首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Hepatic uptake of low-density lipoprotein (LDL) in parenchymal cells and non-parenchymal cells was studied in control-fed and cholesterol-fed rabbits after intravenous injection of radioiodinated native LDL (125I-TC-LDL) and methylated LDL (131I-TC-MetLDL). 2. LDL was taken up by rabbit liver parenchymal cells, as well as by endothelial and Kupffer cells. Parenchymal cells, however, were responsible for 92% of the hepatic LDL uptake. 3. Of LDL in the hepatocytes, 89% was taken up via the B,E receptor, whereas 16% and 32% of the uptake of LDL in liver endothelial cells and Kupffer cells, respectively, was B,E receptor-dependent. 4. Cholesterol feeding markedly reduced B,E receptor-mediated uptake of LDL in parenchymal liver cells and in Kupffer cells, to 19% and 29% of controls, respectively. Total uptake of LDL in liver endothelial cells was increased about 2-fold. This increased uptake is probably mediated via the scavenger receptor. The B,E receptor-independent association of LDL with parenchymal cells was not affected by the cholesterol feeding. 5. It is concluded that the B,E receptor is located in parenchymal as well as in the non-parenchymal rabbit liver cells, and that this receptor is down-regulated by cholesterol feeding. Parenchymal cells are the main site of hepatic uptake of LDL, both under normal conditions and when the number of B,E receptors is down-regulated by cholesterol feeding. In addition, LDL is taken up by B,E receptor-independent mechanism(s) in rabbit liver parenchymal, endothelial and Kupffer cells. The non-parenchymal liver cells may play a quantitatively important role when the concentration of circulating LDL is maintained at a high level in plasma, being responsible for 26% of hepatic uptake of LDL in cholesterol-fed rabbits as compared with 8% in control-fed rabbits. The proportion of hepatic LDL uptake in endothelial cells was greater than 5-fold higher in the diet-induced hypercholesterolaemic rabbits than in controls.  相似文献   

2.
The role of liver endothelial and Kupffer cells in the hepatic uptake of cholesterol-rich low density lipoprotein (LDL) was studied in rabbits fed a diet containing 2% (w/w) cholesterol for 3 weeks. 125I-labeled tyramine cellobiose-labeled cholesterol-rich LDL was injected intravenously into rabbits, and parenchymal and nonparenchymal liver cells were isolated 24 h after injection. The hepatic uptake was 9 +/- 3% of injected dose in cholesterol-fed rabbits 24 h after injection, as compared to 36 +/- 9% in control-fed rabbits (n = 6 in each group; significant difference, P less than 0.005). Endothelial and Kupffer cells took up 2.7 +/- 0.5% and 1.2 +/- 0.8% of injected dose in the hypercholesterolemic rabbits, as compared to 1.9 +/- 0.8% and 0.8 +/- 0.3% in control animals. The amount accounted for by the parenchymal cells was markedly reduced in the cholesterol-fed rabbits to 7.3 +/- 2.7% of injected dose, as compared to 32.8 +/- 7.6% in controls (P less than 0.02). On a per cell basis, the nonparenchymal cells of cholesterol-fed rabbits took up as much LDL as the parenchymal cells (0.6 +/- 0.2, 0.7 +/- 0.1, and 0.6 +/- 0.4% of injected dose per 10(9) parenchymal, endothelial, and Kupffer cells, respectively). This is in marked contrast to the control animals, in which parenchymal cells took up about 6 times more LDL per cell than endothelial and Kupffer cells (3.2 +/- 0.9, 0.7 +/- 0.3, and 0.5 +/- 0.1% of injected dose per 10(9) cells). Thus, 30% of the hepatic uptake of LDL in the cholesterol-fed rabbits took place in nonparenchymal cells, as compared to 6% in controls. Consistent with these data, the concentrations of cholesteryl ester in endothelial and Kupffer cells in rabbits fed the high cholesterol diet were about twofold higher than in parenchymal cells (428 +/- 74 and 508 +/- 125 micrograms/mg protein, respectively, vs. 221 +/- 24 micrograms/mg protein in parenchymal cells). In contrast to cells from normal rabbits, Kupffer and endothelial cells from cholesterol-fed rabbits accumulated significant amounts of Oil Red O-positive material (neutral lipids). Electron microscopic examination of these cells in situ as well as in culture revealed numerous intracellular lipid droplets. Slot blot hybridization of RNA from liver parenchymal, endothelial, and Kupffer cells showed that cholesterol feeding reduced the level of mRNA specific for the apoB,E receptor to a small and insignificant extent in all three cell types (to 70-80% of that observed in control animals).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The objective of this study was to identify the cellular source of the vascular oxidant stress in hepatic ischemia-reperfusion injury in male Fischer rats. Nonparenchymal cells (Kupffer cells, endothelial cells) and neutrophils were isolated from postischemic liver lobes by collagenase-pronase digestion followed by centrifugal elutriation. The spontaneous and stimulated generation of superoxide by these cells were subsequently quantified in vitro. Large Kupffer cells from the postischemic lobes spontaneously generated 300% more superoxide than similar cells from control animals. No difference in spontaneous superoxide formation was found when the small Kupffer cells were compared. No other cells isolated from the postischemic lobes or control liver including neutrophils released any detectable superoxide spontaneously. In contrast, small Kupffer cells and neutrophils from the postischemic liver generated significantly more superoxide after stimulation with phorbol ester or opsonized zymosan than the controls. The considerably higher response with zymosan stimulation compared to phorbol ester indicates a particular priming for a receptor-mediated signal transduction pathway during reperfusion. These studies demonstrate that Kupffer cells are the principal source of the oxidant stress during the initial reperfusion phase after hepatic ischcmia. The priming of neutrophils during this time may be an important factor for the later neutrophil-induced injury phase.  相似文献   

4.
The aim of the present study was to investigate the actions of zymosan on glucose release and fatty acid oxidation in perfused rat livers and to determine if Kupffer cells and Ca2+ ions are implicated in these actions. Zymosan caused stimulation of glycogenolysis in livers from fed rats. In livers from fasted rats zymosan caused gradual inhibition of glucose production and oxygen consumption from lactate plus pyruvate. Ketogenesis, oxygen consumption, and [14C-]-CO2 production were inhibited by zymosan when the [1-14C]-palmitate was supplied exogenously. However, ketogenesis and oxygen consumption from endogenous sources were not inhibited. An interference with substrate-uptake by the liver may be the cause of the changes in gluconeogenesis and oxidation of fatty acids from exogenous sources. The pretreatment of the rats with gadolinium chloride and the removal of Ca2+ ions did not suppress the effects of zymosan on glucose release, a finding that argues against the participation of Kupffer cells or Ca2+ ions in the liver responses. The hepatic metabolic changes caused by zymosan could play a role in the systemic metabolic alterations reported to occur after in vivo zymosan administration.  相似文献   

5.
A triantennary galactose-terminated cholesterol derivative, N-(tris(beta-D-galactopyranosyloxymethyl) methyl)-N alpha-(4(5-cholesten-3 beta-yloxy)succinyl)glycinamide (Tris-Gal-Chol), which dissolves easily in water, was added to human apolipoprotein E-free high density lipoproteins (HDL) in varying quantities. Incorporation of 5 or 13 micrograms of Tris-Gal-Chol into HDL (20 micrograms of protein) stimulates the liver association of the HDL apoprotein radioactivity 24- and 55-fold, respectively, at 10 min after intravenous injection into rats. The increased interaction of Tris-Gal-Chol HDL with the liver is blocked by preinjection of asialofetuin or N-acetylgalactosamine but not influenced by N-acetylglucosamine. The parenchymal liver cell uptake of HDL is stimulated 42- or 105-fold, respectively, by incorporation of 5 or 13 micrograms of Tris-Gal-Chol into HDL (20 micrograms of protein), while the association with nonparenchymal cells is stimulated only 1.7- or 5-fold. It can be calculated that 98.0% of the Tris-Gal-Chol HDL is associated with parenchymal cells. In contrast, incorporation of 13 micrograms of Tris-Gal-Chol into LDL (20 micrograms of protein) leads to a selective association of LDL with nonparenchymal cells (92.3% of the total liver uptake). It is concluded that Tris-Gal-Chol incorporation into HDL leads to a specific interaction of HDL with the asialoglycoprotein (galactose) receptor on parenchymal cells whereas Tris-Gal-Chol incorporation into LDL leads mainly to an interaction with a galactose receptor from Kupffer cells. Probably this highly selective cellular targeting of LDL and HDL by Tris-Gal-Chol is caused by the difference in size between these lipoproteins. The increased interaction of HDL with the parenchymal cells upon Tris-Gal-Chol incorporation is followed by degradation of the apolipoprotein in the lysosomes. It is concluded that Tris-Gal-Chol incorporation into LDL or HDL leads to a markedly increased catabolism of LDL by way of the Kupffer cells and HDL by parenchymal cells which might be used for lowering serum cholesterol levels. The use of Tris-Gal-Chol might also find application for targeting drugs or other compounds of interest to either Kupffer or parenchymal liver cells.  相似文献   

6.
Human low density lipoprotein (LDL), radiolabeled in the cholesteryl ester moiety, was injected into estrogen-treated and -untreated rats. The hepatic and extrahepatic distribution and biliary secretion of [3H]cholesteryl esters were determined at various times after injection. In order to follow the intrahepatic metabolism of the cholesteryl esters of LDL in vivo, the liver was subfractioned into parenchymal and Kupffer cells by a low temperature cell isolation procedure. In control rats, the LDL cholesteryl esters were mainly taken up by the Kupffer cells. After uptake, the [3H]cholesteryl esters are rapidly hydrolyzed, followed by release of [3H]cholesterol from the cells to other sites in the body. Up to 24 h after injection of LDL, only 9% of the radioactivity appeared in the bile, whereas after 72 h, this value was 30%. Hepatic and especially the parenchymal cell uptake of [3H]cholesteryl esters from LDL was strongly increased upon 17 alpha-ethinylestradiol treatment (3 days, 5 mg/kg). After rapid hydrolysis of the esters, [3H]cholesterol was both secreted into bile (28% of the injected dose in the first 24 h) as well as stored inside the cells as re-esterified cholesterol ester. It is concluded that uptake of human LDL by the liver in untreated rats is not efficiently coupled to biliary secretion of cholesterol (derivatives), which might be due to the anatomical localization of the principal uptake site, the Kupffer cells. In contrast, uptake of LDL cholesterol ester by liver hepatocytes is tightly coupled to bile excretion. The Kupffer cell uptake of LDL might be necessary in order to convert LDL cholesterol (esters) into a less toxic form. This activity can be functional in animals with low receptor activity on hepatocytes, as observed in untreated rats, or after diet-induced down-regulation of hepatocyte LDL receptors in other animals.  相似文献   

7.
Plasma high density lipoprotein (HDL) is inversely associated with the development of atherosclerosis. HDL exerts its atheroprotective role through involvement in reverse cholesterol transport in which HDL is loaded with cholesterol at the periphery and transports its lipid load back to the liver for disposal. In this pathway, HDL is not completely dismantled but only transfers its lipids to the cell. Here we present evidence that a Chinese hamster ovarian cell line (CHO7) adapted to grow in lipoprotein-deficient media degrades HDL and concomitantly internalizes HDL-derived cholesterol. Delivery of HDL cholesterol to the cell was demonstrated by a down-regulation of cholesterol biosynthesis, an increase in total cellular cholesterol content and by stimulation of cholesterol esterification after HDL treatment. This HDL degradation pathway is distinct from the low density lipoprotein (LDL) receptor pathway but also degrades LDL. 25-Hydroxycholesterol, a potent inhibitor of the LDL receptor pathway, down-regulated LDL degradation in CHO7 cells only in part and did not down-regulate HDL degradation. Dextran sulfate released HDL bound to the cell surface of CHO7 cells, and heparin treatment released protein(s) contributing to HDL degradation. The involvement of heparan sulfate proteoglycans and lipases in this HDL degradation was further tested by two inhibitors genistein and tetrahydrolipstatin. Both blocked HDL degradation significantly. Thus, we demonstrate that CHO7 cells degrade HDL and LDL to supply themselves with cholesterol via a novel degradation pathway. Interestingly, HDL degradation with similar properties was also observed in a human placental cell line.  相似文献   

8.
Hyperlipidemia is a major risk factor for development of coronary artery disease. Cassia auriculata is traditionally used in India for medicinal purposes. In this study, effect of ethanolic extract of Cassia auriculata flowers (Et-CAF) was investigated in Triton WR1339-induced hyperlipidemic rats. Treatment with the Et-CAF (450 mg/kg b.wt) significantly reduced the total cholesterol (TC), triglycerides (TG) and low-density lipoprotein-cholesterol (LDL) levels and significantly increased the high-density lipoprotein (HDL) level associated with reduction of atherogenic index in hyperlipidemic rats. However, there was no change in the serum lipid profile of normal rats treated with Et-CAF alone. The results suggest that Et-CAF has a beneficial effect in treating hyperlipidemia and may serve as a potential drug for prevention of hyperlipidemic atherosclerosis.  相似文献   

9.
Rats were fed either a standard ration diet or that diet supplemented with 8% by wt of a marine fish oil or safflower oil. After 10 days, plasma triacylglycerols, total cholesterol, high density lipoprotein (HDL) cholesterol, hepatic cholesterol and fatty acid synthesis and hepatic low density lipoprotein (LDL) receptor activity were significantly depressed while HDL receptor activity was significantly increased in rats fed fish oil. Fish oil-induced effects on cholesterol metabolism in the rat therefore include reciprocal changes in the activities of hepatic LDL and HDL receptors.  相似文献   

10.
11.
Hepatic catabolism of lipoproteins containing apolipoproteins B or E is enhanced in rats treated with pharmacologic doses of 17 alpha-ethinyl estradiol. Liver membranes prepared from these rats exhibit an increased number of receptor sites that bind 125I-labeled human low density lipoproteins (LDL) in vitro. In the present studies, this estradiol-stimulated hepatic receptor was shown to recognize the following rat lipoproteins: LDL, very low density lipoproteins obtained from liver perfusates (hepatic VLDL), and VLDL-remnants prepared by intravenous injection of hepatic VLDL into functionally eviscerated rats. The receptor also recognized synthetic lamellar complexes of lecithin and rat apoprotein E as well as canine high density lipoproteins containing apoprotein E (apo E-HDLc). It did not recognize human HDL or rat HDL deficient in apoprotein E. Much smaller amounts of this high affinity binding site were also found on liver membranes from untreated rats, the number of such sites increasing more than 10-fold after the animals were treated with estradiol. Each of the rat lipoproteins recognized by this receptor was taken up more rapidly by perfused livers from estrogen-treated rats. In addition, enrichment of hepatic VLDL with C-apoproteins lowered the ability of these lipoproteins to bind to the estradiol-stimulated receptor and diminished their rate of uptake by the perfused liver of estrogen-treated rats, just as it did in normal rats. The current data indicate that under the influence of pharmacologic doses of estradiol the liver of the rat contains increased amounts of a functional lipoprotein receptor that binds lipoproteins containing apoproteins B and E. This hepatic lipoprotein receptor appears to mediate the uptake and degradation of lipoproteins by the normal liver as well as the liver of estradiol-treated rats. The hepatic receptor bears a close functional resemblance to the LDL receptor previously characterized on extrahepatic cells.  相似文献   

12.
High density lipoprotein (HDL) can protect low density lipoprotein (LDL) against oxidation. Oxidized cholesterol esters from LDL can be transferred to HDL and efficiently and selectively removed from the blood circulation by the liver and adrenal in vivo. In the present study, we investigated whether scavenger receptor BI (SR-BI) is responsible for this process. At 30 min after injection, the selective uptake of oxidized cholesterol esters from HDL for liver and adrenal was 2.3- and 2.6-fold higher, respectively, than for native cholesterol esters, whereas other tissues showed no significant difference. The selective uptake of oxidized cholesterol esters from HDL by isolated liver parenchymal cells could be blocked for 75% by oxidized LDL and for 50% by phosphatidylserine liposomes, both of which are known substrates of SR-BI. In vivo uptake of oxidized cholesterol esters from HDL by parenchymal cells decreased by 64 and 81% when rats were treated with estradiol and a high cholesterol diet, respectively, whereas Kupffer cells showed 660 and 475% increases, respectively. These contrasting changes in oxidized cholesterol ester uptake were accompanied by similar contrasting changes in SR-BI expression of parenchymal and Kupffer cells. The rates of SR-BI-mediated selective uptake of oxidized and native cholesterol esters were analyzed in SR-BI-transfected Chinese hamster ovary cells. SR-BI-mediated selective uptake was 3.4-fold higher for oxidized than for native cholesterol esters (30 min of incubation). It is concluded that in addition to the selective uptake of native cholesterol esters, SR-BI is responsible for the highly efficient selective uptake of oxidized cholesterol esters from HDL and thus forms an essential mediator in the HDL-associated protection system for atherogenic oxidized cholesterol esters.  相似文献   

13.
Granulosa cells aspirated from medium-sized porcine ovarian follicles (3-5 mm) in short-term incubation responded to the addition of both low-density lipoprotein (LDL) and high-density lipoprotein (HDL) with increased accumulation of progesterone. HDL was more potent than LDL in enhancing progesterone secretion. When granulosa cells were cultured under serum-free conditions for 72 h, HDL but not LDL exhibited a dose-dependent enhancement of progesterone secretion. Addition of insulin to the cells greatly potentiated the stimulatory effect of LDL on progesterone accumulation, while the response to HDL was only slightly increased. Granulosa cells in culture degraded LDL but not HDL. Addition of insulin enhanced LDL degradation. Exposure of cells in culture to chloroquine, an inhibitor of lysosomal function, completely blocked LDL degradation and LDL-induced stimulation of steroidogenesis. The stimulatory effect of HDL was not affected by chloroquine. We interpret these findings to indicate that granulosa cells derive cholesterol from LDL by means of lysosomal degradation, which is not required for use of cholesterol from HDL. Monensin, a carboxylic ionophore that interrupts recycling of LDL receptors, prevented LDL-enhanced progesterone accumulation but not HDL-induced stimulation. This provides evidence that HDL-induced stimulation of steroidogenesis does not involve LDL receptors. We conclude that HDL present in follicular fluid is capable of providing cholesterol to granulosa cells for steroidogenesis. The stimulatory effect of HDL is not due to the presence of apoprotein E, an HDL component that binds to the LDL receptor. A unique HDL pathway that does not involve LDL receptors and lysosomal degradation may operate in porcine granulosa cells.  相似文献   

14.
The liver contains two types of galactose receptors, specific for Kupffer and parenchymal cells respectively. These receptors are only expressed in the liver, and therefore are attractive targets for the specific delivery of drugs. We provided low-density lipoprotein (LDL), a particle with a diameter of 23 nm in which a variety of drugs can be incorporated, with terminal galactose residues by lactosylation. Radioiodinated LDL, lactosylated to various extents (60-400 mol of lactose/ mol of LDL), was injected into rats. The plasma clearance and hepatic uptake of radioactivity were correlated with the extent of lactosylation. Highly lactosylated LDL (greater than 300 lactose/LDL) is completely cleared from the blood by liver within 10 min. Pre-injection with N-acetylgalactosamine blocks liver uptake, which indicates that the hepatic recognition sites are galactose-specific. The hepatic uptake occurs mainly by parenchymal and Kupffer cells. At a low degree of lactosylation, approx. 60 lactose/LDL, the specific uptake (ng/mg of cell protein) is 28 times higher in Kupffer cells than in parenchymal cells. However, because of their much larger mass, parenchymal cells are the main site of uptake. At high degrees of lactosylation (greater than 300 lactose/LDL), the specific uptake in Kupffer cells is 70-95 times that in parenchymal cells. Under these conditions, Kupffer cells are, despite their much smaller mass, the main site of uptake. Thus not only the size but also the surface density of galactose on lactosylated LDL is important for the balance of uptake between Kupffer and parenchymal cells. This knowledge should allow us to design particulate galactose-bearing carriers for the rapid transport of various drugs to either parenchymal cells or Kupffer cells.  相似文献   

15.
The mammalian target of rapamycin (mTOR) inhibiting drug rapamycin (Sirolimus) has severe side effects in patients including hyperlipidemia, an established risk factor for atherosclerosis. Recently, it was shown that rapamycin decreases hepatic LDL receptor (LDL-R) expression, which likely contributes to hypercholesterolemia. Scavenger receptor, class B, type I (SR-BI) is the major HDL receptor and consequently regulating HDL-cholesterol levels and the athero-protective effects of HDL. By using the mTOR inhibitor rapamycin, we show that SR-BI is down-regulated in human umbilical vein endothelial cells (HUVECs). This reduction of SR-BI protein as well as mRNA levels by about 50% did not alter HDL particle uptake or HDL-derived lipid transfer. However, rapamycin reduced HDL-induced activation of eNOS and stimulation of endothelial cell migration. The effects on cell migration could be counteracted by SR-BI overexpression, indicating that decreased SR-BI expression is in part responsible for the rapamycin-induced effects. We demonstrate that inhibition of mTOR leads to endothelial cell dysfunction and decreased SR-BI expression, which may contribute to atherogenesis during rapamycin treatment.  相似文献   

16.
Selective breeding of baboons has produced families with increased plasma levels of large high density lipoproteins (HDL1) and very low (VLDL) and low (LDL) density lipoproteins when the animals consume a diet enriched in cholesterol and saturated fat. High HDL1 baboons have a slower cholesteryl ester transfer, which may account for the accumulation of HDL1, but not of VLDL and LDL. To investigate the mechanism of accumulation of VLDL + LDL in plasma of the high HDL1 phenotype, we selected eight half-sib pairs of baboons, one member of each pair with high HDL1, the other member with little or no HDL1 on the same high cholesterol, saturated fat diet. Baboons were fed a chow diet and four experimental diets consisting of high and low cholesterol with corn oil, and high and low cholesterol with lard, each for 6 weeks, in a crossover design. Plasma lipids and lipoproteins and hepatic mRNA levels were measured on each diet. HDL1 phenotype, type of dietary fat, and dietary cholesterol affected plasma cholesterol and apolipoprotein (apo) B concentrations, whereas dietary fat alone affected plasma triglyceride and apoA-I concentrations. HDL1 phenotype and dietary cholesterol alone did not influence hepatic mRNA levels, whereas dietary lard, compared to corn oil, significantly increased hepatic apoE mRNA levels and decreased hepatic LDL receptor and HMG-CoA synthase mRNA levels. Hepatic apoA-I message was associated with cholesterol concentration in HDL fractions as well as with apoA-I concentrations in the plasma or HDL. However, hepatic apoB message level was not associated with plasma or LDL apoB levels. Total plasma cholesterol, including HDL, was negatively associated with hepatic LDL receptor and HMG-CoA synthase mRNA levels. However, compared with low HDL1 baboons, high HDL1 baboons had higher concentrations of LDL and HDL cholesterol at the same hepatic mRNA levels. These studies suggest that neither overproduction of apoB from the liver nor decreased hepatic LDL receptor levels cause the accumulation of VLDL and LDL in the plasma of high HDL1 baboons. These studies also show that, in spite of high levels of VLDL + LDL and HDL1, the high HDL1 baboons had higher levels of mRNA for LDL receptor and HMG-CoA synthase. This paradoxical relationship needs further study to understand the pathophysiology of VLDL and LDL accumulation in the plasma of animals with the high HDL1 phenotype.  相似文献   

17.
Plasma cholesterol concentrations from White Carneau (WC) and Show Racer (SR) pigeons consuming a cholesterol-free grain diet averaged about 300 mg/dl, approximately 200 mg/dl as high density lipoproteins (HDL) and the remainder as low density lipoproteins (LDL). Consumption of a cholesterol-containing diet increased plasma cholesterol concentrations in both breeds to greater than 2000 mg/dl. Approximately one-half of this increase was as LDL with the remainder as beta-migrating very low density lipoproteins (beta-VLDL). There was little change in HDL concentration. LDL from cholesterol-fed animals had a greater net negative charge than control LDL, and was larger (Mr = 10 X 10(6) vs 3.2 X 10(60)) due to an increase in the number of cholesteryl ester molecules per particle. The principal apoprotein of LDL was apoB-100 with smaller amounts of apoA-I and several minor unidentified apoproteins. beta-VLDL was cholesteryl ester-rich, could be separated into two size populations by gel chromatography, and contained apoB-100 as its principal apoprotein. Apoprotein E was not detected in any of the plasma lipoproteins. HDL from control and cholesterol-fed animals was composed of a single class of particles with virtually identical composition resembling HDL2. The major apoprotein of HDL was apoA-I. There were no consistent quantitative or qualitative differences in the lipoproteins of the two breeds of pigeons that could help to explain the susceptibility to atherosclerosis of the WC or the resistance of the SR.  相似文献   

18.
Receptor-mediated hepatic uptake of low density lipoproteins (LDL) conjugated to colloidal gold was studied by perfusion of livers from rats treated for 5 d with 17 alpha-ethinylestradiol. Estrogen treatment resulted in a marked decrease in serum lipid and lipoprotein concentrations. After 15 min of perfusion the conjugate was bound to the hepatic microvilli of both control and estrogen-treated rats; the estrogen-treated rats showed an 8- to 11-fold greater number of membrane-bound conjugates. The conjugates were bound to the membrane receptor by the LDL particle because the gold granules were regularly displaced from the membrane by 20 +/- 3.2 nm, the diameter of LDL. Internalization of the conjugate, evident by gold particles in multivesicular bodies, occurred at coated pits at the base of the microvillus where coated vesicles containing a single gold-LDL conjugate were released. After 1 h of perfusion, the livers from the estrogen-treated rats showed all phases of endocytosis and incorporation into multivesicular bodies of the conjugate. After 2 h of perfusion, there was congregation of gold-labeled lysosomes near the bile canaliculi. Gold-LDL conjugates were also observed to bind and be internalized by Kupffer cells and sinusoidal endothelium. These findings indicate that estrogen treatment induces hepatic receptors for LDL. The catabolic pathway of binding and endocytosis of the conjugate is similar to that seen in fibroblasts, although slower. Because gold-LDL conjugates were also present in the Kupffer and endothelial cells, the uptake of LDL by the liver involves the participation of more than a single cell type.  相似文献   

19.
It has been found that deep-sea water was associated with lower serum lipid in animal model studies. Herein, we investigated whether DSW exerted a hypolipidemic activity and further elucidated how DSW modulated lipid metabolism in HepG2 cells. Preliminary animal studies showed that DSW exhibited potency to decrease serum total cholesterol, triglycerides, and LDL cholesterol, and increase HDL cholesterol, and the hepatic lipid contents were also significantly lower in the DSW group. When DSW was added to HepG2 cells, it decreased the lipid contents of hepatocyte through the activation of AMP-activated protein kinase, thus inhibiting the synthesis of cholesterol and fatty acid. Besides, LDL receptor was upregulated by activation of sterol regulatory element-binding protein-2. In addition, the levels of apolipoprotein AI and cholesterol 7-alpha-hydroxylase were also raised. Our investigation provided mechanisms by which DSW modulated lipid metabolism and indicated that DSW was worthy of further investigation and could be developed as functional drinking water in the prevention and treatment of hypolipidemic and other lifestyle-related diseases.  相似文献   

20.
The interaction of apolipoprotein (apo) E-free high-density lipoprotein (HDL) with parenchymal, endothelial and Kupffer cells from liver was characterized. At 10 min after injection of radiolabelled HDL into rats, 1.0 +/- 0.1% of the radioactivity was associated with the liver. Subfractionation of the liver into parenchymal, endothelial and Kupffer cells, by a low-temperature cell-isolation procedure, indicated that 77.8 +/- 2.4% of the total liver-associated radioactivity was recovered with parenchymal cells, 10.8 +/- 0.8% with endothelial cells and 11.3 +/- 1.7% with Kupffer cells. It can be concluded that inside the liver a substantial part of HDL becomes associated with endothelial and Kupffer cells in addition to parenchymal cells. With freshly isolated parenchymal, endothelial and Kupffer cells the binding properties for apo E-free HDL were determined. For parenchymal, endothelial and Kupffer cells, evidence was obtained for a saturable, specific, high-affinity binding site with Kd and Bmax. values respectively in the ranges 10-20 micrograms of HDL/ml and 25-50 ng of HDL/mg of cell protein. In all three cell types nitrosylated HDL and low-density lipoproteins did not compete for the binding of native HDL, indicating that lipids and apo B are not involved in specific apo E-free HDL binding. Very-low-density lipoproteins (VLDL), however, did compete for HDL binding. The competition of VLDL with apo E-free HDL could not be explained by label exchange or by transfer of radioactive lipids or apolipoproteins between HDL and VLDL, and it is therefore suggested that competition is exerted by the presence of apo Cs in VLDL. The results presented here provide evidence for a high-affinity recognition site for HDL on parenchymal, liver endothelial and Kupffer cells, with identical recognition properties on the three cell types. HDL is expected to deliver cholesterol from peripheral cells, including endothelial and Kupffer cells, to the liver hepatocytes, where cholesterol can be converted into bile acids and thereby irreversibly removed from the circulation. The observed identical recognition properties of the HDL high-affinity site on liver parenchymal, endothelial and Kupffer cells suggest that one receptor may mediate both cholesterol efflux and cholesterol influx, and that the regulation of this bidirectional cholesterol (ester) flux lies beyond the initial binding of HDL to the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号