首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Characterization of Tubulin in CNS Membrane Fractions   总被引:13,自引:11,他引:2  
Abstract— Rough endoplasmic reticulum (RER), smooth endoplasmic reticulum (SER), and a plasma membrane (PM) fraction enriched in synaptic membranes were isolated from rat forebrain. The proteins in these membrane fractions were analyzed by two-dimensional gel electrophoresis (2DGE) in the isoelectric range of 5.1 to 6.0 by a modification of the O'Farrell procedure. Proteins were detected by Coomassie Brilliant Blue staining of the electrophoretograms. The results of these analyses were compared with 2DGE analysis of cytosol proteins, with particular attention given to tubulin subunits and actin. The RER contained one major protein (53K 5.4) in the β-tubulin region with a molecular weight of 53,000 and an isoelectric point of 5.4. The SER contained at least two major proteins in the β-tubulin region; one with a migration identical to 53K 5.4 and other proteins with slightly higher apparent molecular weights and more acidic isoelectric points (54K, 5.4 to 5.3), identical to cytoplasmic β-tubulin. The PM fraction also contained multiple overlapping proteins (54K, 5.4 to 5.3) in the β-tubulin area and a trace amount of the 53K 5.4 protein. The proteins in the β-tubulin region were removed from the 2DGE electrophoretogram and digested by Staphylococcus aureus V8 protease, and the peptides separated on one-dimensional polyacrylamide gels. The peptide patterns of 53K 5.4 protein from RER and SER were almost identical and differed significantly from the cytoplasmic β-tubulin pattern; however, the peptide maps of the PM and SER β-tubulin region were identical to the cytoplasmic β-tubulin. The 2DGE analysis of RER did not contain proteins in the region of cytoplasmic α-tubulin. SER and PM contained proteins in the α-tubulin region with a similar, but not identical, peptide analysis to cytoplasmic α-tubulin. Significant amounts of actin were detected in 2DGE analysis of SER and PM, and the peptide analysis of the actin was identical to the cytoplasmic actin analysis. The RER fraction contained only trace amounts of actin. The cytosol and all membrane fractions contained a protein (68K 5.6) found among microtubule-associated proteins, as judged by molecular weight and isoelectric point. Several proteins present in all membrane fractions (61K 5.1 and 58K 5.1) bound to concanavalin A agarose.  相似文献   

2.
3.
—Heterogeneity among the primary translation products of rat brain tubulin messenger RNA was examined. On two-dimensional gels native cytoplasmic tubulin from randomly bred rats (PB21) consists of two groups of α tubulin subunits among which the most acidic forms, α1 and α2, are most abundant; and β tubulin consists of a minimum of two species, β1 and β2. In the same group of animals the primary translation products of rat brain tubulin mRNA consist of at least these four subunit forms (α1α2, β1 and β2); however, minor basic forms of α subunits were not synthesized. This same result was obtained from a homologous brain protein synthesizing system, a heterologous system prepared from brain polysomes and rabbit reticulocyte initiation factors, and a wheat germ lysate programmed with brain poly A mRNA. A variant form of brain tubulin was found in rats bred monogamously for over 30 generations (MB71 rats). MB71 brain polysomes synthesize overlapping a subunits which migrate in two-dimensional gels to the α1 position, and the typical PB21 α2 is not present. The addition of PB21 brain mRNA to a protein synthesizing system composed of MB71 polysomes plus reticulocyte initiation factors allowed synthesis of the typical α2 tubulin in addition to the MB71 tubulin subunits. The structural relationship among subunits was examined by radioiodinated peptide mapping. The α subunits are structurally different from the β subunits; however, among the major tyrosine-containing tryptic peptides no prominent differences were observed between α1 and α2, or between β1 and β2 by the radioiodination procedure. The results provide evidence for heterogeneity among the primary translation products of brain tubulin mRNA, and for the existence of multiple functional tubulin genes in rat brain.  相似文献   

4.
To obtain information on plant microtubule stability to low temperature and Ca2+, the regulatory domain of polymerized tubulin from maize (Zea mays ev. Black Mexican Sweet) was dissected by limited proteolysis with subtilisin. Tubulin in taxol-stabilized microtubules was cleaved in a subtilisin concentration- and time-dependent manner. Immunoblotting of microtubules with antibodies having mapped epitopes on α- and β-tubulins revealed that cleavage initially removed ≤15 residues from the β-tubulin carboxyl terminus to produce αβs-microtubules. Subsequent cleavage occurred at an extreme site and an internal site within the α-tubulin carboxyl terminus. Electron microscopy revealed that αβs-microtubules were ultra structurally indistinguishable from uncleaved control αβ-micro-tubules. Quantitative polymer sedimentation showed that low temperature treatment (0°C) caused significant depolymerization of αβ-microtubules, but little depolymerization of αβs-microtubules. Ca2+ enhanced the cold-induced depolymerization of both αβ- and αβs-microtubules. However, αβs-microtubules were significantly more stable to depolymerization by cold and Ca2+ than were αβ-micro-tubules. The results showed that maize microtubules containing shortened β-tubulin carboxyl termini are relatively resistant to the combined depolymerizing effects of cold and Ca2+. Thus, the extreme carboxyl terminus of β-tubulin is a crucial element of the plant tubulin regulatory domain and may be involved in the modulation of microtubule stability during the chilling response in plants.  相似文献   

5.
The Purkinje cell degeneration (pcd) mouse has a disruption in the gene encoding cytosolic carboxypeptidase 1 (CCP1). This study tested two proposed functions of CCP1: degradation of intracellular peptides and processing of tubulin. Overexpression (2-3-fold) or knockdown (80-90%) of CCP1 in human embryonic kidney 293T cells (HEK293T) did not affect the levels of most intracellular peptides but altered the levels of α-tubulin lacking two C-terminal amino acids (delta2-tubulin) ≥ 5-fold, suggesting that tubulin processing is the primary function of CCP1, not peptide degradation. Purified CCP1 produced delta2-tubulin from purified porcine brain α-tubulin or polymerized HEK293T microtubules. In addition, CCP1 removed Glu residues from the polyglutamyl side chains of porcine brain α- and β-tubulin and also generated a form of α-tubulin with two C-terminal Glu residues removed (delta3-tubulin). Consistent with this, pcd mouse brain showed hyperglutamylation of both α- and β-tubulin. The hyperglutamylation of α- and β-tubulin and subsequent death of Purkinje cells in pcd mice was counteracted by the knock-out of the gene encoding tubulin tyrosine ligase-like-1, indicating that this enzyme hyperglutamylates α- and β-tubulin. Taken together, these results demonstrate a role for CCP1 in the processing of Glu residues from β- as well as α-tubulin in vitro and in vivo.  相似文献   

6.
Three monoclonal antibodies specific to α- and β-tubulin were used to examine the expression of tubulin isofoms in the intestine, reproductive tract and body wall muscle of A. suum. The tubulins were found to be different in their isoelectric points, number of isoforms and peptide maps with Western blot analysis of one-dimensional polyacrylamide gel confirming the presence of α-, β1- and β2- tubulin. Commercial cross-reactive anti-α and anti-β MAbs 356 and 357 recognized tubulin from A. suum tissues as well as from pig brain, whereas anti-A. suum β-tubulin specific MAb P3D6 recognized tubulin from the A. suum tissues only. Two-dimensional gel analysis showed different isoform patterns in different A. suum tissues with anti-A. suum β-tubulin MAb P3D6 and cross-reactive β-tubulin MAb 357 recognizing 2–4 β- tubulin isoforms and anti-α-tubulin MAb 356 recognizing 1–6 α-tubulin isoforms. Different peptide maps of tubulin were observed in the three tissues, when subjected to limited proteolysis followed by SDS-PAGE. The data indicate that different tubulins are found in different tissues of adult A. suum.  相似文献   

7.
Tubulin Genes in the Algal Protist Euglena gracilis   总被引:1,自引:0,他引:1  
ABSTRACT Alpha- and beta-tubulin cDNA were selected from a Euglenaλgt11 expression library, recloned and either sequenced (α-tubulin cDNA) or hybridized to Euglena RNA and DNA (α- and β-tubulin cDNA). RNA for hybridization was extracted at 30 minute intervals after flagellar amputation and quantitated for cDNA binding. Unlike previous reports on most other flagellates, no net increase in either α- or β-tubulin RNA could be detected during regeneration—suggesting steady state or constitutive tubulin RNA synthesis. Incubation of the cDNA with genomic DNA after restriction digestion produced patterns of hybridization consistent with the presence of one to two kinds each of the α- and β-tubulin genes. The deduced amino acid sequence of the α-tubulin cDNA was more than 90% identical to the α-tubulins of Trypanosoma, Chlamydomonas, Naegleria, Tetrahymena and higher plants. The carboxy terminus of the α-tubulin cDNA and the previously sequenced β-tubulin of Euglena showed greatest identity to the carboxy terminus of the tubulins from Trypanosoma brucei. The sequence data for α and β-tubulins of Euglena provides direct evidence for the similarity of two gene products from euglenas and trypanosomes and adds support to earlier suggestions that these organisms are phylogenetically related.  相似文献   

8.
Tubulin and microtubules were modified with the protease, subtilisin. The modification reduced the length of α-or β-tubulin by cleaving a peptide fragment from the C-terminals. Generation of α′β′-tubulin, which is cleaved at both the α- and β-subunit terminals, and αβ′-tubulin, which is cleaved at the β′-subunit C-terminal, have already been reported. In this work an isotype, α′β-tubulin, was produced. The three modified tubulin isotypes were compared for their ability to interact with glycolytic enzymes. Cleavage of α led to a poorer interaction when tested via affinity chromatography. Tubulin also inhibits the activity of aldolase and glyceraldehyde 3-phosphate dehydrogenase. When the α-subunit C-terminal was intact, inhibition was greatest. These results imply that the C-terminal of the tubulin α-subunit is subunit is responsible for interactions with glycolytic enzymes.  相似文献   

9.
Abstract: Free and membrane-bound polysomes were prepared from rat forebrain and added to a cell-free system containing rabbit reticulocyte factors and L-[35S]methionine. The translation products were analyzed by two-dimensional gel electrophoresis followed by autoradiography. The free polysomes synthesized actin and at least four major tubulin subunits (α1, α2, β1, and α2) that are found in rat forebrain cytoplasm. The membrane-bound polysomes synthesized predominantly one protein (MB) in the tubulin region of the two-dimensional gel. MB has a molecular weight and isoelectric point similar to α-tubulin. Only trace amounts of α- and β-tubulin and actin were synthesized by the membrane-bound polysomes. MB co-purified with cytoplasmic tubulin after two cycles of aggregation and disaggregation. MB synthesized in vitro (from membrane-bound polysomes) and α- and β-tubulin and actin subunits (synthesized from free polysomes) were digested with Staphylococcus aureus V8 protease, and the resulting peptides were separated by slab gel electrophoresis followed by autoradiography. The peptide pattern of MB was similar but not identical to the peptide patterns of α- and β-tubulin; MB yielded peptides not found in tubulin. We conclude that membrane-bound polysomes from rat forebrain do not synthesize significant amounts of the predominant tubulin subunits synthesized by free polysomes. A major protein (MB) is synthesized by membrane-bound polysomes and is similar, but not identical, to α-tubulin synthesized by free polysomes on the basis of molecular weight, isoelectric point, and peptide analysis.  相似文献   

10.
Chicken α- and β-lipovitellin are derived from parent vitellogenin proteins and contain four subunits (125, 80, 40, and 30 kDa) and two subunits (125 and 30 kDa), respectively. Metal analyses demonstrate both are zinc proteins containing 2.1 ± 0.2 mol of zinc/275 kDa per α-lipovitellin and 1.4 ± 0.2 mol of zinc/155 kDa per β-lipovitellin, respectively. The subunits of β-lipovitellin, Lv 1 (MW 125 kDa) and Lv 2 (MW 30 kDa), are separated by gel exclusion chromatography in the presence of zwittergent 3–16. Zinc elutes with Lv 1, suggesting that this subunit binds zinc in the absence of Lv 2. The subunits of α- and β-lipovitellin were separated by SDS-PAGE, digested with trypsin, and mapped by reverse-phase HPLC. The peptide maps of the 125-kDa subunits from α- and β-lipovitellin are essentially identical. Similar results are obtained for the 30-kDa subunits of both lipovitellins. The sequences of five and four peptides of the 125-kDa subunit of α- and β-Lv, respectively, and two peptides of the 30-kDa subunit of α- and β-lipovitellin were determined and match those predicted from the gene for vitellogenin II, Vtg II. Comparison of the amino acid composition of the 125- and 30-kDa subunits of α- and β-lipovitellin support the conclusion that they originate from the same gene. The sequences of peptides from the 80- and 40-kDa subunits of α-lipovitellin have not been found in the NCBI nonredundant data bank. The 27-amino acid N-terminal sequence of the 40-kDa protein is 56% similar to the last third of the Lv 1-coding region of the Vtg II gene, suggesting it may come from an analogous region of the Vtg I gene. We propose a scheme for the precursor—product relationship of Vtg I.  相似文献   

11.
Heterotrimeric G proteins play important roles as signal transducing components in various mammalian sperm functions. We were interested in the distribution of G proteins in human sperm tails. Prior to membrane preparation, spermatozoa were separated from contaminating cells which are frequently present in human ejaculates. Enriched human sperm tail membranes were generated by using hypoosmotic swelling and homogenization procedures. Antisera against synthetic peptides were used to identify G proteins in immunoblots. AS 8, an antiserum directed against an amino acid sequence that is found in most G protein α-subunits, and A 86, which detects all known pertussis toxin-sensitive α-subunits, reacted specifically with a 40-kDa protein. Antisera against individual G protein α-subunits failed to detect any specific antigens in enriched tail membranes AS 36, recognizing the ã2-subunit of G proteins, identified a 35-kDa protein in sperm tail membranes. Antisera against the 36-kDa β1-subunit did not detect any relevant proteins in the membrane fraction. Neither G protein α-subunits nor G protein β-subunits were found in the cytosol. ADP ribosylation of spermatozoal membrane or cytosolic proteins revealed no pertussis toxin-sensitive α-subunits. However, membrane preparations of nonpurified human spermatozoa contained α2 subunits, as shown immunologically and by ADP ribosylation; they most probably derived from somatic cells which are frequently present in human ejaculates. Our results stress the fact that spermatozoa need to be purified before sperm membrane preparation to avoid misinterpretations caused by contaminating cells. Furthermore, we suggest that G proteins in membranes of human sperm tails belong to a novel subtype of G protein α-subunits; the putative β-subunit was identified as a β2-subunit. © 1995 Wiley-Liss, Inc.  相似文献   

12.
Identification of a gene for beta-tubulin in Aspergillus nidulans.   总被引:50,自引:0,他引:50  
G Sheir-Neiss  M H Lai  N R Morris 《Cell》1978,15(2):639-647
The tubulins of Aspergillus nidulans have been characterized in wild-type and ben A, B and C benomyl-resistant strains by two-dimensional gel electrophoresis, co-polymerization with porcine brain tubulin and peptide mapping. Four α-tubulins and at least four β-tubulins were resolved by two-dimensional gel electrophoresis of wild-type proteins. Eighteen of 26 benA mutants studied had electrophoretically abnormal β-tubulins. In these strains, one or more of the β-tubulins had either an altered isoelectric point or an altered electrophoretic mobility in the SDS gel dimension, or was diminished in amount. The a-tubulins were normal. Two-dimensional gels of protein extracts of a ben A/wild-type diploid strain demonstrated co-expression of the wild-type β-tubulins with the variant ben A tubulin. This experiment rules out post-translational modification as the source of the β-tubulin abnormalities in the benA mutants. We therefore conclude that benA must be a structural gene for β-tubulin. Due to the variety of abnormalities affecting β-tubulins in ben A mutants, and the absence of abnormalities affecting α-tubulins in any of the benomyl-resistant mutants, we also believe that the benomyl binding site must be located on the β-subunit of the tubulin dimer. The benA mutants of A. nidulans promise to be useful not only for characterizing the biochemical determinants of the benomyl binding site of tubulin but also for understanding the relationship between tubulin structure and function.  相似文献   

13.
Tubulin was shown to be an endogenous substrate of the calmodulin-dependent protein kinase (kinase II), which is involved in the activation of tryptophan 5-monooxygenase [T. Yamauchi and H. Fujisawa (1983) Eur. J. Biochem.132, 15–21]. Serine and threonine were identified as the phosphate acceptor amino acids of tubulin. The Vmax of the phosphorylation of tubulin and the apparent Km value for tubulin of calmodulin-dependent protein kinase II were 89 nmol phosphate transferred min?1 mg kinase II?1 and 1.7 μm, respectively. The maximum 32P incorporation into tubulin was 0.18 mol Pi/mol α-tubulin and 0.13 mol Pi/mol β-tubulin. The phosphorylation of tubulin was decreased by the denaturation of tubulin. The phosphorylation of tubulin by kinase II did not affect the assembly of microtubules.  相似文献   

14.
Phenylalanyl-tRNA synthetase (EC 6.1.1.20) has been purified to homogeneity from a 100-fold overproducing Escherichia coli strain carrying a hybrid pBR322 plasmid containing the pheS-pheT locus. The purified enzyme is identical to the phenylalanyl-tRNA synthetase isolated from an haploid strain. The enzyme was found to dissociate in the presence of 0.5 M NaSCN and the α- and β-subunits composing the native α2β2 enzyme were separated by gel filtration. Neither isolated subunit showed significant catalytic activity. A complex indistinguishable from the native enzyme with full catalytic activity is recovered upon mixing the subunits. The N- and C-terminal sequences and the amino acid composition of each subunit were determined. They are compared to the available data concerning the primary structure of the subunits, as deduced from nucleotide sequencing of the pheS-pheT operon.  相似文献   

15.
Abstract

The pharmacology of native and recombinant GABA-A receptors containing either γ1, γ2 or γ3 subunits has been investigated. The pharmacology of native receptors has been investigated by immunoprecipitating receptors from solubilised preparations of rat brain with antisera specific for individual γ-subunits and analysing their radioligand binding characteristics. Receptors containing a γ1-subunit do not bind benzodiazepine radioligands with high affinity. Those containing either a γ2 or γ3 subunit bind [3H]flumazenil with high affinity. Some compounds compete for these binding sites with multiple affinities, reflecting the presence of populations of receptors containing several different types of α-subunit. Photoaffinity-labelling of GABA-A receptors from a cell line stably expressing GABA-A receptors of composition α1β3γ2 followed by immunoprecipitation of individual subunits revealed that the α and γ but not the β-subunit could be irreversibly labelled by [3H]flunitrazepam.

The properties of recombinant receptors have been investigated in oocytes expressing γ1, γ2, or γ3 subunits in combination with an α and a β-subunit. Some compounds such as zolpidem, DMCM and flunitrazepam show selectivity for receptors containing different γ-subunits. Others such as CL 218,872 show no selectivity between receptors containing different γ-subunits but exhibit selectivity for receptors containing different α-subunits. These data taken together suggest that the benzodiazepine site of the GABA-A receptor is formed with contributions from both the α and γ-subunits.  相似文献   

16.
Three homotetrameric lactate dehydrogenase isozymes, LDH-M(A4), LDH-H(B4), and LDH-X(C4), from DBA/2J mice have been purified by affinity chromatography. The amino acid compositions of the subunits A, B, and C, based on a molecular weight of 36,000, have been determined. The compositional relatedness of these isozymes indicates that subunits A (muscle) and B (heart) are more closely related to each other than to subunit C (testis). Tryptic peptide maps and amino acid compositions of some active site peptides appear to confirm the compositional relatedness among these isozymes. The sequence of the loop region of mouse C subunit seems to be markedly different from all known A and B sequences, and the structural and functional implications are discussed.  相似文献   

17.
Eukaryotic and archaeal translation initiation factors 2, heterotrimers that consist of α-, β-, and γ-subunits, deliver methionylated initiator tRNA to a small ribosomal subunit in a manner that depends on GTP. To evaluate correlation of the function and association of the subunits, we used isothermal titration calorimetry to analyze the thermodynamics of the interactions between the α- and γ-subunits in the presence or absence of a nonhydrolyzable GTP analog or GDP. The α-subunits bound to the γ-subunit with large heat capacity change (ΔCp) values. The ΔH and ΔCp values for the interaction between the α- and γ-subunits varied in the presence of the GTP analog but not in the presence of GDP. These results suggest that the binding of both the α-subunit and GTP changes the conformation of the switch region of the γ-subunit and increases the affinity of the γ-subunit for tRNA.  相似文献   

18.
Abstract: Confusion appears to have arisen in the literature regarding the designation of α-and β-tubulin in polyacrylamide gels. The presence or absence of 8 M-urea in sodium dodecyl sulfate (SDS) polyacrylamide gels leads to different patterns for unalkylated tubulin subunits (and other proteins), making difficult the designation of the α and β subunits by original definition using electrophoretic mobility in the molecular weight dimension. The specific biochemical property of posttranslational tyrosylation of the α subunit has been used to identify further this subunit. Under all conditions tested, the β subunit has been found to be more acidic than the α subunit, with isoelectric point differences that agree with theoretical and published values. If the tubulin subunits are reduced and alkylated, the β subunit migrates more rapidly in SDS polyacrylamide gels, with or without urea present. However, unalkylated tubulin subunits can comigrate or even reverse their relative mobility if 8 M-urea-SDS polyacrylamide gels are used for subunit separation. The results also confirm the earlier reports that the post-translational tyrosylation of protein appears exclusively restricted to α-tubulin and can be demonstrated in an in vivo situation. In addition, the results suggest that only the α2 subunit of tubulin is tyrosylated.  相似文献   

19.
GABAA receptors are members of the ligand-gated ion channel superfamily that mediate inhibitory neurotransmission in the central nervous system. They are thought to be composed of 2 alpha (α), 2 beta (β) subunits and one other such as a gamma (γ) or delta (δ) subunit. The potency of GABA is influenced by the subunit composition. However, there are no reported systematic studies that evaluate GABA potency on a comprehensive number of subunit combinations expressed in Xenopus oocytes, despite the wide use of this heterologous expression system in structure–function studies and drug discovery. Thus, the aim of this study was to conduct a systematic characterization of the potency of GABA at 43 human recombinant GABAA receptor combinations expressed in Xenopus oocytes using the two-electrode voltage clamp technique. The results show that the α-subunits and to a lesser extent, the β-subunits influence GABA potency. Of the binary and ternary combinations with and without the γ2L subunit, the α6/γ2L-containing receptors were the most sensitive to GABA, while the β2- or β3-subunit conferred higher sensitivity to GABA than receptors containing the β1-subunit with the exception of the α2β1γ2L and α6β1γ2L subtypes. Of the δ-subunit containing GABAA receptors, α4/δ-containing GABAA receptors displayed highest GABA sensitivity, with mid-nanomolar concentrations activating α4β1δ and α4β3δ receptors. At α4β2δ, GABA had low micromolar activity.  相似文献   

20.
Summary Tubulin was isolated from mung bean seedling by a combination of affinity (ethyl N-phenylcarbamate-Sepharose 4 B) and ion exchange (DEAE-Sephacel) chromatography. Using SDS-PAGE together with blotting with subunit-specific antitubulins, mung bean tubulin has been shown to consist of two -tubulin subunits, MBT2 and MBT3, of which MBT3 is a minor component, and one -tubulin, MBT1.Monoclonal antibodies were produced by fusing mouse myeloma cells and spleen cells from a Balb/c mouse immunized with mung bean tubulin. Antibody producing cell lines were identified by an ELISA assay and immunofluorescence microscopy and subsequently cloned by limiting dilution.The properties of monoclonal antibody (K4E7G3) were examined by Western blot analysis and indirect immunofluorescence studies. K4E7G3 reacts with MBT2 and MBT3 -tubulin subunits of mung bean tubulin, but not with MBT1 -tubulin nor with the - and -subunits of sheep brain tubulin. Peptide fragments transferred onto nitrocellulose papers were treated with K4E7G3 and with other monoclonal antibodies that are known to be specific to the -subunit of yeast tubulin and - or -subunit of mammalian brain tubulin. MBT2 and MBT3 are shown to be similar but not identical and are quite different from MBT1 and the -subunit of sheep brain tubulin. K4E7G3 reacts with peptide fragments in MBT2 and MBT3 that are not found in digests of brain tubulin, and that are either not reactive or only weakly reactive to the antibodies to yeast and brain -tubulin. It is concluded that K4E7G3 and another monoclonal antibody, K2D7B8, which has similar properties, are relatively specific for plant -tubulin.In indirect immunofluorescence studies on a wide range of plant cells, the epitopes recognised by these monoclonal antibodies are shown to be present in all types of microtubule array that were investigated. The spindle, preprophase band, phragmoplast and interphase microtubules were clearly observed in onion and mung bean root tip cells. Reactions with spindle microtubules ofFunaria spore mother cells and with the blepharoplast and flagella microtubules of fern spermatozoa are also seen. However, studies using several animal cell lines have shown that K4E7G3 and K2D7B8 do not give positive immunofluorescent localization of animal microtubules, correlating with the inability of K4E7G3 to react with brain tubulin subunits on Western blot analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号