首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Arginine vasopressin (AVP) has been implicated in a wide variety of social behaviors ranging from affiliation to aggression. However, the precise functional involvement of AVP in intermale aggression is still a matter of debate. In fact, very little is known about AVP release patterns within distinct brain regions during the display of intermale aggression and, in turn, the behavioral consequences of such release. We used intracerebral microdialysis to monitor local AVP release within the lateral septum (LS) and the bed nucleus of the stria terminalis (BST) of adult male Wistar rats during the resident-intruder (RI) test. Resident males were cohabitated with a female prior to the RI test to stimulate intermale aggression toward the intruder male. AVP release within the LS correlated positively with intermale aggression. The specific AVP V1a receptor antagonist d(CH2)5Tyr(Me)AVP (10 μg/ml) administered via retrodialysis (3.3 µl/min, 30 min) into the LS of high-aggressive rats prior to the second RI test, prevented an increase in aggression in the second compared with the first RI test as seen in vehicle-treated high-aggressive rats. In contrast to the LS, AVP release within the BST correlated negatively with intermale aggression. Moreover, retrodialysis of synthetic AVP (1 µg/ml) administered into the BST of high-aggressive rats significantly reduced the display of aggression during the second RI test. These data reveal that AVP can both promote and inhibit intermale aggression, depending upon the brain region in which AVP is released. Although challenging the general view that central AVP release enhances intermale aggression in rodents, our data support a model in which AVP coordinates a range of social behaviors by eliciting region-specific effects.  相似文献   

2.
The purpose of this study was to examine the gastrin-releasing peptide (GRP) mediated regulation of 5-HT neuronal activity in the paraventricular nucleus of the hypothalamus under basal and restraint stress conditions. Intracerebroventricular (icv) administration of GRP (1, 10, 100 ng/rat) increased 5-HIAA concentrations in the paraventricular nucleus (PVN) of the hypothalamus, but was without effect in the accumbens, suprachiasmatic and arcuate nuclei. Administration of (Leu(13)-psi-CH(2)NH-Leu(14)) Bombesin (10, 100 and 1000 ng/rat; icv), a GRP antagonist, had no effect by itself on PVN serotonergic activity; however, a dose of 1 microg/rat of this compound, completely blocked the increase of 5-HIAA concentrations induced by GRP (10 ng). Restraint stress increased serotonergic activity -as shown by an elevation of 5-HIAA in the PVN- as well as plasma ACTH and corticosterone. This stress-induced activation of both the serotonergic neurons and the hypothalamus-pituitary-adrenal axis was blocked by CRF and GRP antagonists. Interestingly, when the activation of hypothalamic 5-HT neurons was induced by GRP administration, alpha-helical (9-41) CRF was ineffective.These data suggest that GRP, by acting on GRP receptors but not via CRF receptors, increases 5-HT neuronal activity in the PVN. In turn, it appears that endogenous GRP and CRF receptor ligands are both simultaneously involved in the regulation of the increase in 5-HT neuronal activity, ACTH and corticosterone secretion, under stress conditions.  相似文献   

3.
In many vertebrates testosterone increases during aggressive interactions and the surges in this hormone may be responsible for the winner effect. So far studies on this relationship have been done in captivity only, because simulating a winning situation for a territory owner in the field is difficult. However, an increasing number of studies show that territorial aggression is not necessarily accompanied by elevated testosterone after a single simulated territorial intrusion (STI) and therefore it has been proposed that STIs may even create a losing experience. We examined whether free-living male black redstarts (Phoenicurus ochruros) show changes in androgens, corticosterone and behavior following repeated STIs of high or low intensity and in contrast to being challenged only once. Repeated intrusions had no influence on androgen and corticosterone levels regardless of intrusion intensity. In contrast, the behavioral response changed over days depending on the intensity of the intrusion. Only birds challenged with high-level intruders approached the decoy significantly faster during the third intrusion than during the first one, stayed closer to the decoy, and sang more songs than males challenged with low-level intruders. Thus, although black redstarts reacted differently to STIs varying in frequency and intensity, these behavioral differences were not reflected in androgen or corticosterone levels. Our data show that it is unlikely that STIs induce a losing experience. Furthermore, they indicate that a hormonal effect of winning an encounter may not be universal in vertebrates and may depend on the ecological or life-history context.  相似文献   

4.
Testosterone influences the hypothalamic–pituitary–adrenal axis, anxiety-related behavior, and sensorimotor gating in rodents, but little is known about the role of the androgen receptor (AR) in mediating these influences. We compared levels of the stress hormone corticosterone at baseline and following exposure to a novel object in an open field in wild type (wt) male and female rats, and male rats with the testicular feminization mutation (Tfm) of the AR, which disables its function. Basal corticosterone was equivalent in all groups, but exposure to a novel object in an open field elicited a greater increase in corticosterone in Tfm males and wt females than in wt males. Tfm males also showed increased behavioral indices of anxiety compared to wt males and females in the test. Analysis of the immediate early gene c-Fos expression after exposure to a novel object revealed greater activation in Tfm males than wt males in some regions (medial preoptic area) and lesser activation in others (dentate gyrus, posterodorsal medial amygdala). No differences were found in a measure of sensorimotor gating (prepulse inhibition of the acoustic startle response), although Tfm males had an increased acoustic startle response compared to wt males and females. These findings demonstrate that ARs play a role in regulating anxiety-related behaviors, as well as corticosterone responses and neural activation following exposure to a mild stressor in rats.  相似文献   

5.
TRH neurons of the hypothalamic paraventricular nucleus (PVN), regulate pituitary-thyroid axis (HPT). Fasting activates expression of orexigenic peptides from the arcuate nucleus, increases corticosterone while reduces leptin, and pro-TRH mRNA levels despite low serum thyroid hormone concentration (tertiary hypothyroidism). TRH synthesis is positively regulated by anorexigenic peptides whose expression is reduced in fasting. The model of dehydration-induced anorexia (DIA) leads to decreased voluntary food intake but peptide expression in the arcuate is similar to forced-food restriction (FFR), where animals remain hungered. We compared the response of HPT axis of female Wistar rats submitted to DIA (2.5% saline solution, food ad libitum, 7 days) with FFR (provided with the amount of food ingested by DIA) and na?ve (N) group fed ad libitum, as well as their response to acute cold exposure. Pro-TRH and pro-CRH mRNA levels in the PVN were measured by RT-PCR, TRH content, serum concentration of TSH and thyroid hormones by radioimmunoassay. DIA rats reduced 80% their food consumption compared to N, decreased PVN pro-CRH expression, serum estradiol and leptin levels, increased corticosterone similar to FFR. HPT axis of DIA animals failed to adapt: FFR presented tertiary hypothyroidism and DIA, primary. Response to cold stimulation leading to increased pro-TRH mRNA levels and TRH release was preserved under reduced energy availability in FFR rats but not in DIA, although the dynamics of hormonal release differed: TSH release augmented only in na?ve; thyroxine in all but highest in DIA, and triiodothyronine in FFR and DIA suggesting a differential regulation of deiodinases.  相似文献   

6.
The pituitary-adrenal secretory response to acute and chronic stress, suppressibility of adrenocortical secretions by exogenous glucocorticoids, and hypothalamic content and in vitro release of the two major peptidergic activators of the hypothalamo-pituitary-adrenal (HPA) axis, corticotropinreleasing hormone (CRH) and arginine-vasopressin (AVP), were examined in rats receiving daily melatonin (MEL) injections coincident with the circadian increment of endogenous pineal and adrenocortical secretory activity. After 7 days of MEL administration, the rats displayed a significant attenuation of the adrenocortical secretory response to acute and chronic stress. Chronic MEL treatment also prevented the decline in adrenocorticotropic hormone (ACTH) release resulting from chronic stress exposure. Hypothalamic CRH content was significantly lower in rats receiving MEL treatment, while AVP remained largely unaltered; however, MEL administration counteracted the chronic stress-induced decrease in hypothalamic AVP content and in vitro release. When exposed to dexamethasone in vitro, hypothalamic explants from MEL-treated rats responded with a stronger suppression of CRH and AVP release than those originating from vehicle-injected animals. These observations indicate that MEL attenuates the adrenocortical response to stress and influences the biosynthesis, release and glucocorticoid responsiveness of hypothalamic ACTH secretagogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号