首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein antibiotic colicin N forms ion-permeable channels through planar lipid bilayers. Channels are induced when positive voltages higher than +60 mV are applied. Incorporated channels activate and inactivate in a voltage-dependent fashion. It is shown that colicin N undergoes a transition between an “acidic” and a “basic” channel form which are distinguishable by different voltage dependences. The single-channel conductance is non-ohmic and strongly dependent on pH, indicating that titratable groups control the passage of ions through the channel. The ion selectivity of colicin N channels is influenced by the pH and the lipid composition of the bilayer membrane. In neutral membranes the channel undergoes a transition from slightly cation-selective to slightly anion-selective when the pH is changed from 7 to 5. In lipid membranes bearing a negative surface charge the channel shows a more pronounced cation selectivity which decreases but does not reverse upon lowering the pH from 7 to 5. The high degree of similarity between the channel characteristics of colicin A and N suggests that the channels share common features in their molecular structure. Offprint requests to: F. Pattus  相似文献   

2.
The appearance of ion channels was induced in phospholipid bilayers by acidification of the bulk solution on one side of the bilayer. by addition of HCl. acetic acid or by hydrolytic production of protons using purified acetylcholinesierase. Further acidification below an apparent critical pH range led to restoration of a low conductance state similar to that seen at neutral pH. Such experiments were performed with a heterogeneous soybean lecithin extract, with homogeneous synthetic di-phytanoylphosphatidylcholine, and with a mixture of cholesterol and synthetic dioleoylphosphatdylcholine. It is proposed that the physical mechanism for this phenomenon involves fluctuations of lipid order induced by fluctuations in protnation of phospholipid head groups within a critical pH range; these, in turn, create conductive defect in the two-dimensional lattice of the lipid bilayer.  相似文献   

3.
The effect of 14 MeV electrons on ion transport through planar lipid membranes was investigated. The membranes were formed in the presence of well defined ion carriers or pore forming substances. In the presence of the ion carriers valinomycin or nonactin or in the presence of the pore formers nystatin or amphotericin B, irradiation produced a transient increase of the membrane conductance followed by a long lasting decrease. The effects are interpreted on the basis of a time-dependent chemical modification of the membrane structure caused by exposure to high energy radiation. The pore former gramicidin A shows an exponential inactivation with increasing dose. At pH 3 and in the presence of oxygen the pore is highly sensitive to radiation (D37 ≈ 10 Gy) whereas at pH 9.5 a considerably lower radiation sensitivity (D37 ≈ 1000 Gy), was found. In the absence of oxygen, gramicidin A is virtually insensitive to irradiation. This is considered an evidence that the inactivation of this ion channel is primarily caused by the perhydroxyl radical HO2.  相似文献   

4.
We made use of a planar lipid bilayer system to examine the action of synthetic basic peptides which model the prepiece moiety of mitochondrial protein precursors and have antibacterial activity against Gram-positive bacteria. The sequences of the peptides used were as follows: Ac-(Ala-Arg-Leu)3-NHCH3 (3(3], Ac-(Leu-Ala-Arg-Leu)2-NHCH3 (4(2], Ac-(Leu-Ala-Arg-Leu)3-NHCH3 (4(3], Ac-(Leu-Leu-Ala-Arg-Leu)2-NHCH3 (5(2]. These peptides interacted differently with planar lipid bilayer membranes and membrane conductance increased by the formation of ion channels. The effects of the peptides on the macroscopic current-increase and on the probability of channel formation, at the single channel level were in the order of 4(3) greater than 4(2) approximately 5(2) much greater than 3(3), a finding which correlates with the antibacterial activity of these peptides. The micromolar (microM) order concentration at which the channel was formed resembles that causing antibacterial activity. Thus, the peptide antibacterial activity may occur through an increase in ion permeability of the bacterial membrane. The single-channel properties were investigated in detail using 4(3), the peptide with the highest ion channel-forming activity. Many types of channels were observed with respect to conductance (2-750 pS) and voltage dependency of gating. However, the channels were all cation-selective. These results suggest that the ion channels formed by peptide 4(3) may be able to take on a variety of conformations and/or assembly.  相似文献   

5.
The lipid layer membranes were fabricated on the glassy carbon electrode (GC) and demonstrated to be bilayer lipid membranes by impedance spectroscopy. The formation of incorporated poly L-glutamate bilayer lipid membrane was achieved. The ion channel behavior of the incorporated poly L-glutamate membrane was determined. When the stimulus calcium cations were added into the electrolyte, the ion channel was opened immediately and exhibited distinct channel current. Otherwise, the ion channel was closed. The cyclic voltammogram at the GC electrode coated with incorporated poly L-glutamate DMPC film response to calcium ion is very fast compared with that at the GC electrode coated only with DMPC film. Ion channel current is not dependent on the time but on the concentration of calcium. The mechanism of the ion channel formation was investigated.  相似文献   

6.
A gramicidin A derivative with a polyether linkage between both ethanolamine termini was synthesized and its ion channel properties were studied. The compound showed a duplication in the state of conductance for alkali cations in thick DOPC bilayer membranes, which is interpreted as the occurrence of twin-channels. In thinner DMPC membranes mono-channels were dominant. The influence of hydrophobic coupling on the mono channel/twin channel equilibrium is discussed.  相似文献   

7.
M Sato  K Inoue    M Kasai 《Biophysical journal》1992,63(6):1500-1505
An anion selective channel and three types of cation selective channels were found in planar lipid bilayers incorporating synaptic vesicles from rat brains. In asymmetric KCl solutions (cis: 300 mM/trans: 150 mM), the anion selective channel showed a single-channel conductance of 94 pS and was inactivated by negative voltages and by 4-acetoamido-4'-isothiocyanostilbene-2,2'-disulfonic acid disodium salt (SITS). In the same solution, single-channel conductances of three types of cation selective channels were 250 pS (Type 1), 248 pS (Type 2), and 213 pS (Type 3), respectively. These channels resembled one another in single-channel conductances but were different in gating behaviors. Type 1 channel, which was most frequently observed, had a remarkable subconducting state (175 pS). Type 2 channel had a flickering state that increased as the potential became more positive, and a long inactive state that increased as the potentials were more negative. Type 3 channel, which was also sensitive to the potentials, had the open-channel probability increased as the potential became more positive.  相似文献   

8.
Design of simple protein structures represents the essential first step toward novel macromolecules and understanding the basic principles of protein folding. Our work focuses on the ion channel formation and structure of peptides having a repeated pattern of glycine residues. Investigation of the ion channel properties of a glycine repeat peptide, VSLGLSIGFSVGVSIGWSFGRSRG revealed the formation of porin-like high conductance, multimeric, non-selective voltage-gated channels in phospholipid bilayer membranes. ATR-IR and CD spectroscopic studies showed an anti-parallel beta sheet structure in membranes. The formation of porin-like ion channels by a beta sheet peptide suggests spontaneous assembly into a beta barrel structure through oligomerization as in pore forming bacterial toxins. The present work is the first example of a short synthetic peptide mimicking the pore characteristics of a complex beta barrel protein and demonstrates that smaller peptides are capable of mimicking the complex functional properties of natural ion channels. This will have implications in understanding the folding of beta sheet proteins in membranes, the mechanism of two state voltage gating, and the role of glycine residues in beta barrel proteins.  相似文献   

9.
Surfactin is a lipopeptide produced by certain strains of Bacillus subtilis and has potent surface activity. Here, we present the first results showing that ion-conducting pores can be formed by surfactin in artificial lipid membranes. With a low aqueous concentration of surfactin (1 microM) and a restricted membrane area (5.10(-5) cm2) we observed conductance jumps that indicate the formation of individual ionic channels in the presence of K+, Rb+, Cs+, Na+ or Li+ chlorides. Although for every salt concentration (Ci), the distribution in amplitude of the conductance steps (lambda i) may be rather broad, there is always a step amplitude which is more frequent than the others. In addition, the channels corresponding to this most frequent step amplitude are the longest in duration. For Ci = 1 M, the cationic selectivity sequence deduced from these most frequent events is K+ greater than Rb+ greater than Na+ greater than Cs+ = Li+ with respective values for lambda Mi: 130, 110, 80 and 30 pS. In KCl solutions lambda MKCl increases as a function of Ci for low Ci, and shows a plateau for Ci greater than 0.5 M. When measured on larger area membranes (10(-2)cm2) with 1 M solutions of the monovalent salts KCl, NaCl, RbCl and CsCl or the divalent salt CaCl2, the macroscopic low voltage conductance (G0) increases with a slope of 2 on a log-log plot as a function of surfactin concentration. These results demonstrate that surfactin produces selective cationic channels in lipid bilayer membranes and suggest that at higher salt concentration, a dimer is involved in this functional channel-forming process.  相似文献   

10.
A quartz chamber is proposed for use in experiments with planar lipid bilayer membranes. Membranes are formed in a hole made on the lateral wall of a fused quartz test tube, immersed in an electrolyte solution. The quartz cell is easy to clean, chemically inert and easily made. Membranes formed in this chamber had specific resistances higher than 108 Ω·cm2 and excellent mechanical stability.  相似文献   

11.
The dynamic conductivity of bilayer lipid membranes unmodified by ionophores in current ranges of 10(-12)-10(-10) A was studied. On the current voltage characteristics the jumps of dynamic conductivity in the voltage ranges near zero and disruption value were observed. The lifetime of these jumps was 1-5 s. It was shown that these effects were due to electrostriction phenomena and defects in the bilayer lipid structure correspondingly. Apparently, lipid peroxidation products participate in the building of defects in lipid bilayers.  相似文献   

12.
The high-conductance channels present in the outer membranes of wild-type and porin-less yeast mitochondria have been characterized electrophysiologically after incorporation in planar bilayer membranes. The most prominent activity was ascribed to a voltage-dependent, substaterich, cationic channel which generally inactivated at potentials positive in thecis compartment, in agreement with the observations from patch-clamp experiments on porin-less mitoplasts. This channel has been identified as the so-called peptide-sensitive channel (PSC). We also observed similar channels displaying either no inactivation, or inactivation at both positive and negative potentials. These latter properties match those already described for mammalian and yeast PSC, respectively. These different behaviors are tentatively explained as arising from the presence, or lack of, peptides bound to the PSC. Very high conductances, apparently due to cooperative gating, were frequently displayed. In wild-type membranes, activity ascribable to the porin was also observed.The first two authors contributed equally to the work described in this paper.  相似文献   

13.
Summary Colicin Ia forms voltage-dependent channels when incorporated into planar lipid bilayers. A membrane containing many Colicin Ia channels shows a conductance which is turned on when high positive voltages (>+10 mV) are applied to thecis side (side to which the protein is added). The ionic current flowing through the membrane in response to a voltage step shows at first an exponential and then a linear rise with time. The relationship between the steady-state conductance, achieved immediately after the exponential portion, and voltage is S-shaped and is adequately fit by a Boltzmann distribution. The time constant () of the exponential is also dependent on voltage, and the relation between these two parameters is asymmetric aroundV o (voltage at which half of the channels are open). In both cases the steepness of the voltage dependence, a consequence of the number of effective gating particles (n) present in the channel, is greatly influenced by the pH of the bathing solutions. Thus, increasing the pH leads to a reduction inn, while acidic pH's have the opposite effects. This result is obtained either by changing the pH on both sides of the membrane or on only one side, be itcis orrans. On the other hand, changing pH on only one side by addition of an impermeant buffer fails to induce any change inn. At the single-channel level, pH had an effect both on the unitary conductance, doubling it in going from pH 4.5 to 8.2, as well as on the fraction of time the channels stay open,F (v). For a given voltage,F (v) is clearly diminished by increasing the pH. This titration of the voltage sensitivity leads to the conclusion that gating in the Colicin Ia molecule is accomplished by charged amino-acid residues present in the protein molecule. Our results also support the notion that these charged groups are inside the aqueous portion of the channel.  相似文献   

14.
We present a straightforward, accessible method for the fabrication of micropores with diameters from 2 to 800 micro m in films of amorphous Teflon (Teflon AF). Pores with diameters 相似文献   

15.
Summary The gene for the antibacterial peptide colicin B was cloned and transformed into a host background where it was constitutively overexpressed. The purified gene product was biologically active and formed voltage-dependent, ion-conducting channels in planar phospholipid bilayers composed of asolectin. Colicin B channels exhibited two distinct unitary conductance levels, and a slight preference for Na+ over Cl. Kinetic analysis of the voltage-driven opening and closing of colicin channels revealed the existence of at least two conducting states and two nonconducting states of the protein. Both the ion selectivity and the kinetics of colicin B channels were highly dependent on pH. Excess colicin protein was readily removed from the system by perfusing the bilayer, but open channels could be washed out only after they were allowed to close. A monospecific polyclonal antiserum generated against electrophoretically purified colicin B eliminated both the biological and in vitro activity of the protein. Membrane-associated channels, whether open or closed, remained functionally unaffected by the presence of the antiserum. Taken together, our results suggest that the voltage-independent binding of colicin B to the membrane is the rate-limiting step for the formation of ion channels, and that this process is accompanied by a major conformational rearrangement of the protein.  相似文献   

16.
The steps in poliovirus infection leading to viral entry and uncoating are not well understood. Current evidence suggests that the virus first binds to a plasma membrane-bound receptor present in viable cells, leading to a conformational rearrangement of the viral proteins such that the virus crosses the membrane and releases the genomic RNA. The studies described in this report were undertaken to determine if poliovirus (160S) as well as one of the subviral particles (135S) could interact with membranes lacking poliovirus receptors in an effort to begin to understand the process of uncoating of the virus. We report that both forms of viral particles, 160S and 135S, interact with lipid membranes and induce the formation of ion-permeable channels in a manner that does not require acid pH. The channels induced by the viral particles 160S have a voltage-dependent conductance which depends on the ionic composition of the medium. Our findings raise the possibility that viral entry into cells may be mediated by direct interaction of viral surface proteins with membrane lipids.  相似文献   

17.
Brief closures of gramicidin A channels in lipid bilayer membranes   总被引:5,自引:0,他引:5  
Brief closures, so called flickers, gramicidin A channels were observed for glycerol monooleate/n-decane membranes for cesium chloride and hydrochloric acid solutions. The flickers, similar in nature to the flickers observed for physiological channels, were of the order of 1 ms and the interval between flickers was of the order of 50 ms. The flicker-duration and interval between flickers both decrease with voltage. The field dependence of the flickers is consistent with the hypothesis that the membrane forms a dimple when accomodating a dimer in the membrane and that the monomers, on breaking up, are associated over displacements of the order of 2 nm. For similar measurements for glycerol monoleate/hexadecane membranes only rare occurrences of flickers were observed. It is suggested that the flicker phenomenon is governed by the physical and chemical properties of the membrane and the influence of membrane thickness and interfacial free energy is emphasized.  相似文献   

18.
In order to elucidate the mechanism of action of organochlorine insecticides on the ion transport in biological membranes, we have studied the effect of DDT and its analog DDE on the structural parameters of phosphatidylethanolamine (PE) planar bilayers. DDT and DDE increase the conductance induced by the hydrophobic ions tetraphenylarsonium (TPhAs+) and tetraphenylborate (TPhB?) in lipid bilayers. Neither DDT nor DDE alters the surface potential of PE monolayers. On the other hand, these organochlorine compounds increase only slightly the electric capacitance of the bilayers. These results are compatible with the hypothesis that these insecticides increase the fluidity of the membrane.  相似文献   

19.
We have tested the hypothesis that peptide tryptophan groups can control the ionic conductance of transmembrane channels. We report here that single gramicidin A channels change conductance state when the peptide tryptophans are flash photolyzed with ultraviolet light. The current flow through planar lipid bilayers containing multiple gramicidin A channels decreases irreversibly when exposed to ultraviolet light. The current-loss action spectrum peaks sharply at the 280 nm absorption maximum of the gramicidin A tryptophans. Gramicidin channel sensitivity to ultraviolet light is found to be about 20-fold higher than that of frog node sodium channels which is even more than expected based on the high tryptophan content of gramicidin. Channels which survive an ultraviolet light exposure exist in a wide variety of different low-conductance forms. The broad distribution of the single channel conductance of these partially photolyzed channels is attributable to the loss of different combinations of the dimer's normal complement of eight tryptophans per channel. Flash photolysis of single channels results in discrete conductance state changes. Partially photolyzed single channels manifest a further conductance cascade when exposed to a second flash of ultraviolet light. Analysis of the photolysis conductance turn-off process indicates that gramicidin A is a multistate electrochemical unit where the peptide tryptophan groups can modulate the flow of ions through the transmembrane channel.  相似文献   

20.
The aim of this work is to study pore protein denaturation inside a lipid bilayer and to probe current asymmetry as a function of the channel conformation. We describe the urea denaturation of alpha-hemolysin channel and the channel formation of alpha-hemolysin monomer incubated with urea prior to insertion into a lipid bilayer. Analysis of single-channel recordings of current traces reveals a sigmoid curve of current intensity as a function of urea concentration. The normalized current asymmetry at 29+/-4% is observed between 0 and 3.56M concentrations and vanishes abruptly down to 0 concentration exceeds 4M. The loss of current asymmetry through alpha-hemolysin is due to the denaturation of the channel's cap. We also show that the alpha-hemolysin pore inserted into a lipid bilayer is much more resistant to urea denaturation than the alpha-hemolysin monomer in solution: The pore remains in the lipid bilayer up to 7.2M urea. The pore formation is possible up to 4.66M urea when protein monomers were previously incubated in urea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号