首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome P450s are a superfamily of heme containing enzymes that use molecular oxygen and electrons from reduced nicotinamide cofactors to monooxygenate organic substrates. The fatty acid hydroxylase P450BM-3 has been particularly widely studied due to its stability, high activity, similarity to mammalian P450s, and presence of a cytochrome P450 reductase domain that allows the enzyme to directly receive electrons from NADPH without a requirement for additional redox proteins. We previously characterized the substrate N-palmitoylglycine, which found extensive use in studies of P450BM-3 due to its high affinity, high turnover number, and increased solubility as compared to fatty acid substrates. Here, we report that even higher affinity substrates can be designed by acylation of other amino acids, resulting in P450BM-3 substrates with dissociation constants below 100 nM. N-Palmitoyl-l-leucine and N-palmitoyl-l-methionine were found to have the highest affinity, with dissociation constants of less than 8 nM and turnover numbers similar to palmitic acid and N-palmitoylglycine. The interactions of the amino acid side chains with a hydrophobic pocket near R47, as revealed by our crystal structure determination of N-palmitoyl-l-methionine bound to the heme domain of P450BM-3, appears to be responsible for increasing the affinity of substrates. The side chain of R47, previously shown to be important in interactions with negatively charged substrates, does not interact strongly with N-palmitoyl-l-methionine and is found positioned at the enzyme-solvent interface. These are the tightest binding substrates for P450BM-3 reported to date, and the affinity likely approaches the maximum attainable affinity for the binding of substrates of this size to P450BM-3.  相似文献   

2.
P450BM-3, a catalytically self-sufficient, soluble bacterial P450, contains on the same polypeptide a heme domain and a reductase domain. P450BM-3 catalyzes the oxidation of short- and long-chain, saturated and unsaturated fatty acids. The three-dimensional structure of the heme domain both in the absence and in the presence of fatty acid substrates has been determined; however, the fatty acid in the substrate-bound form is not adequately close to the heme iron to permit a prediction regarding the stereoselectivity of oxidation. In the case of long-chain fatty acids, the products can also serve as substrate and be metabolized several times. In the current study, we have determined the absolute configuration of the three primary products of palmitic acid hydroxylation (15-, 14-, and 13-OH palmitic acid). While the 15- and 14-hydroxy compounds are produced in a highly stereoselective manner (98% R, 2% S), the 13-hydroxy is a mixture of 72% R and 28% S. We have also examined the binding of these three hydroxy acids to P450BM-3 and shown that only two of them (14-OH and 13-OH palmitic acid) can bind to and be further metabolized by P450BM-3. The results indicate that in contrast to the flexibility of palmitoleic acid bound to the oxidized enzyme, palmitic acid is rigidly bound in the active site during catalytic turnover.  相似文献   

3.
In a previous publication (Narhi, L. O. and Fulco, A. J. (1986) J. Biol. Chem. 261, 7160-7169) we described the characterization of a soluble 119,000-dalton P-450 cytochrome (P-450BM-3) that was induced by barbiturates in Bacillus megaterium. This single polypeptide contained 1 mol each of FAD and FMN/mol of heme and, in the presence of NADPH and O2, catalyzed the oxygenation of long-chain fatty acids without the aid of any other protein. We have now utilized limited trypsin proteolysis in the presence of substrate to cleave P-450BM-3 into two polypeptides (domains) of about 66,000 and 55,000 daltons. The 66-kDa domain contains both FAD and FMN but no heme, reduces cytochrome c in the presence of NADPH, and is derived from the C-terminal portion of P-450BM-3. The 55-kDa domain is actually a mixture of three discrete peptides (T-I, T-II, and T-III) separable by high performance liquid chromatography. All three contain heme and show a P-450 absorption peak in the presence of CO and dithionite. The major component, T-I (Mr = 55 kDa), binds fatty acid substrate and has an N-terminal amino acid sequence identical to that of intact P-450BM-3, an indication that this domain constitutes the N-terminal portion of the 119-kDa protein. T-II (54 kDa) is the same as T-I except that it is missing the first nine N-terminal amino acids and does not bind substrate. T-III (Mr = 53.5 kDa) has lost the first 15 N-terminal residues and does not bind substrate. Since trypsin digestion of P-450BM-3 carried out in the absence of substrate yields T-II and T-III but no T-I, it appears that 1 or more residues of the first nine N-terminal amino acids of this protein are intimately involved in substrate binding. Although both the heme- and flavin-containing tryptic peptides retain their original half-reactions, fatty acid monooxygenase activity cannot be reconstituted after proteolysis, and the two domains, once separated, show no affinity for each other. In most respects, the reductase domain of P-450BM-3 more closely resembles the mammalian microsomal P-450 reductases than it does any known bacterial protein.  相似文献   

4.
P450 monooxygenases from microorganisms, similar to those of eukaryotic mitochondria, display a rather narrow substrate specificity. For native P450 BM-3, no other substrates than fatty acids or an indolyl-fatty acid derivative have been reported (Li, Q.S., Schwaneberg, U., Fischer, P., Schmid, R.D., 2000. Directed evolution of the fatty-acid hydroxylase P450BM-3 into an indole-hydroxylating catalyst. Chem. Eur. J. 6 (9), 1531-1536). Engineering the substrate specificity of Bacillus megaterium cytochrome P-450 BM3: hydroxylation of alkyl trimethylammonium compounds. Biochem. J. 327, 537-544). We thus were quite surprised to observe, in the course of our investigations on the rational evolution of this enzyme towards mutants, capable of hydroxylating shorter-chain fatty acids, that a triple mutant P450 BM-3 (Phe87Val, Leu188-Gln, Ala74Gly, BM-3 mutant) could efficiently hydroxylate indole, leading to the formation of indigo and indirubin (Li, Q.S., Schwaneberg, U., Fischer, P., Schmid, R.D., 2000. Directed evolution of the fatty-acid hydroxylase P450BM-3 into an indole-hydroxylating catalyst. Chem. Eur. J. 6 (9), 1531-1536). Indole is not oxidized by the wild-type enzyme; it lacks the carboxylate group by which the proper fatty acid substrates are supposed to be bound at the active site of the native enzyme, via hydrogen bonds to the charged amino acid residues Arg47 and Tyr51. Our attempts to predict the putative binding mode of indole to P450 BM-3 or the triple mutant by molecular dynamics simulations did not provide any useful clue. Encouraged by the unexpected activity of the triple mutant towards indole, we investigated in a preliminary, but systematic manner several alkanes, alicyclic, aromatic, and heterocyclic compounds, all of which are unaffected by the native enzyme, for their potential as substrates. We here report that this triple mutant indeed is capable to hydroxylate a respectable range of other substrates, all of which bear little or no resemblance to the fatty acid substrates of the native enzyme.  相似文献   

5.
Cytochrome P450s constitute a superfamily of enzymes that catalyze the oxidation of a vast number of structurally and chemically diverse hydrophobic substrates. Herein, we describe the crystal structure of a complex between the bacterial P450BM-3 and the novel substrate N-palmitoylglycine at a resolution of 1.65 A, which reveals previously unrecognizable features of active site reorganization upon substrate binding. N-palmitoylglycine binds with higher affinity than any other known substrate and reacts with a higher turnover number than palmitic acid but with unaltered regiospecificity along the fatty acid moiety. Substrate binding induces conformational changes in distinct regions of the enzyme including part of the I-helix adjacent to the active site. These changes cause the displacement by about 1 A of the pivotal water molecule that ligands the heme iron, resulting in the low-spin to high-spin conversion of the iron. The water molecule is trapped close to the heme group, which allows it to partition between the iron and the new binding site. This partitioning explains the existence of a high-spin-low-spin equilibrium after substrate binding. The close proximity of the water molecule to the heme iron indicates that it may also participate in the proton-transfer cascade that leads to heterolytic bond scission of oxygen in P450BM-3.  相似文献   

6.
The determinants of the regio- and stereoselective oxidation of fatty acids by cytochrome P450 BM-3 were examined by mutagenesis of residues postulated to anchor the fatty acid or to determine its active site substrate-accessible volume. R47, Y51, and F87 were targeted separately and in combination in order to assess their contributions to arachidonic, palmitoleic, and lauric acid binding affinities, catalytic rates, and regio- and stereoselective oxidation. For all three fatty acids, mutation of the anchoring residues decreased substrate binding affinity and catalytic rates and, for lauric acid, caused a significant increase in the enzyme's NADPH oxidase activity. These changes in catalytic efficiency were accompanied by decreases in the regioselectivity of oxygen insertion, suggesting an increased freedom of substrate movement within the active site of the mutant proteins. The formation of significant amounts of 19-hydroxy AA by the Y51A mutant and of 11,12-EET by the R47A/Y51A/F87V triple mutant, suggest that wild-type BM-3 shields these carbon atoms from the heme bound reactive oxygen by restricting the freedom of AA displacement along the substrate channel, and active site accessibility. These results indicate that binding affinity and catalytic turnover are fatty acid carbon-chain length dependent, and that the catalytic efficiency and the regioselectivity of fatty acid metabolism by BM-3 are determined by active site binding coordinates that control acceptor carbon orientation and proximity to the heme iron.  相似文献   

7.
Within the Bacillus subtilis genome sequencing project, two monooxygenases (CYP102A2 and CYP102A3) were discovered which revealed a similarity of 76% to the well-known cytochrome P450 BM-3 (CYP102A1) of Bacillus megaterium. All enzymes are natural fusion proteins consisting of a heme domain and a reductase domain. We here report the cloning, expression and characterization of B. subtilis enzyme CYP102A3. The substrate specificity of this enzyme is similar to that of B. megaterium CYP102A1, which hydroxylates medium-chain fatty acids in subterminal positions. A double mutant was prepared that hydroxylates a number of other substrates, which do not bear any resemblance to the natural substrate of this enzyme family.  相似文献   

8.
Cytochrome P-450BM-3 is a catalytically self-sufficient fatty acid omega-hydroxylase with two domains. Functional and primary structure analyses of the hemo- and flavoprotein domains of cytochrome P-450BM-3 and the corresponding microsomal cytochrome P-450 system have shown that these proteins are highly homologous. Prior attempts to reconstitute the fatty acid hydroxylation function of cytochrome P-450BM-3, utilizing the two domains, obtained either by trypsinolysis or by recombinant methods, were unsuccessful. In this paper, we describe the reconstitution of the fatty acid hydroxylation activity of cytochrome P-450BM-3 utilizing the recombinantly produced flavoprotein domain (Oster, T., Boddupalli, S. S., and Peterson, J. A. (1991) J. Biol. Chem. 266, 22718-22725) and its hemoprotein counterpart. The rate of fatty acid-dependent oxygen consumption was shown to be linear when increasing concentrations of the hemoprotein domain are added to a fixed concentration of the flavoprotein domain and vice versa. The combination of the hemo- and flavoprotein domains in a ratio of 20:1 respectively, in the reaction mixture, results in the transfer of 80% of the reducing equivalents from NADPH for the hydroxylation of palmitate at 25 degrees C. The ratio of the regioisomeric products obtained for lauric, myristic, and palmitic acids was similar to that obtained with the holoenzyme form of cytochrome P-450BM-3. The reconstitution of the fatty acid omega-hydroxylase activity, using the soluble domains of cytochrome P-450BM-3, without added factors such as lipids, may be useful for structure/function comparisons to their eukaryotic counterparts.  相似文献   

9.
Cytochrome P450 BM-3 monooxygenase from Bacillus megaterium (CYP102A1) catalyzes the subterminal hydroxylation of fatty acids with a chain length of 12-22 carbons. Wild-type P450 BM-3 oxidizes saturated fatty acids at subterminal positions producing a mixture of omega-1, omega-2 and omega-3 hydroxylated products. Using a rational site-directed mutagenesis approach, three new elements have been introduced into the substrate binding pocket of the monooxygenase, which greatly changed the product pattern of lauric acid hydroxylation. Particularly, substitutions at positions S72, V78 and I263 had an effect on the enzyme regioselectivity. The P450 BM-3 mutants V78A F87A I263G and S72Y V78A F87A were able to oxidize lauric acid not only at delta-position (14% and 16%, respectively), but also produced gamma- and beta-hydroxylated products. delta-Hydroxy lauric and gamma-hydroxy lauric acid are important synthons for the production of the corresponding lactones.  相似文献   

10.
The use of three mechanism-based probes to investigate the topology and function of fatty acid hydroxylases is discussed. 1) The observation of protein rather than heme alkylation in the reaction of cytochrome P4504A1 with 10-undecynoic acid supports the argument that the enzyme circumvents the inherent preference for omega-1 hydroxylation by restricting access to the ferryl oxygen. 2) The regiochemistry of the ferricyanide-mediated iron-to-nitrogen shift of the cytochrome P450102 (P450BM-3) phenyl-iron complex indicates that the active site of this bacterial fatty acid hydroxylase is open primarily above pyrrole ring A of the prosthetic heme group, 3) Inhibition of clofibrate-mediated peroxisome proliferation in cultured rat hepatocytes by inactivation of cytochrome P4504A1 indicates that omega-hydroxylation of fatty acids provides a signal for peroxisome proliferation.  相似文献   

11.
Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k(cat) of ~25 min(-1) was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP(2)H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP(2)H but not D(2)O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.  相似文献   

12.
Bacillus megaterium cytochrome P-450BM-3 and its two functional domains, the heme and flavin domains, have been purified and characterized using an Escherichia coli expression system. Recombinant P-450BM-3 behaves both spectrally and enzymatically the same as the enzyme produced from the natural host, B. megaterium, and another E. coli system recently described (Bouddupalli, S. S., Estabrook, R. W., and Peterson, J. A. (1990) J. Biol. Chem. 265, 4233-4239). Reduction of the flavins in P-450BM-3 domain with NADPH appears to be very similar to microsomal P-450 reductases where two reducing equivalents are consumed to fully reduce the FMN while the FAD is converted to the semiquinone in an one electron reduction. NADPH reduction of the heme occurs only in the presence of substrate suggesting, by analogy with the cytochrome P-450CAM system, a possible increase in iron redox potential of the heme upon substrate binding which facilitates electron transfer from the flavins to the heme. The flavin domain retains a high level of cytochrome c reductase activity and also reacts with NADPH to give a 3-electron reduced product. The heme domain retains the ability to bind substrate and generates the characteristic 450-nm absorption band upon reduction in the presence of CO. The heme domain has been crystallized and a preliminary set of x-ray diffraction data obtained.  相似文献   

13.
Cytochromes P450 typically catalyze the monooxygenation of hydrophobic compounds resulting in the insertion of one atom of dioxygen into the organic substrate and the reduction of the other oxygen atom to water. The two electrons required for the reaction are normally provided by another redox active protein, for example cytochrome P450 reductase (CPR) in mammalian endoplasmic reticulum membranes. P450BM-3 from Bacillus megaterium is a widely studied P450 cytochrome in which the P450 is fused naturally to a diflavin reductase homologous to CPR. From the original characterization of the enzyme by Fulco's laboratory, the enzyme was shown to have a nonlinear dependence of reaction rate on enzyme concentration. In recent experiments we observed enzyme inactivation upon dilution, and the presence of substrate can diminish this inactivation. We therefore carried out enzyme kinetics, cross-linking experiments, and molecular weight determinations that establish that the enzyme is capable of dimerizing in solution. The dimer is the predominant form at higher concentrations under most conditions and is the only form with significant activity. Further experiments selectively knocking out the activity of individual domains with site-directed mutagenesis and measuring enzyme activity in heterologous dimers establish that the electron-transfer pathway in P450BM-3 passes through both protein molecules in the dimer during a single turnover, traversing from the FAD domain of one molecule into the FMN domain of the other molecule before passing to the heme domain. Analysis of our results combined with other analyses in the literature suggests that the heme domain of either monomer may accept electrons from the reduced FMN domain.  相似文献   

14.
In this study we have replaced all 13 methionine residues in the cytochrome P450 BM-3 heme domain (463 amino acids) with the isosteric methionine analog norleucine. This experiment has provided a means of testing the functional limits of globally incorporating into an enzyme an unnatural amino acid in place of its natural analog, and also an efficient way to test whether inactivation during peroxide-driven P450 catalysis involves methionine oxidation. Although there was no increase in the stability of the P450 under standard reaction conditions (in 10 mM hydrogen peroxide), complete substitution with norleucine resulted in nearly two-fold-increased peroxygenase activity. Thermostability was significantly reduced. The fact that the enzyme can tolerate such extensive amino acid replacement suggests that we can engineer enzymes with unique chemical properties via incorporation of unnatural amino acids while retaining or improving catalytic properties. This system also provides a platform for directing enzyme evolution using an extended set of protein building blocks.  相似文献   

15.
Fatty acid monooxygenation by cytochrome P-450BM-3   总被引:8,自引:0,他引:8  
Cytochrome P-450BM-3 is a catalytically self-sufficient enzyme which monooxygenates saturated and unsaturated fatty acids, alcohols, and amides. The protein has two domains: one which contains heme and is P-450-like and the other which contains FAD and FMN and is P-450 reductase-like. Both domains are on a single polypeptide chain. Utilizing a plasmid containing the gene encoding P-450BM-3, we have transformed the Escherichia coli strain DH5 alpha. This clone overexpresses P-450BM-3 to make approximately 20% of the soluble protein of this organism under optimal conditions. P-450BM-3 can be purified to homogeneity from the soluble fraction of the protein of these cells with a recovery of 50% making this cell line an excellent source of this important enzyme. Purified preparations of P-450BM-3 hydroxylate palmitic acid at a rate of 1600 mol/min/mol of heme at 25 degrees C. The stoichiometry of NADPH to oxygen utilized was 1 for all conditions; however, the ratio of oxygen or NADPH utilized per molecule of fatty acid substrate metabolized was different for different homologs of saturated fatty acids, when low concentrations (less than 100 microM) of substrate were used. Lauric and myristic acids were metabolized to two hydroxylated products, irrespective of the initial concentration of fatty acid in the reaction mixture, and the ratio of oxygen consumed to fatty acid hydroxylated was 1. High concentrations of palmitic acid (greater than 200 microM) led to the formation of three polar metabolites and a stoichiometry of 1:1 was observed for oxygen and palmitic acid utilization. These results indicate that a single hydroxyl group was inserted into each of these molecules. Lower concentrations (less than 50 microM) of palmitic acid were metabolized to additional polar metabolites, and the ratio of oxygen consumed to fatty acid substrate consumed approximated 3:1. These results can be explained best by a hypothesis that the initial hydroxylated compounds, which accumulate during the oxidation of palmitic acid by P-450BM-3, can be further oxidized by this enzyme to polyhydroxy- or hydroxy-ketone products.  相似文献   

16.
We have converted cytochrome P450 BM-3 from Bacillus megaterium (P450 BM-3), a medium-chain (C12-C18) fatty acid monooxygenase, into a highly efficient catalyst for the conversion of alkanes to alcohols. The evolved P450 BM-3 exhibits higher turnover rates than any reported biocatalyst for the selective oxidation of hydrocarbons of small to medium chain length (C3-C8). Unlike naturally occurring alkane hydroxylases, the best known of which are the large complexes of methane monooxygenase (MMO) and membrane-associated non-heme iron alkane monooxygenase (AlkB), the evolved enzyme is monomeric, soluble, and requires no additional proteins for catalysis. The evolved alkane hydroxylase was found to be even more active on fatty acids than wild-type BM-3, which was already one of the most efficient fatty acid monooxgenases known. A broad range of substrates including the gaseous alkane propane induces the low to high spin shift that activates the enzyme. This catalyst for alkane hydroxylation at room temperature opens new opportunities for clean, selective hydrocarbon activation for chemical synthesis and bioremediation.  相似文献   

17.
The cyp102A2 and cyp102A3 genes encoding the two Bacillus subtilis homologues (CYP102A2 and CYP102A3) of flavocytochrome P450 BM3 (CYP102A1) from Bacillus megaterium have been cloned, expressed in Escherichia coli, purified, and characterized spectroscopically and enzymologically. Both enzymes contain heme, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) cofactors and bind a variety of fatty acid molecules, as demonstrated by conversion of the low-spin resting form of the heme iron to the high-spin form induced by substrate-binding. CYP102A2 and CYP102A3 catalyze the fatty acid-dependent oxidation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and reduction of artificial electron acceptors at high rates. Binding of carbon monoxide to the reduced forms of both enzymes results in the shift of the heme Soret band to 450 nm, confirming the P450 nature of the enzymes. Reverse-phase high-performance liquid chromatography (HPLC) of products from the reaction of the enzymes with myristic acid demonstrates that both catalyze the subterminal hydroxylation of this substrate, though with different regioselectivity and catalytic rate. Both P450s 102A2 and 102A3 show kinetic and binding preferences for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids, indicating that the former two molecule types may be the true substrates. P450s 102A2 and 102A3 exhibit differing substrate selectivity profiles from each other and from P450 BM3, indicating that they may fulfill subtly different cellular roles. Titration curves for binding and turnover kinetics of several fatty acid substrates with P450s 102A2 and 102A3 are better described by sigmoidal (rather than hyperbolic) functions, suggesting binding of more than one molecule of substrate to the P450s, or possibly cooperativity in substrate binding. Comparison of the amino acid sequences of the three flavocytochromes shows that several important amino acids in P450 BM3 are not conserved in the B. subtilis homologues, pointing to differences in the binding modes for the substrates that may explain the unusual sigmoidal kinetic and titration properties.  相似文献   

18.
The substrate oxidation rates of P450(BM-3) are unparalleled in the cytochrome P450 (CYP) superfamily of enzymes. Furthermore, the bacterial enzyme, originating from Bacillus megaterium, has been used repeatedly as a model to study the metabolism of mammalian P450s. A specific example is presented where studying P450(BM-3) substrate dynamics can define important enzyme-substrate characteristics, which may be useful in modeling omega-hydroxylation seen in mammalian P450s. In addition, if the reactive species responsible for metabolism can be controlled to produce specific products this enzyme could be a useful biocatalyst. Based on crystal structures and the fact that the P450(BM-3) F87A mutant produces a large isotope in contrast to the native enzyme, we propose that phenylalanine 87 is responsible for hindering substrate access to the active oxygen species for nonnative substrates. Using kinetic isotopes and two aromatic substrates, p-xylene and 4,4'-dimethylbiphenyl, the role phenylalanine 87 plays in active-site dynamics is characterized. The intrinsic KIE is 7.3 +/- 2 for wtP450(BM-3) metabolism of p-xylene. In addition, stoichiometry differences were measured with the native and mutant enzyme and 4,4'-dimethylbiphenyl. The results show a more highly coupled substrate/NADPH ratio in the mutant than in the wtP450(BM-3).  相似文献   

19.
催化吲哚生成靛蓝的细胞色素P450BM-3 定向进化研究   总被引:6,自引:0,他引:6  
以催化吲哚产生的靛蓝在 630 nm 处具有特殊的吸收峰为高通量筛选指标,将来源于 Bacillus megaterium 的细胞色素 P450BM-3 单加氧酶的基因序列用易错聚合酶链式反应进行定向进化,通过多轮突变,在原有的能产靛蓝的高活力突变酶的基础上成功获得了三个高于亲本酶的突变酶,突变酶的酶活分别是亲本酶的 6.6 倍 (hml001) , 9.6 倍 (hml002) 和 5.3 倍 (hml003) ,并对突变酶的动力学参数进行了分析 . 突变酶 DNA 测序的结果表明, hml001 含有一个有义氨基酸置换 I39V , hml002 含有三个有义氨基酸置换 D168N , A225V , K440N , hml003 含有一个有义氨基酸置换 E435D ,这些突变位点有些远离底物结合部位,有些位于底物结合部位 .  相似文献   

20.
The feasibility of replacing NADPH with 1,1'-dicarboxycobaltocene in the catalytic cycle of cytochrome P450 BM3 has been explored. Using the holoprotein, the surrogate mediator was observed to reduce both the FAD and FMN in the reductase domain, as well as the iron in the heme domain. In an electrochemical system, the mediator was able to support lauric acid hydroxylation at a rate of 16.5 nmol product/nmol enzyme/minute. Similar electron transfer and catalysis were observed for the heme domain alone in the presence of the metallocene; the turnover rate in this case was 1.8 nmol product/nmol enzyme/minute. Parallel studies under the same conditions using a previously reported cobalt sepulchrate mediator showed that the two systems give similar results for both the holoenzyme and the heme domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号