首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved synthesis of the diastereomers of 1alpha,25-dihydroxyvitamin D3 (1) was accomplished utilizing our practical route to the A-ring synthon. We applied this procedure to synthesize for the first time all possible A-ring diastereomers of 20-epi-1alpha,25-dihydroxyvitamin D3 (2). Ten-step conversion of 1-(4-methoxyphenoxy)but-3-ene (6), including enantiomeric introduction of the C-3 hydroxyl group to the olefin by the Sharpless asymmetric dihydroxylation, provided all four possible stereoisomers of A-ring enynes (3). i.e., (3R,5R)-, (3R,5S)-, (3S,5R)- and (3S,5S)-bis[(tert-butyldimethylsilyl)oxy]oct-1-en-7-yne, in good overall yield. Palladium-catalyzed cross-coupling of the A-ring synthon with the 20-epi CD-ring portion (5), (E)-(20S)-de-A,B-8-(bromomethylene)cholestan-25-ol, followed by deprotection, afforded the requisite diastereomers of 20-epi-1alpha,25-dihydroxyvitamin D3 (2). The biological profiles of the synthesized stereoisomers were assessed in terms of affinities for vitamin D receptor (VDR) and vitamin D binding protein (DBP). HL-60 cell differentiation-inducing activity and in vivo calcium-regulating potency in comparison with the natural hormone.  相似文献   

2.
Dai J  Ye M  Guo H  Zhu W  Zhang D  Hu Q  Zheng J  Guo D 《Bioorganic chemistry》2003,31(4):345-356
Three C-14 oxygenated taxanes isolated from callus cultures of Taxus spp., 2alpha,5alpha,10beta,14beta-tetra-acetoxy-4(20),11-taxadiene 3, 2alpha,5alpha,10beta-triacetoxy-14beta-propionyloxy-4(20),11-taxadiene 4, 2alpha,5alpha,10beta-triacetoxy-14beta-(2-methylbutyryl)-oxy-4(20),11-taxadiene 5, and three deacetylated derivatives of 3, 10beta-hydroxy-2alpha,5alpha,14beta-triacetoxy-4(20),11-taxadiene 6, 14beta-hydroxy-2alpha,5alpha,10beta-triacetoxy-4(20),11-taxadiene 7, 10beta,14beta-dihydroxy-2alpha,5alpha-diacetoxy-4(20),11-taxadiene 8, could all be regio- and stereo-selectively hydroxylated at the 9alpha-position by Ginkgo cell suspension cultures to yield a series of new 9alpha,14beta-dihydroxylated taxoids. The effects of functional groups, especially at C-14 of the substrates, on the biotransformation were also investigated. The results revealed that substrates with an acetoxyl group at C-14 could be more efficiently 9alpha-hydroxylated than those with a longer ester chain or a hydroxyl group at C-14. An acetoxyl or hydroxyl group at C-10 had no effect on the conversion rates of the substrates, but substrates with the hydroxyl group (compared with the acetoxyl analogues) could be converted into 9alpha-hydroxylated products more easily.  相似文献   

3.
4.
New 6- (or 6,7-) substituted 2-(hydroxyl substituted phenyl)quinolin-4-one derivatives were synthesized and screened for antiproliferative effects against cancer cell lines. Structure–activity relationship correlations were established and the most promising compound 2-(3-hydroxy-5-methoxyphenyl)-6-pyrrolidin-1-ylquinolin-4-one (6h) exhibited strong inhibitory activity against various human cancer cell lines, particularly non-small cell lung cancer NCI-H522. Additional studies suggested a mechanism of action resembling that of the antimitotic drug vincristine. The presence of a C-ring OH group in 6h will allow this compound to be converted readily to a water soluble and physicochemically stable hydrophilic prodrug. Compound 6h is proposed as a new anticancer lead compound.  相似文献   

5.
1alpha,25-Dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) is known to inhibit the proliferation and invasiveness of prostate cancer cells. However, 1alpha,25(OH)(2)D(3) can cause hypercalcemia and is not suitable as a therapeutic agent. 19-Nor-vitamin D derivatives are known to be less calcemic when administered systemically. In order to develop more potent anti-cancer agents with less calcemic side effect, we therefore utilized (3)H-thymidine incorporation as an index for cell proliferation and examined the antiproliferative activities of nine C-2-substituted 19-nor-1alpha,25(OH)(2)D(3) analogs in the immortalized PZ-HPV-7 normal prostate cell line. Among the nine analogs we observed that the substitution with 2alpha- or 2beta-hydroxypropyl group produced two analogs having antiproliferative potency that is approximately 500- to 1000-fold higher than 1alpha,25(OH)(2)D(3). The (3)H-thymidine incorporation data were supported by the cell counting data after cells were treated with 1alpha,25(OH)(2)D(3), 19-nor-2alpha-(3-hydroxypropyl)-1alpha,25(OH)(2)D(3) or 19-nor-2beta-(3-hydroxypropyl)-1alpha,25(OH)(2)D(3) for 7 days. 19-Nor-2alpha-(3-hydroxypropyl)-1alpha,25(OH)(2)D(3) and 19-nor-2beta-(3-hydroxypropyl)-1alpha,25(OH)(2)D(3) were also shown to be about 10-fold more active than 1alpha,25(OH)(2)D(3) in cell invasion studies using prostate cancer cells. In conclusion, a substitution at the C-2 position of 19-nor-1alpha,25(OH)(2)D(3) molecule with a hydroxypropyl group greatly increased the antiproliferative and anti-invasion potencies. Thus, these two analogs could be developed to be effective therapeutic agents for treating early and late stages of prostate cancer.  相似文献   

6.
Long standing disturbances of Vitamin D-metabolism as well as null-mutant animals for 25-hydroxy-1alpha-hydroxylase results in disorganised growth plates. Cultured chondrocytes were shown to be target for the hydroxylated Vitamin D-metabolites 1alpha,25(OH)(2)D(3) and 24,25(OH)(2)D(3). Because studies on production of these metabolites were inconclusive in in vitro systems, the expression of the Vitamin D-system was examined in rat growth plate chondrocytes in vitro as well as ex vivo. Gene expression for 25-hydroxy-1alpha-hydroxylase, 25-hydroxy-24-hydroxylase as well as Vitamin D-receptor and collagen II and X were analysed on mRNA level by RT-PCR and quantitative real-time PCR, on protein level by western blotting and by immunohistochemistry in isolated growth plate chondrocytes or intact growth plates. Compared to UMR or CaCo(2) cells and renal homogenates cultured growth plate chondrocytes expressed low levels of 25-hydroxy-1alpha-hydroxylase mRNA and 25-hydroxy-24-hydroxylase mRNA. The expression of both was modulated by 25(OH)D(3), but 1alpha,25(OH)(2)D(3) affected only 25-hydroxy-24-hydroxylase. These data were confirmed by Western blotting. Immunohistochemistry demonstrated predominant staining for 25-hydroxy-1alpha-hydroxylase in chondrocyte nodules and cells embedded in matrix in vitro. Ex vivo, 25-hydroxy-1alpha-hydroxylase was detected predominantly in late proliferative and hypertrophic zone of the growth plate. In conclusion, growth plate chondrocytes express the key components for a paracrine/autocrine Vitamin D-system.  相似文献   

7.
Regulation of erythroid differentiation by vitamin D3 derivatives was examined in Friend erythroleukemia cells. After Friend cells were cultured for 5 days with 1.5% dimethyl sulfoxide (DMSO), as much as 70% of the cells became benzidine-positive and the hemoglobin content increased in parallel with the increase of benzidine-positive cells. The DMSO-induced erythroid differentiation was markedly inhibited by concurrent addition of the active form of vitamin D3, 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3]. Of the vitamin D3 derivatives tested, 1 alpha,25(OH)2D3 was the most potent in inhibiting DMSO-induced erythroid differentiation. 1 alpha,25(OH)2D3 alone was totally ineffective in both cell growth and erythroid differentiation. These results together with our previous reports indicate that 1 alpha,25(OH)2D3 is somehow involved not only in myeloid differentiation, but also in erythroid differentiation.  相似文献   

8.
9.
The alteration in the biologic activity of the vitamin D3 molecule resulting from the replacement of a hydrogen atom with a fluorine atom is a subject of fundamental interest. To investigate this problem we synthesized 3 beta-fluorovitamin D3 6 and its hydrogen analog, 3-deoxyvitamin D3 7, and tested the biologic activity of each by in vitro and in vivo methods. Contrary to previous reports which showed that 3 beta-fluorovitamin D3 was as active as vitamin D3 in vivo, we found that the fluoro-analog was less active than vitamin D3. With regard to stimulation of intestinal calcium transport and bone calcium mobilization in the D-deficient hypocalcemic rat, 3 beta-fluorovitamin D3 showed significantly greater biologic activity than its hydrogen analog, 3-deoxyvitamin D3. In the organ-cultured, embryonic chick duodenum, 3 beta-fluorovitamin D3 was approx 1/1000th as active as the native hormone, 1,25-dihydroxyvitamin D3, while 3-deoxyvitamin D3 was inactive even at microM concentrations, in the induction of the vitamin D-dependent, calcium-binding protein. With regard to in vitro activity in displacing radiolabeled 25-hydroxyvitamin D3 from vitamin D binding protein and radiolabelled 1,25-dihydroxyvitamin D3 from a chick intestinal cytosol receptor, 3 beta-fluorovitamin D3 and 3 beta-deoxyvitamin D3 both showed very poor binding efficiencies when compared with vitamin D3. Our results show that the substitution of a fluorine atom for a hydrogen atom at the C-3 position of the vitamin D3 molecule results in a fluorovitamin 6 with significantly more biological activity than its hydrogen analog, 3-deoxyvitamin D3 7.  相似文献   

10.
Treatment of the DMan (beta 1-4) LRha (alpha 1-3) D [3H]Gal-derivative of moraprenyl pyrophosphate with the cell envelope preparation from S. newington results in the formation of polysaccharide with beta 1-6 linkage between the trisaccharide units (polymerization degree approximately 8). The synthetic derivatives of moraprenyl pyrophosphate which contain D-talose, 4-deoxy-D-xylo-hexose, LRha (alpha 1-3) DGlc or LRha (alpha 1-3) DGlc (alpha 1-6) DGal were found to serve as substrates for the biosynthesis of the corresponding modified polysaccharides.  相似文献   

11.
The discovery of 2-methylene-19-nor-1alpha,25-dihydroxyvitamin D3 (2MD) as a bone selective and bone anabolic form of vitamin D has stimulated an investigation of structure/function of bone selectivity. Four new 2-substituted-19-norvitamin D analogs 3-6 have been developed to study the structure-activity relationship at C-25. As predicted, removing the 25-hydroxy group (compound 3) from the very potent analog 2MD and its 2-methyl derivatives (5 and 6) dramatically reduces in vitro activities, but biological potency is nearly fully restored in vivo likely due to in vivo 25-hydroxylation. The introduction of a methyl group at C-25 (compound 4) that blocks in vivo 25-hydroxylation reduces biological activity both in vitro and in vivo. However, analog 4 retains bone selectivity making it interesting as a possible therapeutic for bone loss diseases.  相似文献   

12.
26-Oxygenated derivatives of delta 8(14)-15-ketosterols have been synthesized from (25R)-3 beta,26-diacetoxy-5 alpha-cholest-8(14)-en-15-one (IX) as part of a program to prepare potential metabolites and analogs of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one (I), a potent regulator of cholesterol metabolism. Partial hydrolysis of IX gave a mixture, from which the 3 beta,26-diol II and the 26-acetate (XI) and 3 beta-acetate (X) monoesters were isolated. Mitsunobu reaction of XI followed by hydrolysis gave (25R)-3 alpha,26-dihydroxy-5 alpha-cholest-8(14)-en-15-one (VI). Oxidation of XI with pyridinium chlorochromate followed by hydrolysis of the acetate gave (25R)-26-hydroxy-5 alpha-cholest-8(14)-ene-3,15-dione (VII). Oxidation of X with Jones reagent followed by hydrolysis of the acetate gave (25R)-3 beta-hydroxy-15-keto-5 alpha-cholest-8(14)-en-26-oic acid (IVa). Jones oxidation of II gave (25R)-3,15-diketo-5 alpha-cholest-8(14)-en-26-oic acid (VII). 1H and 13C nuclear magnetic resonance assignments and analyses of mass spectral fragmentation data are presented for each of the new compounds and their derivatives. The 3,15-diketone VII was found to be highly active in lowering the levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells, with a potency comparable to that of I. In contrast, 3 alpha,26-diol VI was less potent than I or VII. The two carboxylic acid analogs IVa and VIII were considerably less potent than VI in lowering the levels of HMG-CoA reductase activity.  相似文献   

13.
14.
Improved and efficient procedures for deuterium-labeling at the 6,19,19 positions of 1alpha-hydroxyvitamin D3 derivatives via its sulfur dioxide-adduct by using a base-catalyzed H-D exchange reaction are described. Application of the known procedure using tBuOK/DMF-D2O, which is effective for labeling vitamin D3 derivatives, to 1alpha-hydroxy compounds gave only poor results because of isomerization and decomposition. We found that this procedure is improved by the use of iPrONa/iPrOD. During this study, we also found that the 6-monodeuterated product was selectively obtained when MeONa/CD3OD was employed instead of iPrONa/iPrOD. On the other hand, simple addition of 1,3-dimethyl-2-imidazolidinone as a co-solvent to the above conditions was effective for 1alpha,25-dihydroxy compounds. These improved procedures were successfully applied to the synthesis of 1alpha-hydroxy-[6,19,19-(2)H]vitamin D3 derivatives 4 and 1alpha-hydroxy-[6-(2)H]vitamin D3 derivatives 6 from the corresponding 1alpha-hydroxyvitamin D3 derivatives 1 via its sulfur dioxide-adducts 2, 3 and 5 in good over-all yield with high deuterium incorporation.  相似文献   

15.
Pyrocatechase (catechol 1,2-oxidoreductase (decyclizing), EC 1.13.11.1), a ferric ion-containing dioxygenase from Pseudomonas arvilla C-1, catalyzes the intradiol cleavage of catechol with insertion of 2 atoms of molecular oxygen to form cis,cis-muconic acid. The enzyme also catalyzed the oxidation of various catechol derivatives, including 4-methylcatechol, 4-chlorocatechol, 4-formylcatechol (protocatechualdehyde), 4,5-dichlorocatechol, 3,5-dichlorocatechol, 3-methylcatechol, 3-methoxycatechol, and 3-hydroxycatechol (pyrogallol). All of these substrates gave products having an absorption maximum at around 260 nm, which is characteristic of cis,cis-muconic acid derivatives. However, when 3-methylcatechol was used as substrate, the product formed showed two absorption maxima at 390 and 260 nm. These two absorption maxima were found to be attributable to two different products, 2-hydroxy-6-oxo-2,4-heptadienoic acid and 5-carboxy-2-methyl-2,4-pentadienoic acid (2-methylmuconic acid). The former was produced by the extradiol cleavage between the carbon atom carrying the hydroxyl group and the carbon atom carrying the hydroxyl group and the carbon atom carrying the methyl group; the latter by an intradiol cleavage between two hydroxyl groups. Since these products were unstable, they were converted to and identified as 6-methylpyridine-2-carboxylic acid and 2-methylmuconic acid dimethylester, respectively. Similarly, 3-methoxycatechol gave two products, namely, 2-hydroxy-5-methoxycarbonyl-2,4-pentadienoic acid and 5-carboxy-2-methoxy-2,4-pentadienoic acid (2-methoxymuconic acid). With 3-methylcatechol as substrate, the ratio of intradiol and extradiol cleavage activities of Pseudomonas pyrocatechase during purification was almost constant and was about 17. The final preparation of the enzyme was homogeneous when examined by disc gel electrophoresis and catalyzed both reactions simultaneously with the same ratio as during purification. All attempts to resolve the enzyme into two components with separate activities, including inactivation of the enzyme with urea or heat, treatment with sulfhydryl-blocking reagents or chelating agents, and inhibition of the enzyme with various inhibitors, proved unsuccessful. These results strongly suggest that Pseudomonas pyrocatechase is a single enzyme, which catalyzes simultaneously both intradiol and extradiol cleavages of some 3-substituted catechols.  相似文献   

16.
Preparative methods were developed for reduction with NaBH4 at 0 of 3 beta, 5 alpha- and 3 alpha, 5 beta-tetrahydroaldosterone (1) and (12) to their respective 20 alpha-ol derivatives 2a and 13a. Corroboration of structures was obtained by periodate oxidations to the lactols 3b and 14b and thence, by further oxidation, to the lactones 4 and 15 respectively; these lactones were also independently obtained from 1 and 12. Reduction with NaBH4 at 80 degrees C converted 1 and 12 into 18-hydroxy-3 beta, 5 alpha, 20- and 18-hydroxy-3 alpha, 5 beta, 20-hexahydrocorticosterone 6a and 17a respectively, which were mixtures of epimers at C-20. Compound 17a could also be prepared by reduction of the lactone 21 with sodium aluminum bis-(methoxyethoxy) hydride. Again, periodate oxidations of 6a and 17a gave the lactols 7b and 22b and thence, by Jones oxidation, the diketolactones 8 and 23, which were also prepared from 18-hydroxy-11-dehydrocorticosterone (10) and 18-hydroxycorticosterone (24) respectively. Improved conditions for reduction with Clostridium paraputrificum permitted convenient conversion of aldosterone (11), the corresponding 18 leads to 11 lactone 18a and 18-hydroxycorticosterone (24) into their 3 alpha, 5 beta-tetrahydro derivatives.  相似文献   

17.
Novel vitamin D3 derivatives, 26-homo-delta 22-1 alpha,25(S)-dihydroxyvitamin D3 and 26-homo-delta 22-1 alpha,25(R)-dihydroxyvitamin D3 were compared with the native hormone, 1,25-dihydroxyvitamin D3, and with other vitamin D3 derivatives, in inhibition of cell growth, induction of phenotypic differentiation, and c-myc mRNA reduction of HL-60 cells. The degree of inhibition in cell growth caused by 26-homo-delta 22-1 alpha,25(S)-(OH)2D3 was the greatest followed by 26-homo-delta 22-1 alpha,25(R)-(OH)2D3. The ability to reduce NBT was parallel to that to inhibit cellular proliferation. 26-homo-delta 22-1 alpha,25(S)-(OH)2D3, 26-homo-delta 22-1 alpha,25(R)-(OH)2D3, 24-homo-24-F2-1 alpha,25-(OH)2D3, and 1 alpha,24(R)-(OH)2-26-Cl-D3 were more active than 1 alpha,25-(OH)2D3 in the induction of OK-M1+ and OK-Mo-2+ HL-60 cells. Using two color flow cytometric analysis, the percentages of OK-M5(+)- and OK-DR(+)-HL-60 cells were 33% in the treatment with 26-homo-delta 22-1 alpha,25(S)-(OH)2D3 plus interferon-gamma (IFN-gamma) but 14% in the treatment with 1 alpha,25-(OH)2D3 plus IFN-gamma. 26-Homo-delta 22-1 alpha,25(S)-(OH)2D3 has an inhibitory effect on c-myc reduction in treated HL-60 cells. These results suggest that the novel vitamin D3 derivatives, 26-homo-delta 22-1 alpha,25(S)-(OH)2D3 and 26-homo-delta 22-1 alpha,25(R)-(OH)2D3, have preferential activity in inducing phenotypic differentiation and in inducing cell proliferation related c-myc mRNA activity.  相似文献   

18.
The bile acid derived from hydrogenolysis of methyl 6-oxo-3α, 7β-dihydroxy-5α-cholanate-6-ethylenethioketal with Raney nickel has been shown to be 3β, 7β-dihydroxy-5α-cholanic acid (VI). On extended reflux with Raney nickel the original C-3 hydroxyl group is dehydrogenated and the 3-oxo-derivative reduced principally to the equatorial 3β-o1. The positions and configurations of the hydroxyl groups were determined by reduction of the derived monohydroxy mono-oxo derivatives to the known monohydroxy acids. The materials (VI) has been synthesized from 3β-hydroxy-7-oxo-5α-cholanic acid by reduction with sodium and alcohol. Physical properties support the assigned structure.  相似文献   

19.
The 20-epi form of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)-20-epi-D(3)) is expected as drugs for leukemia, other cancers or psoriasis, because it shows several-hundred fold enhanced ability to induce cell differentiation and growth inhibition than 1alpha,25-dihydroxyvitamin D(3) while its calcemic activity is only slightly elevated. In this study, we compared the human and rat CYP24-dependent metabolism of 1alpha,25(OH)(2)-20-epi-D(3) by using the Escherichia coli expression system. The HPLC and LC-MS analyses of the metabolites revealed that rat CYP24 converted 1alpha,25(OH)(2)-20-epi-D(3) to 25,26,27-trinor-1alpha(OH)-24(COOH)-20-epi-D(3) through 1alpha,24,25(OH)(3)-20-epi-D(3) and 1alpha,25(OH)(2)-24-oxo-20-epi-D(3). The binding affinity of trinor-1alpha(OH)-24(COOH)-20-epi-D(3) for vitamin D receptor (VDR) was less than 1/4000 of that of 1alpha,25(OH)(2)-20-epi-D(3). These results suggest that rat CYP24 can almost completely inactivate 1alpha,25(OH)(2)-20-epi-D(3). On the other hand, human CYP24 mainly converted 1alpha,25(OH)(2)-20-epi-D(3) to its putative demethylated compound with a hydroxyl group, via 1alpha,24,25(OH)(3)-20-epi-D(3), 1alpha,25(OH)(2)-24-oxo-20-epi-D(3), and 1alpha,23,25(OH)(3)-24-oxo-20-epi-D(3). All of these metabolites showed considerable affinity for vitamin D receptor. These results clearly demonstrate the species-based difference between human and rat on the CYP24-dependent metabolism of 1alpha,25(OH)(2)-20-epi-D(3).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号