首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We studied the effect of glycine supplementation on lipid peroxidation and antioxidants in the erythrocyte membrane, plasma and hepatocytes of rats with alcohol-induced hepatotoxicity. Administering ethanol (20%) for 60 days to male Wistar rats resulted in significantly elevated levels of erythrocyte membrane, plasma and hepatocyte thiobarbituric acid reactive substances (TBARS) as compared with those of the experimental control rats. Decreased activities of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GR) were also observed on alcohol supplementation as compared with those of the experimental control rats. Glycine was administered at a dose of 0.6 g kg(-1) body weight to rats with alcohol-induced liver injury, which significantly decreased the levels of TBARS and significantly elevated the activities of SOD, CAT, GSH, GPx and GR in the erythrocyte membrane, plasma and hepatocytes as compared to that of untreated alcohol supplemented rats. Thus, our data indicate that supplementation with glycine offers protection against free radical-mediated oxidative stress in the erythrocyte membrane, plasma and hepatocytes of animals with alcohol-induced liver injury.  相似文献   

2.
To compare the effects of alpha-ketoglutarate (alpha-KG) and melatonin on 24-h rhythmicity of oxidative stress in N-nitrosodiethylamine (NDEA)-injected Wistar male rats, melatonin (5 mg/kg i.p.) or alpha-KG (2 g/kg through an intragastric tube) was given daily for 20 weeks. In blood collected at 6 time points during a 24-h period, serum activity of aspartate transaminase (AST) and alanine transaminase (ALT) and the levels of alpha-fetoprotein (alpha-FP) were measured as markers of liver function. To assess lipid peroxidation and the antioxidant status, plasma levels of thiobarbituric acid reactive substances (TBARS) and of reduced glutathione (GSH) were measured, together with the activity of erythrocyte superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST). NDEA augmented mesor and amplitude of rhythms in AST and ALT activity and plasma alpha-FP levels and mesor values of plasma TBARS, while decreasing mesor values of plasma GSH and erythrocyte SOD, CAT, GPx and GST. Acrophases were delayed by NDEA in all cases except for alpha-FP rhythm, which became phase-advanced. Co-administration of melatonin or alpha-KG partially counteracted the effects of NDEA. Melatonin decreased mesor of plasma TBARS and augmented mesor of SOD activity. The results indicate that melatonin and alpha-KG are effective in protecting from NDEA-induced perturbation of 24-h rhythms in oxidative stress. Melatonin augmented antioxidant defense in rats.  相似文献   

3.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

4.
An oxidant/antioxidant imbalance is thought to play an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). We hypothesized that antioxidant capacity reflected by erythrocyte glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) activities, and serum levels of the lipid peroxidation product malondialdehyde (MDA), may be related to the severity of obstructive lung impairment in patients with COPD. Erythrocyte GPx, SOD and CAT activities, and serum levels of MDA were measured in 79 consecutive patients with stable COPD. Pulmonary functional tests were assessed by body plethysmography. Moderate COPD (FEV1 50-80%) was present in 23, and severe COPD (FEV1 < 50%) in 56 patients. Erythrocyte GPx activity was significantly lower, and serum MDA levels were significantly higher in patients with severe COPD compared to patients with moderate COPD (GPx: 43.1+/-1.5 vs. 47.7+/-2.9 U/gHb, p<0.05, MDA: 2.4+/-0.1 vs. 2.1+/-0.1 nmol/ml, p<0.05). Linear regression analysis revealed a significant direct relationship between FEV1 and erythrocyte GPx activity (r = 0.234, p<0.05), and a significant inverse relationship between FEV1 and serum MDA levels (r = -0.239, p<0.05). However, no differences were observed in the erythrocyte SOD and CAT activities between the two groups of patients with different severity of COPD. Findings of the present study suggest that antioxidant capacity reflected by erythrocyte GPx activity and serum levels of the lipid peroxidation product MDA are linked to the severity of COPD.  相似文献   

5.
The effect of various doses (0, 10, 20, 40, or 80 mg/kg body weight) of naringin (a citrus flavonone) was studied on streptozotocin (STZ)-induced hyperglycaemic rats to evaluate the possible hypoglycaemic and antioxidant activity of naringin in diabetes. In comparison to the normoglycaemic group the treatment of rats with a single dose of STZ (65 mg/kg body weight) only revealed a significant increase (P < 0.05) in plasma hydrogen peroxide (H2O2) by 230%, increased the thiobarbituric acid reactive substances (TBARS) as index of the lipid peroxidation level by 69%, while total antioxidant activity was decreased by 36%, with a consistent significant decrease (P < 0.05) in the activity of erythrocytes antioxidative enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and paraoxonase (PON). Exogenous administration of individual gradual doses of naringin to hyperglycaemic rats causes a dose-dependent decrease of the glucose level, an increase of the insulin concentration, a decrease of the H2O2 and TBARS levels, as well as the increase of the total antioxidant status with an increase of antioxidant enzyme activities (CAT, SOD, GPx, and PON). From this study, it may be concluded that all doses of naringin provided a significant amelioration of hypoglycaemic and antioxidant activity in STZ-induced diabetic rats, however, the greatest effect of naringin was observed at 80 mg/kg body weight.  相似文献   

6.
Exercise training has been used for treatment/prevention of many cardiovascular diseases, but the mechanisms need to be clarified. Thus, our aim was to compare oxidative stress parameters between rats submitted to a swimming training and sedentary rats (control). Twelve male rats were divided into two groups: control and exercise training. The exercise training had daily 1 h swimming sessions for 8 weeks and a load (5% of its body mass) was placed in rat's tail. Thereafter the animals were killed, aorta and heart were surgically removed and blood was collected. Body mass gain, thiobarbituric acid reactive species (TBARS), carbonyl content, total reactive antioxidant potential (TRAP), total antioxidant reactivity (TAR), superoxide dismutase (SOD) activity and catalase (CAT) activity were evaluted. The trained rats showed a lower body mass gain and no modifications on heart. An increased SOD activity was observed on aorta after the training, but no changes were seen for CAT activity, which led to an increased SOD/CAT ratio. The arterial TBARS was also increased for trained rats. The decrease in TRAP in exercise training was the single modification on plasma. Our findings suggest that the increased SOD activity could play a role in vascular adaptations to exercise training. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Long-duration or damaging exercise initiates reactions that resemble the acute phase response to infection and induces neutrophil priming for oxidative activity. Our objective was to establish the status of the antioxidant defences and of the oxidative equilibrium in the neutrophils of sportsmen prior to and after intense physical exercise. Nine voluntary male professional cyclists participated in this study. The exercise was a cycling mountain stage (171 km) and the cyclists took a mean ±SEM of 270 ±12 min to complete it. We determined the activities of catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), the levels and activity of superoxide dismutase (SOD), the concentrations of ascorbate, glutathione and glutathione disulphide (GSSG) and DNA levels in neutrophils. The cycling stage decreased enzyme activities expressed per DNA units: CAT (33%), SOD (38%), GPx (65%); increased ascorbate concentration in neutrophils and decreased the GSH/GSSG ratio and the enzyme activities expressed per DNA units. Neutrophils could contribute to plasma antioxidant defences against oxidative stress induced by exercise because they probably provide antioxidant enzymes and ascorbate.  相似文献   

8.
Vanadate solutions as ‘metavanadate’ (containing ortho and metavanadate species) and ‘decavanadate’ (containing manly decameric species) (5 mM; 1 mg/kg) were injected intraperitoneously in Halobatrachus didactylus (toadfish), in order to evaluate the contribution of decameric vanadate species to vanadium (V) intoxication on the cardiac tissue. Following short-term exposure (1 and 7 days), different changes on antioxidant enzyme activities—superoxide dismutase (SOD), catalase (CAT), selenium-glutathione peroxidase (Se-GPx), total glutathione peroxidase (GPx), lipid peroxidation and subcellular vanadium distribution were observed in mitochondrial and cytosolic fractions of heart ventricle toadfish. After 1 day of vanadium intoxication, SOD, CAT and Se-GPx activities were decreased up to 25%, by both vanadate solutions, except mitochondrial CAT activity that increased (+23%) upon decavanadate administration. After 7 days of exposure, decavanadate versus metavanadate solutions promoted different effects mainly on cytosolic CAT activity (−56% versus −5%), mitochondrial CAT activity (−10% versus +10%) and total GPx activity (+1% versus −35%), whereas lipid peroxidation products were significantly increased (+82%) upon 500 μM decavanadate intoxication. Accumulation of vanadium in total (0.137±0.011 μg/g) and mitochondrial (0.022±0.001 μg/g) fractions was observed upon 7 days of metavanadate exposure, whereas for decavanadate, the concentration of vanadium increased in cytosolic (0.020±0.005 μg/g) and mitochondrial (0.021±0.009 μg/g) fractions. It is concluded that decameric vanadate species are responsible for a strong increase on lipid peroxidation and a decrease in cytosolic catalase activity thus contributing to oxidative stress responses upon vanadate intoxication, in the toadfish heart.  相似文献   

9.
Long-duration or damaging exercise initiates reactions that resemble the acute phase response to infection and induces neutrophil priming for oxidative activity. Our objective was to establish the status of the antioxidant defences and of the oxidative equilibrium in the neutrophils of sportsmen prior to and after intense physical exercise. Nine voluntary male professional cyclists participated in this study. The exercise was a cycling mountain stage (171 km) and the cyclists took a mean &#45 SEM of 270 &#45 12 min to complete it. We determined the activities of catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), the levels and activity of superoxide dismutase (SOD), the concentrations of ascorbate, glutathione and glutathione disulphide (GSSG) and DNA levels in neutrophils. The cycling stage decreased enzyme activities expressed per DNA units: CAT (33%), SOD (38%), GPx (65%); increased ascorbate concentration in neutrophils and decreased the GSH/GSSG ratio and the enzyme activities expressed per DNA units. Neutrophils could contribute to plasma antioxidant defences against oxidative stress induced by exercise because they probably provide antioxidant enzymes and ascorbate.  相似文献   

10.
The present study was designed to determine the effects of exercise on the antioxidant enzymatic system and lipid peroxidation in small intestine and kidney, during the post-exercise period in untrained mice. Two days after the last adaptation running exercise, animals were ran on the treadmill for 60 min at 18 m/min. 5 degrees slope. After the acute exercise the animals were killed by cervical dislocation, immediately (0 h), 3 hours (3 h) and 24 hours (24 h) after the exercise. Control animals were killed without running exercise. Their proximal small intestinal and renal tissues were quickly removed. Changes in the concentration of thiobarbituric acid reactive substance (TBARS), as an index of lipid peroxidation, in intestine and kidney were studied in mice after the running exercise and in unexercised control group. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were determined in these tissues. Tissue SOD, GPx activities and TBARS level were not increase by the exercise in kidney. Intestinal SOD activity decreased after exercise (0 h and 3 h respectively, p<0.05, p<0.01) and retumed to control levels. Intestinal GPx activity increased after exercise (0 h, p<0.05) and returned to control levels. There was no significant difference among groups in intestinal tissue TBARS levels. These findings could suggest that submaximal exercise may not cause oxidative stress in proximal small intestinal tissue and kidney.  相似文献   

11.
Sulfite and related chemical such as sulfite salts and sulfur dioxide has been used as a preservative in food and drugs. This molecule has also been generated from the catabolism of sulfur-containing amino acids. Sulfite is a very reactive and potentially toxic molecule and has to be detoxified by the enzyme sulfite oxidase (SOX). The aim of this study was to investigate the effects of ingested sulfite on erythrocyte antioxidant status by measuring glucose-6-phosphate dehydrogenase (G-6-PD), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities and oxidant status by measuring thiobarbituric acid reactive substances (TBARS) in normal and SOX-deficient rats. Rats were assigned to four groups (n = 10 rats/group) as follows; control (C), sulfite (CS), deficient (D), and deficient + sulfite (DS). SOX deficiency was established by feeding rats a low molybdenum diet and adding to their drinking water 200 ppm tungsten (W). Sulfite (25 mg/kg) was administered to the animals via their drinking water. At the end of 6 weeks, Erythrocyte G-6-PD, SOD, and GPx but not CAT activities were found to be significantly increased with and without sulfite treatment in SOX-deficient groups. Sulfite treatment alone was also significantly increased erythrocytes’ SOD activity in CS group compared to control. TBARS levels were found to be significantly increased in CS and DS groups and decreased in D group. When SOX-deficient rats treated with sulfite, TBARS level was still higher than other groups. In conclusion, these results suggested that erythrocyte antioxidant capacity, a defense mechanism against the oxidative challenge, increased by endogenous and exogenous sulfite due to its oxidant nature. This increase was also observed in CS and DS groups but it was insufficient to prevent lipid peroxidation.  相似文献   

12.
The effect of exercise on oxidant stress and on alterations in antioxidant defense in elderly has been investigated extensively. However, the impact of regularly performed long-term physical activity starting from adulthood and prolonged up to the old age is not yet clear. We have investigated the changes in the activities of antioxidant enzymes - superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) - and lipid peroxidation in various tissues of rats which had performed (old-trained) or had not performed (old-control) regular swimming exercise for one year. These animals were compared with young-sedentary rats. Increased lipid peroxidation was observed with ageing in all tissues (heart, liver, kidney, striated muscle) and swimming had no additional effect on this elevation of lipid peroxidation. Heart and striated muscle SOD activites, and striated muscle CAT activity increased as a consequence of ageing, whereas kidney and liver CAT activities, as well as GPx activities in kidney, liver, lung and heart were significantly decreased compared to young controls. Lung and heart SOD, liver CAT activities as well as GPx activities in liver, lung and heart were increased significantly in rats which performed exercise during ageing, compared to the old-control group. These findings suggest that lifelong exercise can improve the antioxidant defense in many tissues without constituting any additional oxidant stress.  相似文献   

13.
The present study showed that exposure of chlorpyrifos, O,O'-diethyl-O-3,5,6-trichloro-2-pyridyl phosphorothionate (CPF), a widely used pesticide in rats caused significant inhibition of acetylcholinesterase (AChE) activity in different tissues viz., liver, kidney and spleen. CPF exposure also generated oxidative stress in the body, as evidenced by increase in thiobarbituric acid reactive substances (TBARS), decrease in the levels of superoxide scavenging enzymes viz., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in liver, kidney and spleen at all doses. Malondialdehyde levels were increased by 14%, 31% and 76% in liver, 11%, 31% and 64% in kidney and 32%, 75% and 99.9% in spleen when 50 mg, 100 mg and 200 mg/kg body wt. CPF was administered for three days. SOD and CAT activities were decreased in liver, kidney and spleen, while GPx activity showed slight increase in kidney at 50 mg and 100 mg dose, and decreased on further increase in dose of CPF. Liver and spleen showed dose-dependent decrease in GPx activity. The levels of reduced glutathione (GSH) was decreased, while oxidized glutathione (GSSG) was increased, thus a marked fall in GSH/GSSG ratio was observed in all tissues. A maximum decrease of 83% was observed in liver, followed by kidney and spleen, which showed 78% and 57% decrease, respectively in group given 200 mg/kg CPF. The levels of glucose-6-phosphate dehydrogenase (G6PDH) and glutathione reductase (GR) were also decreased in liver and kidney, while spleen showed increase at lower doses, but decrease at high dose of CPF. The data provide evidence for induction of oxidative stress on CPF exposure.  相似文献   

14.
Vanadate solutions as ‘metavanadate’ (containing ortho and metavanadate species) and ‘decavanadate’ (containing manly decameric species) (5 mM; 1 mg/kg) were injected intraperitoneously in Halobatrachus didactylus (toadfish), in order to evaluate the contribution of decameric vanadate species to vanadium (V) intoxication on the cardiac tissue. Following short-term exposure (1 and 7 days), different changes on antioxidant enzyme activities—superoxide dismutase (SOD), catalase (CAT), selenium-glutathione peroxidase (Se-GPx), total glutathione peroxidase (GPx), lipid peroxidation and subcellular vanadium distribution were observed in mitochondrial and cytosolic fractions of heart ventricle toadfish. After 1 day of vanadium intoxication, SOD, CAT and Se-GPx activities were decreased up to 25%, by both vanadate solutions, except mitochondrial CAT activity that increased (+23%) upon decavanadate administration. After 7 days of exposure, decavanadate versus metavanadate solutions promoted different effects mainly on cytosolic CAT activity (−56% versus −5%), mitochondrial CAT activity (−10% versus +10%) and total GPx activity (+1% versus −35%), whereas lipid peroxidation products were significantly increased (+82%) upon 500 μM decavanadate intoxication. Accumulation of vanadium in total (0.137±0.011 μg/g) and mitochondrial (0.022±0.001 μg/g) fractions was observed upon 7 days of metavanadate exposure, whereas for decavanadate, the concentration of vanadium increased in cytosolic (0.020±0.005 μg/g) and mitochondrial (0.021±0.009 μg/g) fractions. It is concluded that decameric vanadate species are responsible for a strong increase on lipid peroxidation and a decrease in cytosolic catalase activity thus contributing to oxidative stress responses upon vanadate intoxication, in the toadfish heart.  相似文献   

15.
Identifying patients at risk of developing premature coronary artery disease (PCAD) which occurs at age below 45 years old and constitutes approximately 7–10% of coronary artery disease (CAD) worldwide remains a problem. Oxidative stress has been proposed as a crucial step in the early development of PCAD. This study was conducted to determine the oxidative status of PCAD in comparison to CAD patients. PCAD (<45 years old) and CAD (>60 years old) patients were recruited with age-matched controls (n?=?30, each group). DNA damage score, plasma malondialdehyde (MDA) and protein carbonyl content were measured for oxidative damage markers. Antioxidants such as erythrocyte glutathione (GSH), oxidised glutathione (GSSG), and glutathione peroxidase activity (GPx), superoxide dismutase (SOD) and catalase (CAT) were also determined. DNA damage score and protein carbonyl content were significantly higher in both PCAD and CAD when compared to age-matched controls while MDA level was increased only in PCAD (p<.05). In contrast, GSH, GSH/GSSG ratio, α-tocotrienol isomer, and GPx activity were significantly decreased, but only in PCAD when compared to age-matched controls. The decrease in GSH was associated with PCAD (OR?=?0.569 95%CI [0.375???0.864], p?=?.008) and cut-off values of 6.69?μM with areas under the ROC curves (AUROC) 95%CI: 0.88 [0.80–0.96] (sensitivity of 83.3%; specificity of 80%). However, there were no significant differences in SOD and CAT activities in all groups. A higher level of oxidative stress indicated by elevated MDA levels and low levels of GSH, α-tocotrienol and GPx activity in patients below 45 years old may play a role in the development of PCAD and has potential as biomarkers for PCAD.  相似文献   

16.
In this work we investigated the effects of retinoic acid (RA) in Sertoli cells. Sertoli cells isolated from 15-day-old Wistar rats were previously cultured for 48 h and then treated with RA for 24 h. RA at high doses (1–10 μM) increased TBARS levels and induced a decrease in cell viability. At low doses (0.1–100 nM) RA did not increase TBARS level. RA also did not increase cell death at these doses. In order to investigate changes in antioxidant defenses we measured the CAT, SOD and GPx activities in Sertoli cells treated with RA. Compared to control, RA increased around 200% SOD activity in all doses tested (0.1–100 nM); GPx activity was increased 407.49, 208.98 and 243.88% (0.1, 1 and 10 nM, respectively); CAT activity was increased 127% with RA 1 nM. To clarify if RA induces ROS production per se, we performed experiments in vitro using 2-deoxyribose as specific substrate of oxidative degradation by OH radical as well as TRAP assay. RA at 10 μM increased 2-deoxyribose degradation, suggesting that some of the RA-induced effects are mediated via OH formation. Furthermore, the total reactive antioxidant potential (TRAP) of the RA was determined. At low concentrations RA has induced no redox activity. Conversely, higher concentration of RA (1–10 μM) increased chemiluminescence. The chemiluminescence produced was directly proportional to radical generation. We provide, for the first time, evidence for a free radical generation by RA. Our results demonstrated that RA plays an important role in Sertoli cells and these effects appear to be mediated by ROS.  相似文献   

17.
In this study, we have investigated the effect of the nutritive phytochemicals, indole-3-carbinol (I3C) and its metabolite, 3, 3′- diindolylmethane (DIM) on oxidative stress developed in type 2 diabetes mellitus (T2DM). This work was carried out in the genetically modified mouse (C57BL/6J mice) that closely simulated the metabolic abnormalities of the human disease after the administration of high fat diet (HFD). Glucose, insulin, hemoglobin (Hb), glycated hemoglobin (HbA1c), thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH), conjugated dienes (CD), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), vitamin C, vitamin E, and reduced glutathione (GSH) levels were monitored in all the groups. Treatments positively modulate the glucose, insulin, and Hb and HbA1c levels in HFD mice. TBARS, LOOH, and CD were decreased in treatment groups when compared to the HFD group. Treatments increase SOD, CAT, GPx levels (erythrocyte, liver, kidney, and heart) and vitamin C, vitamin E, and GSH levels (plasma, liver, kidney, and heart) in diabetic mice. From the study, it was clear that the antioxidant-scavenging action were accelerated in mice treated with DIM than the I3C treatment group which was comparable with the standard drug metformin.  相似文献   

18.
Antioxidant properties of many medicinal plants have been widely recognized and some of them have been commercially exploited. Plant derived antioxidants play a very important role in alleviating problems related to oxidative stress. The present study was aimed at assessing the antioxidant property of costunolide and eremanthin isolated from a medicinal plant Costus speciosus (Koen ex. Retz) Sm. rhizome. Experimental diabetes was induced by a single dose of STZ (60 mg/kg, i.p.) injection. The oxidative stress was measured by tissue thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) content and enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in brain, liver, heart, kidney and pancreas. An increase in TBARS level, a significant reduction in GSH content along with decreased enzymatic activities of SOD, CAT, and GPx were seen in untreated diabetic rats. Administration of either costunolide (20 mg/kg day) or eremanthin (20 mg/kg day) for 60 days caused a significant reduction in TBARS level and a significant increase in GSH content along with increased enzymatic activities of SOD, CAT and GPx in the treated rats when compared to untreated diabetic rats. Acute toxicity test revealed the non-toxic nature of the compounds. The results indicated for the first time the protective effect of costunolide and eremanthin from oxidative stress, thus opening the way for their use in medication.  相似文献   

19.
In this study we examined radioprotective effect of ferulic acid (FA) on gamma radiation-induced dicentric aberration and lipid peroxidation with reference to alterations in cellular antioxidant status in cultured lymphocytes. To establish most effective protective support we used three different concentrations of FA (1, 5 and 10 microg/ml) and three different doses of gamma-radiation (1, 2 and 4 Gy). Treatment of lymphocytes with FA alone (at 10 microg/ml) gave no significant change in micronuclei (MN), dicentric aberration (DC), thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) or glutathione peroxidase (GPx) activities when compared with normal lymphocytes; irradiation at 1, 2 and 4 Gy increased the MN and DC frequencies in a dose-dependent manner. Treatment with FA for 30 min before radiation exposure resulted in a significant decline of MN and DC yields as FA concentration increased. Compared to 1 Gy exposure alone, the extent to which FA (1 microg/ml) reduced the MN and DC yields was 75% and 50%, respectively. With 4 Gy irradiation, FA (10 microg/ml) decreased 45% MN and 25% DC frequencies. FA-pretreated lymphocytes (1, 5 and 10 microg/ml) showed progressively decreased TBARS levels after irradiation. Irradiation (1, 2 and 4 Gy) significantly decreased GSH levels, SOD, CAT and GPx activities in a dose-dependent manner. Pretreatment with 10 microg/ml of FA significantly (p<0.05) prevented the decreases in the radiation-induced GSH, SOD, CAT and GPx activities. These findings suggest potential use and benefit of FA as a radioprotector.  相似文献   

20.
It is well known that chronic exposure to lead (Pb(+2)) alters a variety of behavioral tasks in rats and mice. Here, we investigated the effect of flaxseed oil (1,000?mg/kg) on lead acetate (20?mg/kg)-induced brain oxidative stress and neurotoxicity in rats. The levels of Pb(+2), lipid peroxidation, nitric oxide (NO), and reduced glutathione (GSH) and the activity of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GPx) were determined in adult male albino rats. The level of Pb(+2) was markedly elevated in brain and blood of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in GSH, CAT, SOD, GR, GST, and GPx activities. These findings were associated with DNA fragmentation. In addition, lead acetate induced brain injury as indicated by histopathological changes of the brain. Treatment of rats with flaxseed oil resulted in marked improvement in most of the studied parameters as well as histopathological features. These findings suggest to the conclusion that flaxseed oil significantly decreased the adverse harmful effects of lead acetate exposure on the brain as well as Pb(+2)-induced oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号