首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.
Two experiments were conducted to investigate the effects of organic and inorganic amendments on metal stabilization and the potential of three forage grasses, i.e., Pennisetum americanum × Pennisetum, Euchlaena mexicana, and Sorghum dochna, for phytostabilization of acidic heavy metal-contaminated soils. The three grasses died 5 days after transplanting into the contaminated soils. Organic fertilizer (pig slurry and plant ash) only or combined with lime, NPK fertilizer, and sewage sludge resulted in adequate grass growth in the contaminated soils through a significant increase in the soil pH, N, P, K, and organic matter contents, and a decrease in the metal concentrations. The shoot biomass of P. americanum×P. purpureum and S. dochna was 1.92 and 2.00 times higher than that of E. Mexicana. The solubility of Cd, Pb, and Zn strongly depends on organic matter, while the solubility of Cu strongly depends on both soil organic matter and pH. The concentrations of Cd, Pb, and Zn in plant shoots growing in soil with a mixed amendment were significantly lower than plants growing in soil amended with an organic fertilizer only, whereas the Cu concentrations in plant shoots exhibited the opposite trend. The results indicated that 5% organic fertilizer only or combined with 5% sewage sludge were appropriate amendments and S. dochna and P. americanum × Pennisetum are suitable plants for phytostabilization of acidic heavy metal-polluted soils.  相似文献   

2.
During summer 2005/2006, we characterized three sampling sites on mineral soils and four on ornithogenic soils from Cierva Point, Antarctic Peninsula, in terms of topographic and abiotic features (altitude, slope, magnetic direction, temperature, texture, pH, conductivity, organic matter, moisture and nutrient concentrations), and compared their microalgal communities through taxonomic composition, species richness, diversity, chlorophyll a content and their variation in time. Average values of pH, moisture, organic matter and nutrient concentrations were always significantly lower in mineral than in ornithogenic soils. Low N/P mass ratio showed potential N-limitation of biomass capacity in the former. On the other hand, the results suggested that physical stability is not as a key stress factor for mineral soil microalgae. Chlorophyll a concentration was not only higher in ornithogenic soils, but it also showed a wider range of values. As this parameter was positively correlated with temperature, pH, nutrients, organic matter and moisture, we cannot come to conclusions regarding the influence of each factor on algal growth. Communities of mineral soils were significantly more diverse than those of enriched ornithogenic soils due to higher species richness as well as higher equitability. Also, their structure was steadier over time, as shown by a cluster analysis based on relative frequency of algal taxa. Although Cyanobacteria and Bacillariophyceae dominated almost all samples, Chlorophyceae represented 34% of the 140 taxa recorded, and most of them observed only in cultures. The detection under controlled conditions of a high latent species richness in harsh mineral soil sites shows that the composition and equitability of these microalgal communities would be more prone to modification due to the manifold local consequences of climatic change than those of ornithogenic soils.  相似文献   

3.
Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant community assemblage may be a general property of mound building termites.  相似文献   

4.
The mass transfer from root to soil by means of rhizodeposition has been studied in grasses and forest trees, but its role in fruit trees is still unknown. In this study, N fluxes from roots to soil were estimated by applying a 15N mass balance technique to the soil–tree system. Apple (Malus domestica) trees were pre-labelled with 15N and then grown outdoors in 40 L pots for one vegetative season in (1) a coarse-textured, low organic matter soil, (2) a coarse-textured, high organic matter soil, and (3) a fine-textured, high organic matter soil. At tree harvest the 15N abundance of the soils was higher than at transplanting, but the total amount of 15N present in the tree–soil system was similar at transplanting and tree harvest. The soils had a strong effect on N fluxes from and to the soil. In the fine-textured soil, 11% of the total plant-derived nitrogen was transferred to the soil, compared with 2–5% in the two coarse-textured soils. Rhizodeposition was higher in the fine soil (18% of the primary production) than in the coarse-textured soils, whereas higher soil organic matter depressed rhizodeposition. Nitrogen uptake was almost double in the coarse-textured, high organic matter soil versus the other soils. Our results indicate that belowground primary productivity is significantly underestimated if based on root production data only. Rhizodeposition represents a major process, whose role should not be underestimated in carbon and nitrogen cycles in orchard ecosystems.  相似文献   

5.
Summary The percentage nitrogen in three mature grasses,Pennisetum purpureum, Tripsacum laxum andPanicum maximum was significantly increased when grown in association with a legumeDesmodium uncinatum. When the grasses were grazed and cut back a similar but non-significant effect occurred in the regrowth material. Soil analyses showed that the legume effectively increased the surface organic horizon and the amount of nitrogen mineralised in the underlying soil. The surface layer also produced large amounts of nitrate on mineralisation. Both with the soil and the organic surface mineralisation was greatest at the start of the rains when the influence of the legume on the percentage nitrogen in the grass was most apparent.  相似文献   

6.
杨鑫  曹靖  董茂星  马晓军 《应用生态学报》2008,19(10):2109-2116
以甘肃小陇山林区8~30年林龄日本落叶松林(外来树种)、油松林(乡土树种)及次生林为研究对象,研究了不同树种森林的土壤质量和细菌多样性变化.结果表明: 不同树种森林土壤pH无明显变化;林龄越长,土壤含水量越高.土壤总氮与有机质含量以次生林最高,其次为日本落叶松,油松最低.不同林龄森林土壤总氮与有机质含量无明显变化,表明树种是影响土壤质量的主要因素.与乡土树种油松相比,外来树种日本落叶松显著提高了土壤全氮及土壤有机质含量.变性梯度凝胶电泳(DGGE)图谱显示,次生林土壤细菌多样性最高,而外来树种日本落叶松土壤细菌多样性最低.对DGGE图谱的聚类分析发现,小陇山不同森林土壤细菌类群分属变形杆菌、噬纤维黄杆菌和高G+C含量革兰氏阳性细菌类,其中分属变形杆菌为主要类群.进一步分析发现,日本落叶松的细菌群落组成具有更高的相似度,说明日本落叶松正在使该地区土壤细菌多样性发生变化.  相似文献   

7.
Aim Invasion of nitrogen‐fixing non‐native plant species may alter soil resources and impact native plant communities. Altered soils may be the driving mechanism that provides a suitable environment to facilitate future invasions and decrease native biodiversity. We hypothesized that Melilotus invasion would increase nitrogen availability and produce soil microclimate and biochemical changes, which could in turn alter plant species composition in a montane grassland community. Location Our research addressed the effects of white and yellow sweet clover (Melilotus officinalis and M. alba) invasion on soil characteristics and nitrogen processes in the montane grasslands in Rocky Mountain National Park. Methods We sampled soil in replicate sites of Melilotus‐invaded and control (non‐invaded) patches within disturbed areas in montane grassland habitats. Soil composites were analysed for available nitrogen, net nitrogen mineralization, moisture, carbon/nitrogen (C : N ratio), texture, organic matter and pH. Data were recorded at three sample dates during the growing seasons of 1998 and 1999. Results Contrary to our expectations, we observed lower nitrogen availability and mineralization in invaded patches, and differences in soil moisture content and soil C : N. Soil C : N ratios were higher in invaded plots, in spite of the fact that Melilotus had the lowest C : N ratios of other plant tissue analysed in this study. Main conclusions These findings provide land managers of natural areas with a better perspective on the possibilities of nitrogen‐fixing species impact on soil nutrient levels.  相似文献   

8.
We tested whether the host species identity in grass-Epichloë symbioses affected soil chemical and microbial properties. We grew endophyte infected (E+) and endophyte free (E−) Lolium perenne, Hordeum brevisubulatum and Achnatherum inebrians for 18 months in field plots. In E+ soil of all three grasses, available phosphorus was lower whereas total soil nitrogen was higher. Endophyte effects on soil pH, microbial biomass nitrogen, total carbon and organic carbon as well as bacteria and fungi abundance were host species dependent. Ammonia oxidizing bacteria abundance was higher in E+ soils for all species. Bacterial community composition of E+ and E− soils were different only for Lolium perenne with soil pH being the key factor. Fungal community composition of E+ and E− soils was not different for the three grasses. This study confirmed that the effects of foliar Epichloë infection on belowground properties depended on host species identity.  相似文献   

9.
Factors affecting the occurrence and distribution of entomopathogenic fungi in 244 soil samples collected from natural and cultivated areas in Spain were studied using an integrated approach based on univariate and multivariate analyses. Entomopathogenic fungi were isolated from 175 of the 244 (71.7 %) soil samples, with only two species found, Beauveria bassiana and Metarhizium anisopliae. Of the 244 soil samples, 104 yielded B. bassiana (42.6 %), 18 yielded M. anisopliae (7.3 %), and 53 soil samples (21.7 %) harboured both fungi. Log-linear models indicated no significant effect of habitat on the occurrence of B. bassiana, but a strong association between M. anisopliae and soils from cultivated habitats, particularly field crops. Also, irrespective of habitat type, B. bassiana predominated over M. anisopliae in soils with a higher clay content, higher pH, and lower organic matter content. Logistic regression analyses showed that pH and clay content were predictive variables for the occurrence of B. bassiana, whereas organic matter content was the predictive variable for M. anisopliae. Also, latitude and longitude predicted the occurrence of these same species, but in opposite directions. Altitude was found to be predictive for the occurrence of B. bassiana. Using principal component analysis, four factors (1 to 4) accounted for 86 % of the total variance; 32.8, 22.9, 19.6 and 10.4 % of the cumulative variance explained, respectively. Factor 1 was associated with high positive weights for soil clay and silt content and high negative weights for soil sand content. Factor 2 was associated with high positive weights for soil organic matter content and high negative weights for soil pH. Factor 3 was associated with high positive weights for latitude and longitude of the sampled localities and factor 4, had high positive weights only for the altitude. Bi-plot displays representing soil samples were developed for different factor combinations and indicated that, irrespective of geographical location, absence of both fungal species was determined by alkaline sandy soils with low organic matter content, whereas heaviness of soil texture, acidity and increasing organic matter content led to progressively higher percentages of samples harbouring entomopathogenic fungi. These results could aid decision-making as to whether or not a particular cultivated or natural soil is suitable for using entomopathogenic fungi as a pest control measure and for selecting the fungal species best suited to a particular soil.  相似文献   

10.
左倩倩  王邵军  王平  曹乾斌  赵爽  杨波 《生态学报》2021,41(18):7339-7347
蚂蚁作为生态系统工程师能够调节土壤微生物及理化环境,进而对热带森林土壤有机氮矿化速率及其时间动态产生显著影响。以西双版纳白背桐热带森林群落为研究对象,采用室内需氧培养法测定土壤有机氮矿化速率,比较蚁巢和非蚁巢土壤有机氮矿化速率的时间动态,揭示蚂蚁筑巢活动引起土壤无机氮库、微生物生物量碳及化学性质改变对有机氮矿化速率时间动态的影响。结果表明:(1)蚂蚁筑巢显著影响土壤有机氮矿化速率(P<0.01),相较于非蚁巢,蚁巢土壤有机氮矿化速率提高了261%;(2)土壤有机氮矿化速率随月份推移呈明显的单峰型变化趋势,即6月最大(蚁巢1.22 mg kg-1 d-1、非蚁巢0.41 mg kg-1 d-1),12月最小(蚁巢0.82 mg kg-1 d-1、非蚁巢0.18 mg kg-1 d-1);(3)两因素方差分析表明,不同月份及不同处理对土壤有机氮矿化速率、NH4-N及NO3-N产生显著影响(P<0.05),但对NO3-N的交互作用不显著;(4)蚂蚁筑巢显著提高了无机氮库(NH4-N与NO3-N)、微生物生物量碳、有机质、水解氮、全氮及易氧化有机碳等土壤养分含量,而降低了土壤pH值;(5)回归分析表明,铵态氮和硝态氮对土壤有机氮矿化速率产生显著影响,分别解释87.89%、61.84%的有机氮矿化速率变化;(6)主成份分析表明NH4-N、微生物生物量碳及有机质是影响有机氮矿化速率时间动态的主要因素,而全氮、NO3-N、易氧化有机碳、水解氮及pH对土壤有机氮矿化速率的影响次之,且pH与土壤有机氮矿化速率呈显著负相关。总之,蚂蚁筑巢活动主要通过影响土壤NH4-N、微生物生物量碳及有机质的状况,进而调控西双版纳热带森林土壤有机氮矿化速率的时间动态。研究结果将有助于进一步提高对土壤氮矿化生物调控机制的认识。  相似文献   

11.
Previous research had shown that three closely related species of Lysobacter, i.e., Lysobacter antibioticus, Lysobacter capsici, and Lysobacter gummosus, were present in different Rhizoctonia-suppressive soils. However, the population dynamics of these three Lysobacter spp. in different habitats remains unknown. Therefore, a specific primer–probe combination was designed for the combined quantification of these three Lysobacter spp. using TaqMan. Strains of the three target species were efficiently detected with TaqMan, whereas related non-target strains of Lysobacter enzymogenes and Xanthomonas campestris were not or only weakly amplified. Indigenous Lysobacter populations were analyzed in soils of 10 organic farms in the Netherlands during three subsequent years with TaqMan. These soils differed in soil characteristics and crop rotation. Additionally, Lysobacter populations in rhizosphere and bulk soil of different crops on one of these farms were studied. In acid sandy soils low Lysobacter populations were present, whereas pH neutral clay soils contained high populations (respectively, <4.0–5.87 and 6.22–6.95 log gene copy numbers g−1 soil). Clay content, pH and C/N ratio, but not organic matter content in soil, correlated with higher Lysobacter populations. Unexpectedly, different crops did not significantly influence population size of the three Lysobacter spp. and their populations were barely higher in rhizosphere than in bulk soil.  相似文献   

12.
Summary To assess the status of copper in Egyptian soils, surface and subsurface soil samples were collected from various geographical regions of Egypt and of various genesis. The samples were analyzed for the total Cu, water-soluble plus exchangeable as well as the acid-extractable and EDTA-extractable Cu. The total Cu varied between 3.5 and 72.3 ppm. Less than 2% of this copper was in the soluble plus exchangeable form. The highest values of total and soluble plus exchangeable copper were found in the alluvial soils while the sandy soils had the least amounts. This was attributed to the high clay and organic matter content of the alluvial soils in addition to the dominance of montmorillonitic clay minerals in their fine fraction. The calcareous soils showed intermediate values of total and soluble plus exchangeable Cu due to their lower organic matter and clay mineral content. The clay mineralogy of these soils revealed the dominance of illitic and kaolinitic minerals which are relatively poor in Cu and other trace elements.Because of their relatively higher organic matter content, the alluvial soils had a large percentage (up to 43%) of their total Cu in the EDTA extractable form. The calcareous soils, on the other hand, had a large percentage (up to 52%) of their Cu in the acid-extractable form. The EDTA extractable Cu was correlated with the organic matter content of the soils. Since the pH of the EDTA extract was found to be dependent on the CaCO3 content of the soils, it was suggested that the method be modified so that the final pH of the extract is constant for all soils.  相似文献   

13.
Seedling and sapling dynamics in a Puerto Rican rain forest were compared between forest understory and soil pits created by the uprooting of 27 trees during Hurricane Hugo. Soil N and P, organic matter, and soil moisture were lower and bulk densities were higher in the disturbed mineral soils of the pits than in undisturbed forest soils ten months after the hurricane. No differences in N and P levels were found in pit or forest soils under two trees with N–fixing symbionts (Inga laurina and Ormosia krugii) compared to soils under a tree species without N–fixing sym–bionts (Casearia arborea), but other soil variables (Al, Fe, K) did vary by tree species. Forest plots had greater species richness of seedlings (<10 cm tall) and saplings (10–100 cm tall) than plots in the soil pits (and greater sapling densities), but seedling densities were similar between plot types. Species richness and seedling densities did not vary among plots associated with the three tree species, but some saplings were more abundant under trees of the same species. Pit size did not affect species richness or seedling and sapling densities. Recruitment of young Cecropia schreberiana trees (>5 m tall) 45 months after the hurricane was entirely from the soil pits, with no tree recruitment from forest plots. Larger soil pits had more tree recruitment than smaller pits. Defoliation of the forest by the hurricane created a large but temporary increase in light availability. Recruitment of C. schreberiana to the canopy occurred in gaps created by the treefall pits that had lower soil nutrients but provided a longer–term increase in light availability. Treefall pits also significantly altered the recruitment and mortality of many understory species in the Puerto Rican rain forest but did not alter species richness.  相似文献   

14.
We assessed patterns in soil development at a recently deglaciated foreland on Anvers Island on the Antarctic Peninsula. Soil samples were collected along transects extending 35 m over bare ground from the edge of a receding glacier; the far end of these transects has been ice free for approximately 20 years. We also compared soils at the far end of these transects under bare ground to those under canopies of isolated individuals of Deschampsia antarctica, a caespitose grass, that had recently colonized the site (established for <6 years). In addition, we compared soils at this young foreland to those in a well-developed tundra island that has been ice free for at least several hundred years. At the foreland site, soil moisture was greatest near the glacier, consistent with proximity to meltwater, and declined with distance from the glacier. This decline in soil moisture may explain the decrease in litter decomposition rates and the greater soil nitrate (NO3 ) concentrations that we observed with distance from the glacier. The greater soil moisture near the glacier likely promoted leaching and transport of NO3 to drier soils away from the glacier. The presence of D. antarctica at the glacier foreland had little effect on soil properties, which is not surprising considering it had only colonized sampling areas during the previous 5 years. Compared to the foreland, which contained only mineral soil, soil at the older tundra site had a 2.5- to 5-cm-thick organic horizon that had much higher concentrations of total carbon, nitrogen, and NO3 .  相似文献   

15.
草原土壤有机碳含量的控制因素   总被引:3,自引:0,他引:3  
基于374个高寒草原和温带草原土壤样品的测试结果,运用多元逐步回归分析模型定量评估了土壤环境因子对土壤有机碳(SOC)含量的影响.结果表明:高寒草原土壤有机碳含量(20.18 kg C/m2)高于温带草原(9.23 kg C/m2).土壤理化生物学因子对高寒草原和温带草原SOC含量(10 cm)变化的贡献分别是87.84%和75.00%.其中,土壤总氮含量和根系对高寒草原SOC含量变化的贡献均大于对温带草原SOC含量变化的相应贡献.土壤水分是温带草原SOC含量变化的主要限制性因素,其对SOC含量变化的贡献达33.27%.高寒草原土壤C/N比显著高于温带草原土壤的相应值,揭示了青藏高原高寒草原较高的SOC含量是由于较低的土壤微生物活性所导致.  相似文献   

16.
不同土地利用方式对黄河三角洲土壤物理特性的影响   总被引:14,自引:0,他引:14  
刘艳丽  李成亮  高明秀  张民  赵庚星 《生态学报》2015,35(15):5183-5190
黄河三角洲是我国成土最快的河口三角洲之一,探索其土地利用过程中不同土地利用方式对土壤物理性质的影响,对该区土壤肥力保持和土地资源的持续利用具有重要意义。选择黄河三角洲棉田、麦田、苇地、碱蓬地和裸地等5种不同的土地利用方式,通过野外调查与室内分析,研究不同土地利用方式下土壤主要物理特性的变异特征及影响因素。结果显示,与裸地土壤相比,有植被土地利用方式土壤容重降低,土壤孔隙度、团聚体水稳性、饱和含水量与毛管含水量也有相应的提高;土壤有机碳和速效氮、有效磷含量均有显著增加,土壤总盐分含量呈显著降低趋势。在所研究土壤中,土壤物理性质依麦田-棉田-苇地-碱蓬地-裸地的次序从最佳向最差过渡。逐步回归分析和相关分析表明土壤容重、团聚体平均重量直径和毛管孔隙度是土壤毛管含水量的主要影响因子,团聚体水稳性主要由大于0.25 mm水稳性团聚体含量和毛管孔隙度决定,土壤总盐分含量影响土壤饱和导水率;大于0.25 mm水稳性团聚体含量分别与土壤有机碳含量(r=0.8323)、速效氮含量(r=0.7558)和有效磷含量(r=0.9049)具有正相关关系。因此,黄河三角洲地区土地利用应以增加有机质的投入,提高土壤水稳性团聚体形成为基础,促进土壤良好结构形成。这些结果为该区土壤肥力提高和土壤资源可持续利用提供参考依据。  相似文献   

17.
In pots containing sandy soils at two levels (pH 5 and 7) to which 0.5 mg Se L-1 soil had been added, an increase in the proportion of clay soil or peat soil led to a decrease in the uptake of Se by spring wheat grain (Triticum aestivum L., var. Drabant) and winter rape plants (Brassica napus L., var. Emil). The effect was most pronounced for the smallest additions of clay and peat soils. Differences in Se uptake between the two pH levels were greatest in treatments where the additions of clay and peat soils were small. At the high pH, an increase in clay content from 7% to 39% resulted in a decrease in Se uptake of 79% for wheat and 70% for rape. At the low pH, the uptake decreased by 72% and 77%, respectively. At the higher pH, an increase in the content of organic matter from 1.4% to 39% resulted in decreases in Se uptake of 88% for wheat grain and 69% for rape. At the low pH, Se uptake decreased by 63% and 48%, respectively. Adding peat soil to clay soil had little effect on Se uptake. Among the limed, unmixed clay, sand and peat soils to which Se had not been added, uptake was highest from the sandy soil, i.e. 8.3 ng Se/g wheat grain and 42 ng Se/g rape. The lowest uptake rates were obtained in the clay soil, i.e. 3.0 ng Se/g for wheat grain and 9.0 ng Se/g for rape.  相似文献   

18.
Changes to the primary successional environment caused by colonizing plants that present symbiotic associations with nitrogen-fixing bacteria were investigated at two areas on Mount St. Helens. One area was occupied by alder (Alnus viridis) thickets and old lupine (Lupinus lepidus) patches and the other area by young lupine patches and pumice barrens. Alder thicket soils had higher levels for a few soil nutrients and had greater cover by other pioneer species as compared to old lupine patches. Many soil nutrients, including nitrogen and soil organic matter, were below detection limits in old lupine patches but not in alder thicket soils. Young lupine patch soils were generally not different from barren site soils but had greater cover by other pioneer species. Below detection nitrogen and soil organic matter levels also occurred in many barren soil samples but not in young lupine patch soils. Barren soils were moister than were the other sites. The apparent increase in soil fertility has not led to invasion by later successional species, perhaps due to dry conditions or to other inhibitory factors. Seedbanks, composed of early successional species, appear to be developing in these areas.  相似文献   

19.
为了解生物炭基肥替代化肥减量施用的田间长期效应,利用定位试验研究连续5 a炭基肥替代化肥对蔬菜产量、土壤理化性质和细菌群落结构的影响。结果表明,连续5 a实施炭基有机肥替代化肥,土壤p H提高了0.13~0.25,土壤有机质、碱解氮和有效磷含量也分别提高了2.1%~62.2%、5.8%~86.0%和0.4%~103.1%,炭基肥替代化肥处理的荠菜(Capsella bursapastoris)产量提高了4.0%~14.8%,但75%替代处理较50%替代处理有所降低。炭基肥替代化肥处理的土壤菌群Sobs、Shannon、Ace和Chao指数均高于单施化肥处理,且均以75%替代处理最高。炭基肥替代化肥显著降低了土壤中硝化菌属(Nitrolancea)、拟无枝酸菌属(Amycolatopsis)、芽单胞菌属(Gemmatimonas)等的丰度,增加了纤维素降解菌菌群(Planifilum、Saccharomonospora)的丰度。芽单胞菌属、Ilumatobacteraceae、Methyloligellaceae等的丰度与土壤全氮、全磷、有机质间具有显著的相关性。可见,连续炭基肥替代化肥...  相似文献   

20.
An Evaluation of Reclamation Success on Idaho's Phosphate Mines   总被引:2,自引:0,他引:2  
To evaluate reclamation success on the Wooley Valley phosphate mine in southeastern Idaho, we compared vegetation structure and soil physical, chemical, and elemental properties of several different reclamation treatments with those of a nearby reference area (a native Artemisia tridentata vaseyana/Festuca idahoensis association) after 14 years. Vegetation data had been collected four years after reclamation, and we were able to compare differences in biomass and species composition between dates on the reclaimed area. Four years after reclamation there were no differences in total biomass between topsoil or spoil or between seed only, seed + mulch, or control treatments on the different soil types. Most treatments were dominated by seeded perennial grasses. Fourteen years after reclamation there were no differences in biomass or cover between spoil and topsoil plots, but on spoil plots the seeded and mulched treatment had higher total biomass and vegetation cover than on control or seed-only treatments. The seeded perennial legume Medicago sativa was codominant with the seeded forage grasses on all of the treatments. High initial fertilization rates probably facilitated the early establishment and dominance of the forage grasses; once nutrient levels, especially nitrogen, began to decline, the legume increased in abundance. Similarity between the reclaimed area and the reference or native area was low. Reclaimed treatments had higher biomass but lower species richness. The topsoil and spoil plots had similar soil texture, bulk density, pH, cation exchange capacity, electrical conductivity, and phosphorus. Differences in organic carbon, total nitrogen, carbon: nitrogen ratios, and available moisture were related more to treatments than to soil type. High biomass and, thus, litter input on the seed + mulch treatment on spoil plots resulted in both higher OC and TN than any on other soil/treatment combination. The reclaimed area had lower OC, TN, and available moisture than did the reference area on all but seed + mulch spoil plots. Bulk density was higher on reclaimed plots. The long-term differences observed between the reclaimed and reference areas parallel those obtained for other western reclamation sites. Although successional trajectories depend on the attribute measured, similarity to native reference areas depends on the initial reclamation methods. We discuss reclamation methods that would increase the structural and functional similarity of reclaimed and reference areas on the Wooley Valley phosphate mine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号