypropylthio) cyclic AMP was obtained. The compounds synthesized and other cyclic AMP analogues (8-bromo cyclic AMP and adenosine 3', 5'-cyclic sulphate) were tested for ability to interact with the highly purified pig brain histone kinase. All compounds under study were found to be activators of the enzyme. The highest activating potency was manifested by 8-bromo cyclic AMP and 8-(gamma-carboxypropylthio) cyclic AMP; adenosine 3', 5'-cyclic sulphate was the least potent in this respect. All compounds were shown to inhibit binding of cyclic [-3-H]AMP to histone kinase. The inhibition was competitive with respect to cyclic AMP in all cases. All compounds, except for 2'-O-chloroacetyl cyclic AMP may indicate the formation of a covalent bond between this analogue and the enzyme. These findings suggest that an active site of the regulatory subunit of the histone kinase contains at least three specific areas responsible for cyclic AMP binding.  相似文献   

15.
The effect of treadmill exercise on plasma and urinary cyclic adenosine 3'5' monophosphate levels (cyclic AMP) was studied in twelve healthy subjects. Plasma cyclic AMP levels were found to be markedly elevated without significant changes in urinary cyclic AMP or cyclic AMP/creatine ratio. Most likely altered plasma glucagon and catecholamine levels were responsible for these changes.  相似文献   

16.
Abstract— In slices of adult rabbit cerebral cortex histamine at 5 μM produced a detectable rise in adenosine 3',5'-monophosphate (cyclic AMP). A maximum (20-fold) increase was observed in response to 0–5 mM histamine, with higher concentrations being less effective. The antihistaminic agent, tripelennamine, inhibited the response to 50 μM histamine in a dose-related manner. No effect on basal levels of cyclic AMP was noted with the highest dose of tripelennamine. The cyclic AMP response to 50 μM histamine was sustained for up to 1 h of incubation whether the slices and included medium were assayed together or the slices were assayed separately, although after 60 min of incubation cyclic AMP levels were higher when the medium was included in the assay. During development of the rabbit cerebral cortex, the first detectable increase of cyclic AMP in response to histamine occurred at fetal day 25, and from day 28 to birth the response was a 4-to 5-fold increase. A maximal (10-fold) response was observed at 4–8 days postpartum and by 20 days of postnatal age the response had decreased to the adult levels.  相似文献   

17.
The concentration of adenosine 3',5'-monophosphate (cyclic AMP) and the activity of adenylate cyclase were determined for the first time in conjuncation with cyclic 3',5'-nucleotide phosphodiesterase (phosphodiesterase) during the growth cycle of Tetrahymena pyriformis. High levels of cyclic AMP observed during early exponential and late stationary phases were associated with elevated adenylate cyclase and decreased phosphodiesterase activities. Adenylate cyclase and cyclic AMP were decreased and phosphodiesterase was increased in cells grown in glucose-supplemented medium. In contrast to findings in mammalian liver, cyclic AMP was decreased during active gluconeogenesis in Tetrahymena. This suggests a different modulation of carbohydrate metabolism in the two species. The results illustrate that both the content of cyclic AMP and its action as a regulatory agent in Tetrahymena are uniquely suited to the metabolism of this organism.  相似文献   

18.
Low levels of adenosine 3',5'-monophosphate (cyclic AMP) were detected in the cyanobacterium Anabaena variabilis using a protein binding assay and two radioisotopic labelling methods. The basal concentration of intracellular cyclic AMP ranged from 0.27 pmol/mg protein in A. variabilis Kutz grown under heterotrophic conditions to 1.0--2.7 pmol/mg protein in A. variabilis strain 377 grown autotrophically. Extracellular cyclic AMP was found to comprise as much as 90% of the total cyclic AMP in rapidly growing cultures. When A. variabilis strain 377 was starved of nitrogen, a 3--4-fold increase in intracellular cyclic AMP was observed during the 24 h period coincident with early heterocyst development.  相似文献   

19.
We have demonstrated that in Chinese hamster ovary (CHO) cells, N6,O2'-dibutyryl adenosine cyclic 3':5'-monophosphate (dibutyryl cyclic AMP) has a remarkable morphogenetic effect in converting cells of a compact, epithelial-like morphology into a spindle-shaped, fibroblast-like form. Homogenates of CHO cells were found to contain two adenosine cyclic 3':5'-monophosphate (cyclic AMP) phosphodiesterase (EC 3.1.4.c) activities, which differ in apparent Km with respect to their substrate, cyclic AMP. These were designated cyclic AMP phosphodiesterase I, with a low Km of 2 to 5 muM and cyclic AMP phosphodiesterase II, with a high Km of 1 to 3 mM. Cyclic AMP phosphodiesterase I was competitively inhibited by N6-monobutyryl and dibutyryl cyclic AMP, with apparent Ki values of 40 to 60 muM and 0.25 to 0.35 mM, respectively. Experimental evidence demonstrates that the effect of exogenous dibutyryl cyclic AMP on cell morphology is a result of an increase in the endogenous level of cyclic AMP. This increase appears to be due largely to the inhibitory action of intracellular N6-monobutyryl cyclic AMP on cyclic AMP phosphodiesterase I, which results in a decreased rate of degradation of intracellular cyclic AMP.  相似文献   

20.
A novel phosphodiesterase from cultured tobacco cells.   总被引:8,自引:0,他引:8  
A novel phosphodiesterase was purified from cultured tobacco cells to a state which appeared homogeneous on polyacrylamide gel electrophoresis. The enzyme hydrolyzed various phosphodiester and pyrophosphate bonds, including p-nitrophenyl thymidine 5'-phosphate, p-nitrophenyl thymidine 3'-phosphate, cyclic nucleotides, ATP, NAD+, inorganic pyrophosphate, dinucleotides, and poly(adenosine diphosphate ribose), which is a polymer synthesized from NAD+. However, it did not hydrolyze highly polymerized polynucleotides. The molecular weight of the native enzyme was estimated as 270 000 to 280 000 by gel filtration on Sephadex G-200 and Bio-Gel A-5m. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the enzyme was composed of subunits with molecular weights calculated to be 75 000. The enzyme did not require divalent cations for activity being fully active in the presence of ethylenediaminetetraacetic acid. The pH optimum for the enzyme was approximately 6 with p-ni-trophenyl thymidine 5'-phosphate or adenosine cyclic 3',5'monophosphate, and 5.3 with NAD+. Double reciprocal plots of the initial velocity against the concentration of p-nitrophenyl thymidine 5'-phosphate gave two apparent Km values of 0.17 and 1.3 mM, suggesting the presence of at least two active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号