首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How is actin polymerization nucleated in vivo?   总被引:13,自引:0,他引:13  
Actin polymerization in vivo is dependent on free barbed ends that act as nuclei. Free barbed ends can arise in vivo by nucleation from the Arp2/3 complex, uncapping of barbed ends on pre-existing filaments or severing of filaments by cofilin. There is evidence that each mechanism operates in cells. However, different cell types use different combinations of these processes to generate barbed ends during stimulated cell motility. Here, I describe recent attempts to define the relative contributions of these three mechanisms to actin nucleation in vivo. The rapid increase in the number of barbed ends during stimulation is not due to any single mechanism. Cooperation between capping proteins, cofilin and the Arp2/3 complex is necessary for the development of protrusive force at the leading edge of the cell: uncapping and cofilin severing contributing barbed ends, whereas activity of the Arp2/3 complex is necessary, but not sufficient, for lamellipod extension. These results highlight the need for new methods that enable the direct observation of actin nucleation and so define precisely the relative contributions of the three processes to stimulated cell motility.  相似文献   

2.
Motility is associated with the ability to extend F-actin-rich protrusions and depends on free barbed ends as new actin polymerization sites. To understand the function and regulation of different proteins involved in the process of generating barbed ends, e.g., cofilin and Arp2/3, fixed cell approaches have been used to determine the relative barbed end concentration in cells. The major disadvantages of these approaches are permeabilization and fixation of cells. In this work, we describe a new live-cell time-lapse microscopy assay to determine the increase of barbed ends after cell stimulation that does not use permeabilization and provides a better time resolution. We established a metastatic carcinoma cell line (MTLn3) stably expressing GFP-beta-actin at physiological levels. Stimulation of MTLn3 cells with epidermal growth factor (EGF) causes rapid and transient lamellipod protrusion along with an increase in actin polymerization at the leading edge, which can be followed in live cell experiments. By measuring the increase of F-actin at the leading edge vs. time, we were able to determine the relative increase of barbed ends after stimulation with a high temporal resolution. The F-actin as well as the barbed end concentration agrees well with published data for this cell line. Using this newly developed assay, a decrease in lamellipod extension and a large reduction of barbed ends was documented after microinjecting an anti-cofilin function blocking antibody. This assay has a high potential for applications where rapid changes in the dynamic filament population are to be measured.  相似文献   

3.
In metastatic rat mammary adenocarcinoma cells, cell motility can be induced by epidermal growth factor. One of the early events in this process is the massive generation of actin barbed ends, which elongate to form filaments immediately adjacent to the plasma membrane at the tip of the leading edge. As a result, the membrane moves outward and forms a protrusion. To test the involvement of ADF/cofilin in the stimulus-induced barbed end generation at the leading edge, we inhibited ADF/cofilin's activity in vivo by increasing its phosphorylation level using the kinase domain of LIM-kinase 1 (GFP-K). We report here that expression of GFP-K in rat cells results in the near total phosphorylation of ADF/cofilin, without changing either the G/F-actin ratio or signaling from the EGF receptor in vivo. Phosphorylation of ADF/cofilin is sufficient to completely inhibit the appearance of barbed ends and lamellipod protrusion, even in the continued presence of abundant G-actin. Coexpression of GFP-K, together with an active, nonphosphorylatable mutant of cofilin (S3A cofilin), rescues barbed end formation and lamellipod protrusion, indicating that the effects of kinase expression are caused by the phosphorylation of ADF/cofilin. These results indicate a direct role for ADF/cofilin in the generation of the barbed ends that are required for lamellipod extension in response to EGF stimulation.  相似文献   

4.
The first step in the directed movement of cells toward a chemotactic source involves the extension of pseudopods initiated by the focal nucleation and polymerization of actin at the leading edge of the cell. We have previously isolated a chemoattractant-regulated barbed-end capping activity from Dictyostelium that is uniquely associated with capping protein, also known as cap32/34. Although uncapping of barbed ends by capping protein has been proposed as a mechanism for the generation of free barbed ends after stimulation, in vitro and in situ analysis of the association of capping protein with the actin cytoskeleton after stimulation reveals that capping protein enters, but does not exit, the cytoskeleton during the initiation of actin polymerization. Increased association of capping protein with regions of the cell containing free barbed ends as visualized by exogenous rhodamine-labeled G-actin is also observed after stimulation. An approximate threefold increase in the number of filaments with free barbed ends is accompanied by increases in absolute filament number, whereas the average filament length remains constant. Therefore, a mechanism in which preexisting filaments are uncapped by capping protein, in response to stimulation leading to the generation of free barbed ends and filament elongation, is not supported. A model for actin assembly after stimulation, whereby free barbed ends are generated by either filament severing or de novo nucleation is proposed. In this model, exposure of free barbed ends results in actin assembly, followed by entry of free capping protein into the actin cytoskeleton, which acts to terminate, not initiate, the actin polymerization transient.  相似文献   

5.
Most eukaryotic cells rely on localized actin polymerization to generate and sustain the protrusion activity necessary for cell movement [1, 2]. Such protrusions are often in the form of a flat lamellipod with a leading edge composed of a dense network of actin filaments [3, 4]. The Arp2/3 complex localizes within that network in vivo [3, 4] and nucleates actin polymerization and generates a branched network of actin filaments in vitro [5-7]. The complex has thus been proposed to generate the actin network at the leading edge of crawling cells in vivo [3, 4, 8]. However, the relative contributions of nucleation and branching to protrusive force are still unknown. We prepared antibodies to the p34 subunit of the Arp2/3 complex that selectively inhibit side binding of the complex to F-actin. We demonstrate that side binding is required for efficient nucleation and branching by the Arp2/3 complex in vitro. However, microinjection of these antibodies into cells specifically inhibits lamellipod extension without affecting the EGF-stimulated appearance of free barbed ends in situ. These results indicate that while the side binding activity of the Arp2/3 complex is required for nucleation in vitro and for protrusive force in vivo, it is not required for EGF-stimulated increases in free barbed ends in vivo. This suggests that the branching activity of the Arp2/3 complex is essential for lamellipod extension, while the generation of nucleation sites for actin polymerization is not sufficient.  相似文献   

6.
Using both light and high resolution electron microscopy, we analyzed the spatial and temporal relationships between the Arp2/3 complex and the nucleation activity that is required for lamellipod extension in mammary carcinoma cells after epidermal growth factor stimulation. A rapid two- to fourfold increase in filament barbed end number occurs transiently after stimulation and remains confined almost exclusively to the extreme outer edge of the extending lamellipod (within 100-200 nm of the plasma membrane). This is accompanied by an increase in filament density at the leading edge and a general decrease in filament length, with a specific loss of long filaments. Concomitantly, the Arp2/3 complex is recruited with a 1.5-fold increase throughout the entire cortical filament network extending 1-1.5 microm in depth from the membrane at the leading edge. The recruitment of the Arp2/3 complex at the membrane of the extending lamellipod indicates that Arp2/3 may be involved in initial generation of growing filaments. However, only a small subset of the complex present in the cortical network colocalizes near free barbed ends. This suggests that the 100-200-nm submembraneous compartment at the leading edge of the extending lamellipod constitutes a special biochemical microenvironment that favors the generation and maintenance of free barbed ends, possibly through the locally active Arp2/3 complex, severing or decreasing the on-rate of capping protein. Our results are inconsistent with the hypothesis suggesting uncapping is the dominant mechanism responsible for the generation of nucleation activity. However, they support the hypothesis of an Arp2/3-mediated capture of actin oligomers that formed close to the membrane by other mechanisms such as severing. They also support pointed-end capping by the Arp2/3 complex, accounting for its wide distribution at the leading edge.  相似文献   

7.
One of the earliest events in the process of cell motility is the massive generation of free actin barbed ends, which elongate to form filaments adjacent to the plasma membrane at the tip of the leading edge. Both cofilin and Arp2/3 complex have been proposed to contribute to barbed end formation during cell motility. Attempts to assess the functions of cofilin and Arp 2/3 complex in vivo indicate that both cofilin and Arp2/3 complex contribute to actin polymerization: cofilin by severing and Arp2/3 by nucleating and branching. In order to determine if the activities of cofilin and Arp2/3 complex interact, we employed a light microscope-based assay to visualize actin polymerization directly in the presence of both proteins. The results indicate that cofilin generates barbed ends to increase the mass of freshly polymerized F-actin but does not directly affect the activity of Arp2/3 complex. However, while ADP, ADP-Pi, and newly polymerized ATP-filaments are all capable of supporting Arp2/3-mediated branching, newly polymerized F-actin supports most of the Arp2/3-induced branch formation. The results suggest that, in vivo, cofilin contributes to barbed end formation by inducing the initial increase in the number of barbed ends leading to increased ATP-F-actin, which in turn supports higher levels of dendritic nucleation by active Arp2/3 complex.  相似文献   

8.
The most important discovery in the field is that the Arp2/3 complex nucleates assembly of actin filaments with free barbed ends. Arp2/3 also binds the sides of actin filaments to create a branched network. Arp2/3's nucleation activity is stimulated by WASP family proteins, some of which mediate signaling from small G-proteins. Listeria movement caused by actin polymerization can be reconstituted in vitro using purified proteins: Arp2/3 complex, capping protein, actin depolymerizing factor/cofilin, and actin. actin depolymerizing factor/cofilin increases the rate at which actin subunits leave pointed ends, and capping protein caps barbed ends.  相似文献   

9.
Rapid polymerization of actin filament barbed ends generates protrusive forces at the cell edge, leading to cell migration. Two important regulators of free barbed ends, cofilin and Arp2/3, have been shown to work in synergy (net effect greater than additive). To explore this synergy, we model the dynamics of F-actin at the leading edge, motivated by data from EGF-stimulated mammary carcinoma cells. We study how synergy depends on the localized rates and relative timing of cofilin and Arp2/3 activation at the cell edge. The model incorporates diffusion of cofilin, membrane protrusion, F-actin capping, aging, and severing by cofilin and branch nucleation by Arp2/3 (but not G-actin recycling). In a well-mixed system, cofilin and Arp2/3 can each generate a large pulse of barbed ends on their own, but have little synergy; high synergy occurs only at low activation rates, when few barbed ends are produced. In the full spatially distributed model, both synergy and barbed-end production are significant over a range of activation rates. Furthermore, barbed-end production is greatest when Arp2/3 activation is delayed relative to cofilin. Our model supports a direct role for cofilin-mediated actin polymerization in stimulated cell migration, including chemotaxis and cancer invasion.  相似文献   

10.
Rapid polymerization of actin filament barbed ends generates protrusive forces at the cell edge, leading to cell migration. Two important regulators of free barbed ends, cofilin and Arp2/3, have been shown to work in synergy (net effect greater than additive). To explore this synergy, we model the dynamics of F-actin at the leading edge, motivated by data from EGF-stimulated mammary carcinoma cells. We study how synergy depends on the localized rates and relative timing of cofilin and Arp2/3 activation at the cell edge. The model incorporates diffusion of cofilin, membrane protrusion, F-actin capping, aging, and severing by cofilin and branch nucleation by Arp2/3 (but not G-actin recycling). In a well-mixed system, cofilin and Arp2/3 can each generate a large pulse of barbed ends on their own, but have little synergy; high synergy occurs only at low activation rates, when few barbed ends are produced. In the full spatially distributed model, both synergy and barbed-end production are significant over a range of activation rates. Furthermore, barbed-end production is greatest when Arp2/3 activation is delayed relative to cofilin. Our model supports a direct role for cofilin-mediated actin polymerization in stimulated cell migration, including chemotaxis and cancer invasion.  相似文献   

11.
BACKGROUND: Actin filaments polymerize in vivo primarily from their fast-growing barbed ends. In cells and extracts, GTPgammaS and Rho-family GTPases, including Cdc42, stimulate barbed-end actin polymerization; however, the mechanism responsible for the initiation of polymerization is unknown. There are three formal possibilities for how free barbed ends may be generated in response to cellular signals: uncapping of existing filaments; severing of existing filaments; or de novo nucleation. The Arp2/3 complex localizes to regions of dynamic actin polymerization, including the leading edges of motile cells and motile actin patches in yeast, and in vitro it nucleates the formation of actin filaments with free barbed ends. Here, we investigated actin polymerization in soluble extracts of Acanthamoeba. RESULTS: Addition of actin filaments with free barbed ends to Acanthamoeba extracts is sufficient to induce polymerization of endogenous actin. Addition of activated Cdc42 or activation of Rho-family GTPases in these extracts by the non-hydrolyzable GTP analog GTPgammaS stimulated barbed-end polymerization, whereas immunodepletion of Arp2 or sequestration of Arp2 using solution-binding antibodies blocked Rho-family GTPase-induced actin polymerization. CONCLUSIONS: For this system, we conclude that the accessibility of free barbed ends regulates actin polymerization, that Rho-family GTPases stimulate polymerization catalytically by de novo nucleation of free barbed ends and that the primary nucleation factor in this pathway is the Arp2/3 complex.  相似文献   

12.
We have studied the role of phosphatidylinositol 3-kinases (PI 3-kinases) in the regulation of the actin cytoskeleton in MTLn3 rat adenocarcinoma cells. Stimulation of MTLn3 cells with epidermal growth factor (EGF) induced a rapid increase in actin polymerization, with production of lamellipodia within 3 min. EGF-stimulated lamellipodia were blocked by 100 nM wortmannin, suggesting the involvement of a class Ia PI 3-kinase. MTLn3 cells contain equal amounts of p110alpha and p110beta, and do not contain p110delta. Injection of specific inhibitory antibodies to p110alpha induced cell rounding and blocked EGF-stimulated lamellipod extension, whereas control or anti-p110beta antibodies had no effect. In contrast, both antibodies inhibited EGF-stimulated DNA synthesis. An in situ assay for actin nucleation showed that EGF-stimulated formation of new barbed ends was blocked by injection of anti-p110alpha antibodies. In summary, the p110alpha isoform of PI 3-kinase is specifically required for EGF-stimulated actin nucleation during lamellipod extension in breast cancer cells.  相似文献   

13.
Cofilin is an important regulator of actin polymerization, cell migration, and chemotaxis. Recent experimental data on mammary carcinoma cells reveal that stimulation by epidermal growth factor (EGF) generates a pool of active cofilin that results in a peak of actin filament barbed ends on the timescale of 1 min. Here, we present results of a mathematical model for the dynamics of cofilin and its transition between several pools in response to EGF stimulation. We describe the interactions of phospholipase C, membrane lipids (PIP2), and cofilin bound to PIP2 and to F-actin, as well as diffusible cofilin in active G-actin-monomer-bound or phosphorylated states. We consider a simplified representation in which the thin cell edge (lamellipod) and the cell interior are represented by two compartments that are linked by diffusion. We demonstrate that a high basal level of active cofilin stored by binding to PIP2, as well as the highly enriched local milieu of F-actin at the cell edge, is essential to capture the EGF-induced barbed-end amplification observed experimentally.  相似文献   

14.
The epidermal growth factor (EGF)-induced increase in free barbed ends, resulting in actin polymerization at the leading edge of the lamellipodium in carcinoma cells, occurs as two transients: an early one at 1 min and a late one at 3 min. Our results reveal that phospholipase (PLC) is required for triggering the early barbed end transient. Phosphoinositide-3 kinase selectively regulates the late barbed end transient. Inhibition of PLC inhibits cofilin activity in cells during the early transient, delays the initiation of protrusions, and inhibits the ability of cells to sense a gradient of EGF. Suppression of cofilin, using either small interfering RNA silencing or function-blocking antibodies, selectively inhibits the early transient. Therefore, our results demonstrate that the early PLC and cofilin-dependent barbed end transient is required for the initiation of protrusions and is involved in setting the direction of cell movement in response to EGF.  相似文献   

15.
Xenopus actin-interacting protein 1 (XAip1) is thought to promote fragmentation of actin filaments by cofilin. To examine the mechanism of XAip1, we measured polymer lengths by fluorescence microscopy and the concentration of filament ends with an elongation assay. Cofilin creates ends by severing actin filaments. XAip1 alone does not sever actin filaments or prevent annealing/redistribution of mechanically severed filaments and has no effect on the concentration of ends available for subunit addition. In the presence of XAip1, the apparent filament fragmentation by cofilin is enhanced, but XAip1 reduces rather than increases the concentration of ends capable of adding subunits. Electron microscopy with gold-labeled antibodies showed that a low concentration of XAip1 bound preferentially to one end of the filament. A high concentration of XAip1 bound along the length of the filament. In the presence of gelsolin-actin to cap filament barbed ends, XAip1 does not enhance cofilin activity. We conclude that XAip1 caps the barbed end of filaments severed by cofilin. This capping blocks annealing and depolymerization and allows more extensive severing by cofilin.  相似文献   

16.
Actin assembly at the leading edge of migrating cells depends on the availability of high-affinity free barbed ends (FBE) that drive actin filament elongation and subsequent membrane protrusion. We investigated the specific mechanisms through which the Rac1 and Rac2 small guanosine triphosphatases (GTPases) generate free barbed ends in neutrophils. Using neutrophils lacking either Rac1 or Rac2 and a neutrophil permeabilization model that maintains receptor signaling to the actin cytoskeleton, we assessed the mechanisms through which these two small GTPases mediate FBE generation downstream of the formyl-methionyl-leucyl-phenylalanine receptor. We demonstrate here that uncapping of existing barbed ends is mediated through Rac1, whereas cofilin- and ARP2/3-mediated FBE generation are regulated through Rac2. This unique combination of experimental tools has allowed us to identify the relative roles of uncapping (15%), cofilin severing (10%), and ARP2/3 de novo nucleation (75%) in FBE generation and the respective roles played by Rac1 and Rac2 in mediating actin dynamics.  相似文献   

17.
Various concentrations of gelsolin (25-100 nM) were added to 2 microM polymerized actin. The concentrations of free calcium were adjusted to 0.05-1.5 microM by EGTA/Ca2+ buffer. Following addition of gelsolin actin depolymerization was observed that was caused by dissociation of actin subunits from the pointed ends of treadmilling actin filaments and inhibition by gelsolin of polymerization at barbed ends. The time course of depolymerization revealed an initial lag phase that was followed by slow decrease of the concentration of polymeric actin to reach the final steady state polymer and monomer concentration. The initial lag phase was pronounced at low free calcium and low gelsolin concentrations. On the basis of quantitative analysis the kinetics of depolymerization could be interpreted as capping, i.e. binding of gelsolin to the barbed ends of actin filaments and subsequent inhibition of polymerization, rather than severing. The main argument for this conclusion was that even gelsolin concentrations (100 nM) that exceed the concentration of filament ends ( approximately 2 nM), cause the filaments to depolymerize at a rate that is similar to the rate of depolymerization of the concentration of pointed ends existing before addition of gelsolin. The rate of capping is directly proportional to the free calcium concentration. These experiments demonstrate that at micromolar and submicromolar free calcium concentrations gelsolin acts as a calcium-regulated capping protein but not as an actin filament severing protein, and that the calcium binding sites of gelsolin which regulate the various functions of gelsolin (capping, severing and monomer binding), differ in their calcium affinity.  相似文献   

18.
BACKGROUND: The rapid dynamics of actin filaments is a fundamental process that powers a large number of cellular functions. However, the basic mechanisms that control and coordinate such dynamics remain a central question in cell biology. To reach beyond simply defining the inventory of molecules that control actin dynamics and to understand how these proteins act synergistically to modulate filament turnover, we combined evanescent-wave microscopy with a biomimetic system and followed the behavior of single actin filaments in the presence of a physiologically relevant mixture of accessory proteins. This approach allows for the real-time visualization of actin polymerization and age-dependent filament severing. RESULTS: In the presence of actin-depolymerizing factor (ADF)/cofilin and profilin, actin filaments with a processive formin attached at their barbed ends were observed to oscillate between stochastic growth and shrinkage phases. Fragmentation of continuously growing actin filaments by ADF/cofilin is the key mechanism modulating the prominent and frequent shortening events. The net effect of continuous actin polymerization, driven by a processive formin that uses profilin-actin, and of ADF/cofilin-mediating severing that trims the aged ends of the growing filaments is an up to 155-fold increase in the rate of actin-filament turnover in vitro in comparison to that of actin alone. Lateral contact between actin filaments dampens the dynamics and favors actin-cable formation. A kinetic simulation accurately validates these observations. CONCLUSIONS: Our proposed mechanism for the control of actin dynamics is dominated by ADF/cofilin-mediated filament severing that induces a stochastic behavior upon individual actin filaments. When combined with a selection process that stabilizes filaments in bundles, this mechanism could account for the emergence and extension of actin-based structures in cells.  相似文献   

19.
Exposure of cryptic actin filament fast growing ends (barbed ends) initiates actin polymerization in stimulated human and mouse platelets. Gelsolin amplifies platelet actin assembly by severing F-actin and increasing the number of barbed ends. Actin filaments in stimulated platelets from transgenic gelsolin-null mice elongate their actin without severing. F-actin barbed end capping activity persists in human platelet extracts, depleted of gelsolin, and the heterodimeric capping protein (CP) accounts for this residual activity. 35% of the approximately 5 microM CP is associated with the insoluble actin cytoskeleton of the resting platelet. Since resting platelets have an F- actin barbed end concentration of approximately 0.5 microM, sufficient CP is bound to cap these ends. CP is released from OG-permeabilized platelets by treatment with phosphatidylinositol 4,5-bisphosphate or through activation of the thrombin receptor. However, the fraction of CP bound to the actin cytoskeleton of thrombin-stimulated mouse and human platelets increases rapidly to approximately 60% within 30 s. In resting platelets from transgenic mice lacking gelsolin, which have 33% more F-actin than gelsolin-positive cells, there is a corresponding increase in the amount of CP associated with the resting cytoskeleton but no change with stimulation. These findings demonstrate an interaction between the two major F-actin barbed end capping proteins of the platelet: gelsolin-dependent severing produces barbed ends that are capped by CP. Phosphatidylinositol 4,5-bisphosphate release of gelsolin and CP from platelet cytoskeleton provides a mechanism for mediating barbed end exposure. After actin assembly, CP reassociates with the new actin cytoskeleton.  相似文献   

20.
Phosphoinositide (PI) 3-kinases are required for the acute regulation of the cytoskeleton by growth factors. We have shown previously that in the MTLn3 rat adenocarcinoma cells line, the p85/p110alpha PI 3-kinase is required for epidermal growth factor (EGF)-stimulated lamellipod extension and formation of new actin barbed ends at the leading edge of the cell. We have now examined the role of the p85alpha regulatory subunit in greater detail. Microinjection of recombinant p85alpha into MTLn3 cells blocked both EGF-stimulated mitogenic signaling and lamellipod extension. In contrast, a truncated p85(1-333), which lacks the SH2 and iSH2 domains and does not bind p110, had no effect on EGF-stimulated mitogenesis but still blocked EGF-stimulated lamellipod extension. Additional deletional analysis showed that the SH3 domain was not required for inhibition of lamellipod extension, as a construct containing only the proline-rich and breakpoint cluster region (BCR) homology domains was sufficient for inhibition. Although the BCR domain of p85 binds Rac, the effects of the p85 constructs were not because of a general inhibition of Rac signaling, because sorbitol-induced JNK activation in MTLn3 cells was not inhibited. These data show that the proline-rich and BCR homology domains of p85 are involved in the coupling of p85/p110 PI 3-kinases to regulation of the actin cytoskeleton. These data provide evidence of a distinct cellular function for the N-terminal domains of p85.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号