首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The mechanism for synthesis of monounsaturated fatty acids under aerobic and anaerobic conditions was studied in the facultative anaerobic cyanobacterium, Oscillatoria limnetica. The hexadecenoic acid (C161) of aerobically grown O. limnetica was shown to contain both the 7 (79%) and 9 (21%) isomers, while the octadecenoic (C181) acid was entirely the 9 acid. Incorporation of [2-14C] acetate into the fatty acids under aerobic conditions resulted in synthesis of the 7 and 9 C161 and the 9 C181. Synthesis of unsaturated fatty acids in the presence of DCMU required sulfide. Anaerobic incubations in the presence of DCMU and sulfide (less than 0.003% atmospheric oxygen) resulted in a two-fold increase in monounsaturated fatty acids of both 7 and 9 C161 and 9 and 11 C181. The synthesis of these isomers is characteristic of a bacterialtype, anaerobic pathway.Abbreviations DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - MFA monounsaturated fatty acid  相似文献   

2.
Heterotrophically grown cell suspension cultures of soya (Glycine max L.) were incubated with two different mixed substrates consisting of positional isomers of either cis-[1-14C]octadecenoic acids (8 to 15) or trans-[1-14C]octadecenoic acids (8 to 16), each with known composition. With both substrates, about one-fourth of the radioactivity supplied was incorporated into the diacylglycerophosphocholines, while another one-fourth of the radioactivity was almost equally distributed between diacylglycerophos-phoethanolamines and triacylglycerols. All the positional isomers of cis-and trans-octadecenoic acids supplied to the cells were readily incorporated into various classes of glycerolipids. None of the octadecenoic acids was isomerized, elongated or desaturated during incubation. From the cis-octadecenoic acids, only the naturally occurring 9-isomer (oleic acid) was preferentially incorporated into position 2 of diacylglycerophosphocholines, diacylglycerophospho-ethanolamines, and triacyglycerols; all the other isomers exhibited a strong affinity for position 1 of the glycerophospholipids and positions 1 and 3 of the triacylglycerols. From the trans-octadecenoic acids, only the 9-isomer (elaidic acid) was preferentially incorporated into position 2 of diacylglycerophospho-cholines and triacylglycerols; all the other isomers preferred position 1 and positions 1 and 3, respectively, of these lipids. In diacylglycerophospho-ethanolamines, however, each of the trans-octadecenoic acids, including the 9-isomer, exhibited a strong affinity for position 1. Apparently, the enzymes involved in the incorporation of exogenous monounsaturated fatty acids into membrane lipids of plant cells can recognize the preferred substrate in a mixture of closely related isomers.  相似文献   

3.
At low Ca2+ concentrations the pore of the inner mitochondrial membrane can open in substates with lower permeability (Hunter, D. R., and Haworth, R. A. (1979) Arch. Biochem. Biophys., 195, 468-477). Recently, we showed that Ca2+ loading of mitochondria augments the cyclosporin A-dependent decrease in transmembrane potential () across the inner mitochondrial membrane caused by 10 M myristic acid but does not affect the stimulation of respiration by this fatty acid. We have proposed that in our experiments the pore opened in a substate with lower permeability rather than in the classic state (Bodrova, M. E., et al. (2000) IUBMB Life, 50, 189-194). Here we show that under conditions lowering the probability of classic pore opening in Ca2+-loaded mitochondria myristic acid induces the cyclosporin A-sensitive decrease and mitochondrial swelling more effectively than uncoupler SF6847 does, though their protonophoric activities are equal. In the absence of Pi and presence of succinate and rotenone (with or without glutamate) cyclosporin A either reversed or only stopped decrease induced by 5 M myristic acid and 5 M Ca2+. In the last case nigericin, when added after cyclosporin A, reversed the decrease, and the following addition of EGTA produced only a weak (if any) increase. In Pi-containing medium (in the presence of glutamate and malate) cyclosporin A reversed the decrease. These data show that the cyclosporin A-sensitive decrease in by low concentrations of fatty acids and Ca2+ cannot be explained by specific uncoupling effect of fatty acid. We propose that: 1) low concentrations of Ca2+ and fatty acid induce the pore opening in a substate with a selective cation permeability, and the cyclosporin A-sensitive decrease results from a conversion of to pH gradient due to the electrogenic cation transport in mitochondria; 2) the ADP/ATP-antiporter is involved in this process; 3) higher efficiency of fatty acid compared to SF6847 in the Ca2+-dependent pore opening seems to be due to its interaction with the nucleotide-binding site of the ADP/ATP-antiporter and higher affinity of fatty acids to cations.  相似文献   

4.
Brevibacterium flavum 22LD-P cells were shown to maintain a transmembrane pH gradient (pH) from 0.6 to 1.8–2 units and a transmembrane electric potential difference () from 0 to 200 mV depending on the pH and ionic composition of the incubation medium, grwoth substrate and concentration of cells. decreased from 120–140 mV to 0 when medium pH was lowered from neutral to 5.0–5.5 and increased to 180–200 mV when medium pH was raised to 8–9 in cells utilizing acetate or endogenous substrate. Cells growing on sucrose, kept around 100–120 mV at neutral as well as acidic medium pH. Intracellular pH in the acetate utilizing or endogenously respiring cells was maintained with the range of 8.9 to 5.5 at medium pH ranging from 9.1 to 4.0, respectively. Sucrose grown cells were able to maintain a more stable intracellular pH. Endogenously respiring cells in potassium phosphate buffer at high biomass concentrations maintained larger pH and relatively smaller , than the same cells in diluted suspensions. Cells in sodium phosphate buffer possessed larger and almost no pH, but was still dependent on biomass concentration.The lack of intracellular pH homeostasis and the collapse of at acid medium pH are discussed in the context of cell membrane proton permeability.  相似文献   

5.
In seeds and leaves of oats (Avena sativa L.) 12 different sterols (cholesterol, cholstanol, 7-cholestenol, campesterol, campestanol, stigmasterol, lophenol, sitosterol, stigmastanol, 5-avenasterol, 7-avenasterol and 7-stigmastenol) have been identified. The sterol pattern is qualitatively the same, but the relative composition is different in leaves and in seeds. Leaves contain mainly sitosterol, stigmasterol, cholesterol and campesterol, but only minor portions of avenasterols. Seeds contain sitosterol, 5- and 7-avenasterol, campesterol, but only minor amounts of stigmasterol and cholesterol. In leaf lipids 1-hexacosanol (2.35 wt % of total lipid) has also been identified.  相似文献   

6.
The effect of palmitic acid on the electrical potential difference across the inner mitochondrial membrane appears to depend on the medium in which mitochondria are incubated. In medium A (cf. Luvisettoet al. (1987),Biochemistry,26, 7332–7338) decreases much more than in medium B (cf. Rottenberg and Hashimoto (1986),Biochemistry,25, 1747–1755) at concentrations of fatty acid which equally stimulate the rate of respiration in state 4. Valinomycin and NaCl were both present in medium B and absent in medium A. However, in both media the pattern of the P/O ratio as a function of antimycin in the presence of a constant amount of palmitic acid or of FCCP shows similar behaviour. We conclude that in both media palmitic acid increases the membrane conductance to protons, but for unclear reasons the assay fails to measure the decline of in medium B. However, the increase in membrane conductance induced by palmitic acid does not quantitatively account for the stimulation of the rate of respiration.  相似文献   

7.
Clostridium sporogenes MD1 grew rapidly with peptides and amino acids as an energy source at pH 6.7. However, the proton motive force (p) was only –25 mV, and protonophores did not inhibit growth. When extracellular pH was decreased with HCl, the chemical gradient of protons (ZpH) and the electrical membrane potential () increased. The p was –125 mV at pH 4.7, even though growth was not observed. At pH 6.7, glucose addition did not cause an increase in growth rate, but increased to –70 mV. Protein synthesis inhibitors also significantly increased . Non-growing, arginine-energized cells had a of –80 mV at pH 6.7 or pH 4.7, but was not detected if the F1F0 ATPase was inhibited. Arginine-energized cells initiated growth if other amino acids were added at pH 6.7, and and ATP declined. At pH 4.7, ATP production remained high. However, growth could not be initiated, and neither nor the intracellular ATP concentration declined. Based on these results, it appears that C. sporogenes MD1 does not need a large p to grow, and p appears to serve as a mechanism of ATP dissipation or energy spilling.Mandatory disclaimer: Proprietary or brand names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product, and exclusion of others that may be suitable.  相似文献   

8.
Summary The effect of three different carbon sources on the biosynthesis of polyunsaturated fatty acids of the-linolenic acid series was investigated in hepatoma tissue culture (HTC) cells. Alpha linolenic acid was converted to higher homologs by a desaturating route that synthetized mainly 18:4 (6, 9, 12, 15), 20:4 (8, 11, 14, 17) and 20:5 (5, 8, 11, 14, 17) and an elongating route that produced 20:3 (11, 14, 17) and 20:4 (5, 11, 14, 17) acids. Fasting decreased both biosynthetic routes whereas glucose reactivated only the elongating pathway. Lactalbumin hydrolysate enhanced significantly only the desaturating route whereas glycerol was inactive. Glucose and aminoacids increased similarly the incorporation of labeled linolenic acid in the cells. The results are independent of hormonal effects.Members of the Carrera del Investigador Científico of the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.  相似文献   

9.
Summary Experiments were performed to determine the factors which contribute to the transmembrane pH gradient (pH) and the potential gradient () in apical plasma membrane vesicles isolated from bovine tracheal epithelium. As indicated by the accumulation of14C-methylamine, the vesicles maintained a pH (inside acidic) which was dependent upon the external pH. The pH was also proportional to the ionic strength of the suspending medium, suggesting that the H+ distribution was dictated by a Donnan potential. Measurements of the distribution of86Rb+ demonstrated an electrical potential gradient across the vesicle membrane, inside negative which was proportional to the medium ionic strength. pH changed in parallel with in response to a variety of imposed conditions. These results are compatible with the existence of a H+ conductance in the vesicle membrane. Thus the endogenous electrical and proton gradients may be manipulated and used as a general experimental tool to complement kinetic analysis in investigations of transport mechanism using isolated vesicle preparations.  相似文献   

10.
To describe quantitatively the adsorption of prebiotically important compounds of low molecular weight (amino acids, short linear peptides, cyclic dipeptides, the Krebs's cycle and other carboxylic acids, nucleosides and related phosphates) on silica surface from diluted neutral aqueous solutions, equilibrium constants (K) and free energies (–G) of adsorption were determined from the retention values measured by means of high-performance liquid chromatography on a silica gel column and from the isotherms measured under static conditions. For most carboxylic acids (including amino acids and linear peptides) –G values were negative and K<1, thus showing very weak adsorption. Cyclic dipeptides (2,5-piperazinediones) exhibited higher adsorbability; –G>0 and K>1 were found for most of them. Influence of the structure of -substituent on the adsorbability is analyzed. A linear dependence of –G on the number of aliphatic carbon atoms in a sorbate molecule was found for the series of aliphatic bifunctional amino acids, related dipeptides and 2,5-piperazinediones, as well as for the row from glycine to triglycyl glycine. The adsorption of nucleosides and their phosphates is characterized by much higherK and –G values (of the order of 102 and 104, respectively). The adsorption data available from our work and literature are summarized and discussed with implications to the Bernal's hypothesis on the roles of solid surfaces in the prebiotic formation of biopolymers from monomeric building blocks.corresponding author: on leave of absence from Institute of Surface Chemistry, Academy of Sciences of the Ukraine, Kiev, Ukraine.  相似文献   

11.
The chlorophyll a-binding protein CP47 directs excitation energy to the reaction center of photosystem II (PSII) during oxygenic photosynthesis and has additional structural and functional roles associated with the PSII water-oxidizing complex. Oligonucleotide-directed mutagenesis was employed to study loop C of CP47 (approximately Trp-162 to Gly-197) which faces the thylakoid lumen. Five short amino acid deletion strains, (S169–P171), (Y172–G176), (G176–P180), (E184–A188) and (F190–N194), were created that span this domain. The deletion between Gly-176 and Pro-180, located around the middle of loop C, produced an obligate photoheterotroph that could not assemble functional PSII centers. The deletions in mutants (S169–P171) and (Y172–G176) reduced PSII levels to 20% of the control and thus impaired photoautotrophic growth. In contrast, mutants (E184-A188) and (F190–N194) were photoautotrophic even though the number of photosystems was decreased by 50%. All PSII complexes assembled in the deletion strains had an increased susceptibility to photoinactivation and deletion of Glu-184 to Ala-188 prevented photoautotrophic growth under chloride-limiting conditions. Furthermore, the removal of the extrinsic PSII-O, PSII-U and PSII-V proteins from mutants (E184–A188) and (F190–N194) reduced the rates of oxygen evolution and, in the strains lacking either the PSII-O or PSII-V proteins, also increased the photoautotrophic doubling times. These effects were greater in mutant (E184–A188) than in mutant (F190–N194) and the order of importance for the removal of the extrinsic proteins was found to be PSII-V PSII-O > PSII-U.  相似文献   

12.
The maximal growth rate of the marine cyanobacterium Oscillatoria brevis was reached at 200–400 mM NaCl and pH 9.0–9.6. NaCl was found (i) to stimulate the rate of the light-supported generation across the cytoplasmic membrane of the cells and (ii) to decrease the sensitivity of level and motility of the O. brevis trichomes to protonophorous uncouplers. The Na+/H+ antiporter, monensin, increased both and the uncoupler sensitivity of the cells. The data obtained agree with the assumption that O. brevis possesses a primary Na+ pump in its cytoplasmic membrane.Abbreviations ATP adenosine-5-triphosphate - TTFB tetrachlortrifluoromethylimidazol - CCCP carbonyl cyanide m-chlorophenylhydrazone - Na+ transmembrane electrochemical potential differences of Na+ - transmembrane electric potential difference - pNa transmembrane pNa difference  相似文献   

13.
We have taken a systematic genetic approach to study the potential role of glutathione metabolism in aluminum (Al) toxicity and resistance, using disruption mutants available in Saccharomyces cerevisiae. Yeast disruption mutants defective in phospholipid hydroperoxide glutathione peroxidases (PHGPX; phgpx1 , phgpx2 , and phgpx3), were tested for their sensitivity to Al. The triple mutant, phgpx1 /2/3, was more sensitive to Al (55% reduction in growth at 300 M Al) than any single phgpx mutant, indicating that the PHGPX genes may collectively contribute to Al resistance. The hypersensitivity of phgpx3 to Al was overcome by complementation with PHGPX3, and all PHGPX genes showed increased expression in response to Al in the wild-type strain (YPH250), with maximum induction of approximately 2.5-fold for PHGPX3. Both phgpx3 and phgpx1/2/3 mutants were sensitive to oxidative stress (exposure to H2O2 or diamide). Lipid peroxidation was also increased in the phgpx1/2/3 mutant compared to the parental strain. Disruption mutants defective in genes for glutathione S-transferases (GSTs) (gtt1 and gtt2), glutathione biosynthesis (gsh1 and gsh2), glutathione reductase (glr1) and a glutathione transporter (opt1) did not show hypersensitivity to Al relative to the parental strain BY4741. Interestingly, a strain deleted for URE2, a gene which encodes a prion precursor with homology to GSTs, also showed hypersensitivity to Al. The hypersensitivity of the ure2 mutant could be overcome by complementation with URE2. Expression of URE2 in the parental strain increased approximately 2-fold in response to exposure to 100 M Al. Intracellular oxidation levels in the ure2 mutant showed a 2-fold (non-stressed) and 3-fold (when exposed-to 2 mM H2O2) increase compared to BY4741; however, the ure2 mutant showed no change in lipid peroxidation compared to the control. The phgpx1/2/3 and ure2 mutants both showed increased accumulation of Al. These findings suggest the involvement of PHGPX genes and a novel role of URE2 in Al toxicity/resistance in S. cerevisiae.Communicated by D.Y. Thomas  相似文献   

14.
Nicki Engeseth  Sten Stymne 《Planta》1996,198(2):238-245
Species of the genus Lesquerella, within the Brassicaceae family, have seed oils containing hydroxy fatty acids. In most Lesquerella species, either lesquerolic (14-hydroxy-eicosa-11-enoic), auricolic (14-hydroxy-eicosa-11,17-dienoic) or densipolic (12-hydroxy-octadeca-9,15-dienoic) acid dominates in the seed oils. Incubations of developing seed from Lesquerella species with 1-14C-fatty acids were conducted in order to study the biosynthetic pathways of these hydroxylated fatty acids. [14C]Oleic (octadeca-9-enoic) acid, but not [14C]linoleic (octadeca-9,12-dienoic) acid, was converted into the hydroxy fatty acid, ricinoleic (12-hydroxy-octadeca-9-enoic) acid, which was rapidly desaturated to densipolic (12-hydroxy-octadeca-9,15-dienoic) acid. In addition, [14C] ricinoleic acid added to Lesquerella seeds was efficiently desaturated at the 15 carbon. A pathway for the biosynthesis of the various hydroxylated fatty acids in Lesquerella seeds is proposed. The demonstration of desaturation at position 15 of a fatty acid with a hydroxy group at position 12 in Lesquerella prompted a comparison of the substrate recognition of the desaturases from Lesquerella and linseed. It was demonstrated that developing linseed also was able to desaturate ricinoleate at position 15 into densipolic acid. In addition, the linseed 15 desaturase was able to desaturate vernolic (12,13-epoxy-octadeca-9-enoic) acid and safflower microsomal 12 desaturase was able to desaturate 9-hydroxy-stearate. Thus, hydroxy and epoxy groups may substitute for double bonds in substrate recognition for oil-seed 12 and 15 desaturases.Abbreviations GLC gas-liquid chromatography - lysoPC palmitoyl-lysophosphatidylcholine - PC phosphatidylcholine This work was supported by grants from Stifteisen Svensk Oljeväxtforskning, Skanska Lantmännen Foundation, Swedish Farmers Foundation for Agricultural research, The Swedish Natural Science Research Council and The Swedish Council for Forestry and Agricultural Research. Nicki Engeseth was supported by the National Science Foundation under a grant award in 1992.  相似文献   

15.
The suitability of conductivity measurement for monitoring growth in plant cell culture has been tested using suspended cells and genetically-transformed hairy roots of Atropa belladonna, and aggregated cells of Solanum aviculare. Other researchers have proposed that a constant ratio exists between increase in cell concentration (x) and decrease in medium conductivity (C). In all cases studied in this work, x/C was not constant over a wide range of cell densities tested in batch culture. With cell suspensions, x/C decreased continuously during the growth phase from 3.4 to 2.5 g cm l–1 mS–1. For the hairy roots, the ratio between x and C varied by as much as 4-fold during growth. The relationship between conductivity and growth for S. aviculare aggregates was found to vary depending on inoculum density. No simple correlation between conductivity change and cell growth was apparent for the plant-cell systems studied.  相似文献   

16.
The enzyme 6-desaturase is responsible for the conversion of linoleic acid (18:2) to -linolenic acid (18:3). A cyanobacterial gene encoding 6-desaturase was cloned by expression of a Synechocystis genomic cosmid library in Anabaena, a cyanobacterium lacking 6-desaturase. Expression of the Synechocystis 6-desaturase gene in Anabaena resulted in the accumulation of -linolenic acid (GLA) and octadecatetraenoic acid (18:4). The predicted 359 amino acid sequence of the Synechocystis 6-desaturase shares limited, but significant, sequence similarity with two other reported desaturases. Analysis of three overlapping cosmids revealed a 12-desaturase gene linked to the 6-desaturase gene. Expression of Synechocystis 6-and 12-desaturase in Synechococcus, a cyanobacterium deficient in both desaturases, resulted in the production of linoleic acid and -linolenic acid.  相似文献   

17.
d-Cysteine desulfhydrase of Escherichia coli W3110 trpED102/F trpED102 was physiologically characterized. It was found to be located in the cytosolic fraction, as 3-chloro-d-alanine dehydrochlorinase is. d-Cysteine desulfhydrase catalyzed not only the ,-elimination reaction of O-acetyl-d-serine to form pyruvate, acetic acid and ammonia, but also the -replacement reaction of O-acetyl-d-serine with sulfide to form d-cysteine. However, these reactions appeared not to proceed in vivo. No other activity of d-cysteine synthesis from O-acetyl-d-serine and sulfide was detected in a crude cell extract of E. coli which was immunotitrated with antibodies raised against the purified d-cysteine desulfhydrase. Although d-cysteine desulfhydrase catalyzes the degradation (,-elimination reaction) of 3-chloro-d-alanine, which is an effective antibacterial agent, E. coli W3110 trpED102/F trpED102 did not show resistance against 3-chloro-d-alanine. Therefore, d-cysteine desulfhydrase does not contribute to 3-chloro-d-alanine detoxification in vivo.  相似文献   

18.
Pervenets is a sunflower mutant with a seed oil oleic acid content greater than 65%. It was obtained after mutagenesis treatment on VNIIMK 8931. Several commercial varieties derived from Pervenets and breeding materials with a high oleic acid content have been marketed. However, the genetics of this trait are still not fully understood by breeders. To characterize the Pervenets mutation, we studied RFLP in relation to high oleic acid content. We performed diversity analyses on 239 genotypes with cDNA sequences coding for 9- and 12-desaturases as probes. The 12 RFLPs enabled us to identify at least two independent loci. One 12 RFLP allele (12HOS) was strictly correlated to high oleic acid content, whereas no correlation was found between 9-desaturase polymorphism and high oleic acid content. These results enabled to us estimate the genetic distance between the marker and the Pervenets mutation loci. An F2 segregating population of 107 plants confirmed the correlation between high oleic acid content and 12HOS, indicating tight genetic linkage. The nature of the Pervenets dominant mutation and the complexity of the high oleic acid content trait are discussed.  相似文献   

19.
A new method for cytofluorometric analysis of mitochondrial membrane potential has been developed by using TMRM as a cationic, mitochondrial selective probe. The method is based on limited treatment of cultured cells with digitonin which permeabilises the plasma membrane and leaves mitochondria intact. The resulting signal of TMRM-stained cells thus represents only the probe accumulated in mitochondria. Fibroblasts and cybrids were used as a model cell systems and optimal conditions for digitonin treatment and staining by TMRM were described. The TMRM signal collapsed by valinomycin, KCN and antimycin A and FCCP titration was used to gradually lower and characterise the stability of . The method is suitable for sensitive measurement of in different types of cultured cells.  相似文献   

20.
The magnitude of the proton motive force (p) and its constituents, the electrical () and chemical potential (-ZpH), were established for chemostat cultures of a protease-producing, relaxed (rel ) variant and a not protease-producing, stringent (rel +) variant of an industrial strain ofBacillus licheniformis (respectively referred to as the A- and the B-type). For both types, an inverse relation of p with the specific growth rate was found. The calculated intracellular pH (pHin) was not constant but inversely related to . This change in pHin might be related to regulatory functions of metabolism but a regulatory role for pHin itself could not be envisaged. Measurement of the adenylate energy charge (EC) showed a direct relation with for glucose-limited chemostat cultures; in nitrogen-limited chemostat cultures, the EC showed an approximately constant value at low and an increased value at higher . For both limitations, the ATP/ADP ratio was directly related to .The phosphorylation potential (G'p) was invariant with . From the values for G'p and p, a variable H+/ATP-stoichiometry was inferred: H+/ATP=1.83+0.52µ, so that at a given H+/O-ratio of four (4), the apparent P/O-ratio (inferred from regression analysis) showed a decline of 2.16 to 1.87 for =0 to max (we discuss how more than half of this decline will be independent of any change in internal cell-volume). We propose that the constancy of G'p and the decrease in the efficiency of energy-conservation (P/O-value) with increasing are a way in which the cells try to cope with an apparent less than perfect coordination between anabolism and catabolism to keep up the highest possible with a minimum loss of growth-efficiency. Protease production in nitrogen-limited cultures as compared to glucose-limited cultures, and the difference between the A- and B-type, could not be explained by a different energy-status of the cells.Abbreviations CCCP carbonylcyanide-p-trichloromethoxyphenylhydrazone - DW dry weight of biomass - F Faraday's constant, 96.6 J/(mV × mol) - Fo chemostat outflow-rate (ml/h) - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - G'p phosphorylation potential, the Gibbs energy change for ATP-synthesis from ADP and Pi - G'0p standard Gibbs energy change at specified conditions - H+/ATP number of protons translocated through - ATP synthase in synthesis of one ATP - H+/O protons translocated during transfer of 2 electrons from substrate to oxygen - specific growth rate (1/h) - H+ transmembrane electrochemical proton potential, J/mol - Mb molar weight (147.6 g/mol) of bacteria with general cell formula C6.0H10.8O3.0N1.2 - pHout,in extracellular, intracellular pH - Pi (intracellular) inorganic phosphate - p proton motive force, mV - pH transmembrane pH-difference - transmembrane electrical potential, mV - P/O number of ADP phosphorylated to ATP upon reduction of one O2– to H2O by two electrons transferred through the electron transfer chain - P/O (H+/O) × (H+/ATP)–1 - P/OF, P/ON P/O with the two electrons donated by resp. (NADH + H+) and FADH - q specific rate of consumption or production (mol/g DW × h) - rel +,rel stringent, relaxed genotype - R universal gas constant, 8.36 J/(mol × degree) - T absolute temperature - TPMP+ triphenylmethylphosphonium ion - TPP+ tetraphenyl phosphonium ion - Y growth yield, g DW/mol - Z conversion constant=61.8 mV for 310 K (37 °C) - ZpH transmembrane proton potential or chemical potential, mV  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号