首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dnaB protein of Escherichia coli, a multifunctional DNA-dependent ribonucleotide triphosphatase and dATPase, cross-links to ATP on ultraviolet irradiation under conditions that support rNTPase and dATPase activities of dnaB protein. The covalent cross-linking to ATP is specifically inhibited by ribonucleotides and dATP. Tryptic peptide mapping demonstrates that ATP cross-links to only the 33-kDa tryptic fragment (Fragment II) of dnaB protein. The presence of single-stranded DNA alters the covalent labeling of dnaB protein by ATP, suggesting a possible role of DNA on the mode of nucleotide binding by dnaB protein. Present studies demonstrate that the dnaC gene product binds ribonucleotides independent of dnaB protein. On dnaB-dnaC protein complex formation, covalent incorporation of ATP to dnaB protein decreases approximately 70% with a concomitant increase of ATP incorporation to dnaC protein by approximately 3-fold. The mechanism of this phenomenon has been analyzed in detail by titrating dnaB protein with increasing amounts of dnaC protein. The binding of dnaC protein to dnaB protein appears to be a noncooperative process. The lambda P protein, which interacts with dnaB protein in the bacteriophage lambda DNA replication, does not bind ATP in the presence or absence of dnaB protein. However, lambda P protein enhances the covalent incorporation of ATP to dnaB protein approximately 4-fold, suggesting a direct physical interaction between lambda P and dnaB proteins with a probable change in the modes of nucleotide binding to dnaB protein. The lambda P protein likely forms a lambda P-dnaB-ATP dead-end ternary complex. The implications of these results in the E. coli and bacteriophage lambda chromosomal DNA replication are discussed.  相似文献   

2.
An Escherichia coli periplasmic protein (GlpT) related to sn-glycerol-3-phosphate transport was synthesized in a cell-free system directed by hybrid plasmic ColE1-glpT DNA. The in vitro product cross-reacted with antisera against the purified protein. The ColE1-glpT DNA-directed cell-free system was induced by sn-glycerol-3-phosphate and phosphonomycin and was dependent on cyclic AMP. The in vitro-synthesized protein showed the characteristics of a multimeric protein, as did the purified periplasmic protein. The main proportion of the newly synthesized product had a higher molecular weight than the mature protein found in the periplasm of cells and showed a more positive charge in two-dimensional gel electrophoresis. Thus, a proportion of this protein is presumed to be synthesized in vitro as a precursor. The cell-free system yielded a second protein that is likely to be also coded for by the glpT operon. This protein had a molecular weight of approximately 33,000 in sodium dodecyl sulfate-acrylamide gel electrophoresis and behaved like an intrinsic membrane protein.  相似文献   

3.
ABSTRACT. Protein phosphorylation events may play important roles in the replication and differentiation of the malarial parasite. Investigations into the lability of a Plasmodium protein kinase revealed that a 34 kDa parasite phosphoprotein is rapidly converted into a 19 kDa fragment. Coincident with this conversion is a nearly total loss of a protein kinase activity, as determined from the phosphorylation of endogenous protein substrates. Both the conversion of the 34 kDa protein to the 19 kDa protein and the loss of protein kinase activity are inhibited by thio-protease inhibitors. The presence of low levels of the intact 34 kDa protein restores the protein kinase activity to almost maximum levels. However, it was not possible to demonstrate protein kinase activity associated with the 34 kDa protein, thus suggesting that the 34 kDa protein is probably an activator or regulator of the protein kinase activity and not a protein kinase. The conversion to the 19 kDa fragment also occurs in vivo and only during the schizont stage prior to the appearance of ring forms. During this same period the protein kinase activity decreases suggesting that the proteolytic processing of the 34 kDa protein may be a physiological regulator of the protein kinase.  相似文献   

4.
Protein S is an anticoagulant vitamin-K-dependent plasma protein functioning as a cofactor to activated protein C in the degradation of factors Va and VIIIa. A murine monoclonal antibody, HPS 7, specific for a calcium-stabilized epitope in human protein S, is described. The epitope was available in intact protein S, both in its free form and when protein S was bound to C4b-binding protein. It disappeared upon reduction of disulfide bridges and also after thrombin of chymotrypsin cleavage of protein S. Thrombin cleaves protein S close to the calcium-binding region containing gamma-carboxyglutamic acid (Gla). The cleaved protein still contains the Gla region, linked by a disulfide bridge, but it has a lower affinity for calcium and no protein C cofactor activity. The thrombin-mediated cleavage of protein S could be inhibited by HPS 7. The Ka for the interaction between protein S and the monoclonal was estimated to be approximately 0.7 X 10(8) M-1. Half-maximal binding between HPS 7 and protein S was observed at a calcium concentration of 0.50 mM, indicating that saturation of the Gla region with calcium was required for the interaction. The recently reported Gla-independent high-affinity calcium binding did not induce the epitope. The calcium-dependent binding of protein S to phospholipid vesicles as well as the protein C cofactor activity was inhibited by HPS 7. The data suggests that the epitope for HPS 7 is located in the Gla region of protein S or in the closely positioned thrombin-sensitive region.  相似文献   

5.
The use of microporous membranes has been examined for the recovery of precipitated protein suspensions and related soluble protein. Membrane flux rates and soluble protein transmissions are reported for unstirred batch-cell studies and cross-flow experiments. The unstirred batch-cell gave soluble protein transmissions in the range 80-100% for feeds containing either soluble protein or a mix of soluble and isoelectrically precipitated protein. In all cases a sharp decline in flux was observed which was, for example, considerably greater for soluble protein at its isoelectric point, pH 4.6, than at pH 8.8. The presence of precipitated protein led to a further decrease in flux rate. In cross-flow studies, flux decline was eventually accompanied by a significant decline in soluble protein transmission. The flux protein-transmission characteristics of microporous membranes are discussed in terms of the interaction of the soluble and precipitated protein with the membrane.  相似文献   

6.
A major obstacle to investigating the structure of membrane proteins is the difficulty in obtaining sufficient amounts of functional protein. The oxoglutarate carrier, an intrinsic membrane-transport protein of the inner membranes of bovine-heart mitochondria, has been cloned as a fusion protein containing a C-terminal hexa-histidine tag. This fusion protein has been expressed at an abundant level in a mutant strain of Escherichia coli BL21 (DE3) called C41 (DE3). The protein accumulated as inclusion bodies and none was detected in the bacterial inner membrane. The denatured protein was refolded to reconstitute functional properties similar to the native protein. Solubilized inclusion body protein was immobilized using nickel-chelating affinity chromatography, and purified and refolded in a single step. The protein eluted as a monomer which was stable in mild detergent, at a yield equivalent to 15 mg active protein/liter bacterial culture. The reconstituted fusion protein displayed the same transport characteristics as the wild-type, demonstrating that the tag does not perturb the structure of the protein. The oxoglutarate carrier is one member of an extensive family of mitochondrial transport proteins. These proteins transport many different metabolites across the inner mitochondrial membrane and share a common mechanism of action. Therefore, it is likely that this folding protocol can be applied successfully to other mitochondrial transport proteins, thus providing sufficient protein for extensive crystallization trials with a wide range of family members.  相似文献   

7.
Vitamin K-dependent protein S exists in two forms in plasma, as free protein and in a bimolecular, noncovalent complex with the regulatory complement protein C4b-binding protein (C4BP). The effects of C4BP on the protein Ca cofactor activity of protein S were studied in a plasma system and in a system using purified components from both human and bovine origin. Bovine protein S was found to interact with human C4BP with a 5-fold higher affinity than that observed for the interaction between human protein S and human C4BP. The binding of protein S, from either species, to human C4BP results in the loss of the protein Ca cofactor function. In bovine plasma, protein S could be totally complexed by the addition of human C4BP, with a concomitant total loss of protein Ca cofactor activity. The addition of purified human C4BP to human plasma resulted in only partial loss of protein Ca cofactor activity and the plasma protein S was not completely complexed. Human protein S functioned as a cofactor to human protein Ca, but not to bovine protein Ca, whereas bovine protein S demonstrated very little species specificity and functioned as a cofactor both with human and bovine protein Ca. The species specificity of the protein Ca-protein S interaction was useful in elucidating the effect of C4BP in the plasma system. In the system with purified bovine components, protein S was required for the degradation of factor Va by low concentrations of protein Ca, whereas in the system with human components protein Ca alone, even when added at very low concentrations, exhibited potential to degrade factor Va, and the presence of protein S only enhanced the reaction rate approximately 5-fold. In both these systems, the stimulating effect of protein S on factor Va degradation by protein Ca was completely lost when protein S bound to C4BP.  相似文献   

8.
Oomens AG  Bevis KP  Wertz GW 《Journal of virology》2006,80(21):10465-10477
The importance of the F protein cytoplasmic tail (CT) for replication of human respiratory syncytial virus (HRSV) was examined by monitoring the behavior of viruses expressing F proteins with a modified COOH terminus. The F protein mutant viruses were recovered and amplified under conditions where F protein function was complemented by expression of a heterologous viral envelope protein. The effect of the F protein modifications was then examined in the context of a viral infection in standard cell types (Vero and HEp-2). The F protein modifications consisted of a deletion of the predicted CT or a replacement of the CT with the CT of the vesicular stomatitis virus (VSV) G protein. In addition, engineered HRSVs that lacked all homologous glycoprotein genes (SH, G, and F) and expressed instead either the authentic VSV G protein or a VSV G containing the HRSV F protein CT were examined. We found that deletion or replacement of the F protein CT seriously impaired the production of infectious progeny. Cells infected with viruses bearing CT modifications displayed increased F protein surface expression and increased syncytium formation. The distribution of F protein in the plasma membrane of infected cells was altered, resulting in an F protein that was evenly distributed rather than localized predominantly to virus-induced surface filaments. CT deletion or exchange also abrogated interaction of F protein with Triton-insoluble lipid rafts. Addition of the F protein CT to the VSV G protein, expressed as the only viral glycoprotein in an HRSV genome, had the opposite effects: the number of infectious progeny was higher, the surface distribution was changed from relatively even to localized, and the proportion of VSV G protein associated with lipid rafts was higher. Together, these results show that the HRSV F protein CT plays a critical role in F protein cellular localization and production of infectious virus and suggest that the function provided by the CT is independent of the F protein ectodomain and transmembrane domain and is mediated by F protein-lipid raft interaction.  相似文献   

9.
In a previous study, we purified three selenium-binding proteins (molecular masses 56, 14, and 12 kDa) from mouse liver using column chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The aim of the present study was to determine the amino acid sequence of the 14-kDa protein thereby establishing any relationship with known proteins. Although the amino terminus of the 14-kDa protein was blocked, separate in situ digestions of the protein with endoproteinases Glu-c and Lys-c gave overlapping peptides that provided a continuous sequence of 93 amino acids. This sequence exhibited a 92.5% sequence homology with rat liver fatty acid-binding protein. In situ enzymatic digestion and partial sequencing of a 12-kDa selenium-binding protein revealed identical homology to the 14-kDa protein. The 14-kDa protein bound specifically to an oleate-affinity column from which the protein and 75Se coeluted. Delipidation or sodium dodecyl sulfate treatment failed to remove 75Se from the protein, indicating that the selenium moiety was tightly bound to the protein. These observations confirm that the mouse liver selenium-binding 14-kDa protein is a fatty acid-binding protein. The nature of the selenium linkage to the protein still needs to be explored.  相似文献   

10.
A hear-stable protein, which is a specific inhibitor of protein phosphatase-III, was purified 700-fold from skeletal muscle by a procedure that involved heat-treatment at 95 degrees C, chromatography on DEAE-cellulose and gel filtration on Sephadex G-100. The final step completely resolved the protein phosphatase inhibitor from the protein inhibitor of cyclic AMP-dependent protein kinase. The phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities of protein phosphatase-III [Antoniw, J. F., Nimmo, H. G., Yeaman, S. J. & Cohen, P.(1977) Biochem.J. 162, 423-433] were inhibited in a very similar manner by the protein phosphatase inhibitor and at least 95% inhibition was observed at high concentrations of inhibitor. The two forms of protein phosphatase-III, termed IIIA and IIIB, were equally susceptible to the protein phosphatase inhibitor. The protein phosphatase inhibitor was at least 200 times less effective in inhibiting the activity of protein phosphatase-I and protein phosphatase-II. The high degree of specificity of the inhibitor for protein phosphatase-III was used to show that 90% of the phosphorylase phosphatase and glycogen synthase phosphatase activities measured in muscle extracts are catalysed by protein phosphatase-III. Protein phosphatase-III was tightly associated with the protein-glycogen complex that can be isolated from skeletal muscle, whereas the protein phosphatase inhibitor and protein phosphatase-II were not. The results provide further evidence that the enzyme that catalyses the dephosphorylation of the alpha-subunit of phosphorylase kinase (protein phosphatase-II) and the enzyme that catalyses the dephosphorylation of the beta-subunit of phosphorylase kinase (protein phosphatase-III) are distinct. The results suggest that the protein phosphatase inhibitor may be a useful probe for differentiating different classes of protein phosphatases in mammalian cells.  相似文献   

11.
A cDNA encoding a novel protein phosphatase catalytic subunit (protein phosphatase X) has been isolated from a rabbit liver library. It codes for a protein having 45% and 65% amino acid sequence identity, respectively, to the catalytic subunits of protein phosphatase 1 and protein phosphatase 2A from skeletal muscle. The enzyme is neither the hepatic form of protein phosphatase 1 or 2A, nor is it protein phosphatase 2B or 2C. The possible identity of protein phosphatase X is discussed.  相似文献   

12.
A tof-like protein that has 434-specific DNA binding activity has been copurified with the 434 tof protein from lambda imm434cI dv carrier cells. The apparent molecular weight of the new 434-specific DNA binding protein is 9,000 to 9,500, a little higher than that of the 434 tof protein, as estimated by SDS gel electrophoresis. Amino acid analysis revealed the protein to be an arginine-rich component whereas the 434 tof protein is a lysine-rich component. The specific binding reaction of the new protein to lambda imm434dv DNA is distinct from that of the 434 tof protein in respect to the sigmoid shape of the binding curve and to the temperature dependency. This suggests that the specific binding to lambda imm434dv DNA observed with the new protein is due not to a trace of the 434 tof protein contaminating the new protein preparation but rather to the new protein itself. The NH2-terminal 11 residues of the new 434-specific DNA binding protein were sequenced by manual Edman degradation. This technique revealed that the new protein is not a fragment of the 434 tof, cII, or O protein or an NH2-terminal fragment of the cI repressor. The origin and the physiological roles of the new 434-specific DNA binding protein remain unknown.  相似文献   

13.
The Escherichia coli single-stranded DNA binding (SSB) protein is a non-sequence-specific DNA binding protein that functions as an accessory factor for the RecA protein-promoted three-strand exchange reaction. An open reading frame encoding a protein similar in size and sequence to the E. coli SSB protein has been identified in the Streptococcus pneumoniae genome. The open reading frame has been cloned, an overexpression system has been developed, and the protein has been purified to greater than 99% homogeneity. The purified protein binds to ssDNA in a manner similar to that of the E. coli SSB protein. The protein also stimulates the S. pneumoniae RecA protein and E. coli RecA protein-promoted strand exchange reactions to an extent similar to that observed with the E. coli SSB protein. These results indicate that the protein is the S. pneumoniae analog of the E. coli SSB protein. The availability of highly-purified S. pneumoniae SSB protein will facilitate the study of the molecular mechanisms of RecA protein-mediated transformational recombination in S. pneumoniae.  相似文献   

14.
Iron-induced oxidative stress is thought to play a crucial role in the pathogenesis of Parkinson's disease. Our previous studies demonstrated that decreased expression of ferroportin 1 contributes to 6-hydroxydopamine induced intracellular iron accumulation and that decreased ferroportin 1 expression is caused by increased expression of iron regulatory protein 1. Iron regulatory protein 1 is a central regulator of iron homeostasis and is a likely target of extracellular agents to program changes in cellular iron metabolism. Therefore, the mechanism of iron regulatory protein 1 upregulation induced by 6-hydroxydopamine has become a significant focus of research. Iron regulatory protein 1 is regulated by protein kinase C, although this regulation is tissue specific. Therefore, in the present study, we aimed to determine whether alteration of protein kinase C activity modified iron regulatory protein 1 expression in the dopaminergic MES23.5 cell line, Furthermore, we investigated whether 6-hydroxydopamine induced iron regulatory protein 1 upregulation is mediated by protein kinase C, thus achieving regulation of cellular iron levels. The results showed that iron regulatory protein 1 was upregulated by phorbol 12-myristate-13-acetate, the PKC activator in dopaminergic MES23.5 cells, and ferroportin 1 expression and iron efflux were decreased as a result of iron regulatory protein 1 upregulation. The protein kinase C inhibitor bisindolylmaleimide I hydrochloride abolished the effect of phorbol 12-myristate-13-acetate. Protein kinase C-δ and protein kinase C-ζ, but not protein kinase C-? were activated by 6-hydroxydopamine. The protein kinase C-δ inhibitor rottlerin inhibited protein kinase C-δ phosphorylation and abolished iron regulatory protein 1 upregulation induced by 6-hydroxydopamine. The protein kinase C-ζ pseudo-substrate inhibitor inhibited protein kinase C-ζ phosphorylation and abolished iron regulatory protein 1 upregulation induced by 6-hydroxydopamine. These data indicate that iron regulatory protein 1 is regulated by protein kinase C in dopaminergic MES23.5 cells and that protein kinase C activated by 6-hydroxydopamine regulates iron regulatory protein 1 expression, thus achieving regulation of cellular iron levels.  相似文献   

15.
A novel calmodulin-dependent protein kinase has been isolated from bovine cardiac muscle by successive chromatography on DEAE-Sepharose 6B, Calmodulin-Sepharose 4B affinity and Sepharose 6B chromatography columns. The protein kinase was shown by gel filtration chromatography to have a molecular mass of 36,000 daltons. The highly purified protein kinase stoichiometrically phosphorylated the high molecular weight calmodulin-binding protein from cardiac muscle [Sharma RK (1990) J Biol Chem 265, 1152-1157] in a Ca2+/calmodulin-dependent manner. The phosphorylation resulted in the maximal incorporation of 1 mol of phosphate/mol of the high molecular weight calmodulin-binding protein. Other Ca2+/calmodulin-dependent protein kinases failed to phosphorylate the high molecular weight calmodulin-binding protein. The distinct substrate specificity of this protein kinase indicates that it is not related to the known calmodulin-dependent protein kinases and therefore constitutes a novel protein kinase.  相似文献   

16.
A protein microarray based on DNA microarray platform was developed to identify protein-protein interactions in vitro. The conventional DNA chip surface by 156-bp PCR product was prepared for a substrate of protein microarray. High-affinity sequence-specific DNA binding domain, GAL4 DNA binding domain, was introduced to the protein microarray as fusion partner of a target model protein, enhanced green fluorescent protein. The target protein was oriented immobilized directly on the DNA chip surface. Finally, monoclonal antibody of the target protein was used to identify the immobilized protein on the surface. This study shows that the conventional DNA chip can be used to make a protein microarray directly, and this novel protein microarray can be applicable as a tool for identifying protein-protein interactions.  相似文献   

17.
A novel protein which represents the most abundant calmodulin-binding protein in bovine heart cytosolic fraction was purified to apparent homogeneity. The purification procedure involved DEAE-Sepharose CL-6B (to remove calmodulin), calmodulin-Sepharose 4B affinity, and Sepharose 6B column chromatographies. This purified calmodulin-binding protein is a highly asymmetric protein with a sedimentation coefficient of approximately 5.0 S and a Stokes radius of about 83.0 A. The molecular weight of the calmodulin-binding protein was determined to be 175,000 from the sedimentation constant and Stokes radius of the protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the protein showed a single protein band with an apparent molecular weight of 140,000. The result suggests that the protein is monomeric. Although this molecular weight is similar to that of caldesmon, a known ubiquitous calmodulin-binding protein, the protein did not react with caldesmon-specific antibodies, nor did it display a proteolytic fragmentation pattern similar to that of the former. In addition, caldesmon was found almost exclusively in the particulate fraction in low ionic strength cardiac muscle extract, whereas this protein is purified the soluble fraction.  相似文献   

18.
Proteomics was used to identify a protein encoded by ORF 3a in a SARS-associated coronavirus (SARS-CoV). Immuno-blotting revealed that interchain disulfide bonds might be formed between this protein and the spike protein. ELISA indicated that sera from SARS patients have significant positive reactions with synthesized peptides derived from the 3a protein. These results are concordant with that of a spike protein-derived peptide. A tendency exists for co-mutation between the 3a protein and the spike protein of SARS-CoV isolates, suggesting that the function of the 3a protein correlates with the spike protein. Taken together, the 3a protein might be tightly correlated to the spike protein in the SARS-CoV functions. The 3a protein may serve as a new clinical marker or drug target for SARS treatment.  相似文献   

19.
The human ets-2 gene is a homolog of the v-ets oncogene of the E26 virus and codes for a 56-kilodalton nuclear protein. The ets-2 protein is phosphorylated and has a rapid turnover, with a half-life of 20 min. When human lymphocytic CEM cells were treated with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), the level of the ets-2 protein was quickly elevated 5- to 20-fold. This effect of TPA was mimicked by a synthetic diacylglycerol, 1-oleoyl-2-acetyl glycerol, and was blocked by the protein kinase C inhibitor H7, indicating that protein kinase C is involved in the induction. The increase in the ets-2 protein was due to stabilization of the protein, because the protein had a half-life of more than 2 h in the presence of TPA and the ets-2 mRNA level did not increase significantly upon TPA treatment. The protein synthesis inhibitor cycloheximide enhanced the effect of TPA on the ets-2 protein and could itself slow turnover of the protein. Properties of the ets-2 protein, such as nuclear localization, phosphorylation, rapid turnover, and response to protein kinase C, indicate that this protein belongs to a group of oncogene proteins which are generally thought to have regulatory functions in the nucleus (e.g., myc, fos, myb, and p53). Our results suggest that protein kinase C, either directly or indirectly, regulates the level of the ets-2 protein by posttranslational mechanisms.  相似文献   

20.
The apparent molecular weight of functional protein S in citrated plasma was observed to be between 115,000 and 130,000 as measured by sedimentation equilibrium in the air-driven ultracentrifuge. The molecular weight of the functional protein decreased to approximately 62,000 when copper ions were added to the plasma. This suggested the presence of a protein S-binding protein in plasma, which was confirmed by gel filtration experiments. Frontal analysis of plasma indicated that functional protein S could exist in as many as three forms. Addition of copper ions to plasma reduced the number of forms to one. In order to isolate the binding protein, plasma was fractionated first on a column of immobilized iminodiacetic acid that had been equilibrated with copper ions. The proteins that eluted in a 0.6 M NaCl wash were passed over a column of protein S immobilized on agarose beads. A protein, eluted in the 0.6 M NaCl wash, was observed to bind to protein S in gel filtration experiments. When added to plasma depleted of both protein S and the binding protein, the binding protein was observed to enhance the anticoagulant activity of activated protein C only in the presence of protein S. Protein S-binding protein was also observed to enhance the rate of factor Va inactivation by activated protein C and protein S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号