首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以凝胶层析纯化的植物乳杆菌素作用单核细胞增生李斯特氏菌,结果表明该细菌素可以导致能量化的敏感细胞胞内K 、无机磷离子、乳酸脱氢酶、紫外吸收物质和ATP发生不同程度的泄漏,相应地破坏了膜Δψ和部分ΔpH,引起PMF的耗散,结果导致细胞的死亡。综合所测指标,可以推测植物乳杆菌素L-1对单增李斯特氏菌的作用目标主要是细胞膜,通过形成非选择性孔洞使得选择性离子和小分子生命物质外泄,从而打破原有平衡,最终引起细胞的衰亡。  相似文献   

2.
Bactericidal Mode of Action of Plantaricin C   总被引:6,自引:4,他引:2       下载免费PDF全文
Plantaricin C is a bacteriocin produced by Lactobacillus plantarum LL441 that kills sensitive cells by acting on the cytoplasmic membrane. In contrast to its lack of impact on immune cells, plantaricin C dissipates the proton motive force and inhibits amino acid transport in sensitive cells. In proteoliposomes, plantaricin C dissipates the transmembrane electrical potential, and in liposomes, it elicits efflux of entrapped carboxy-fluorescein. It is concluded that plantaricin C is a pore-forming bacteriocin that functions in a voltage-independent manner and does not require a specific protein receptor in the target membrane.  相似文献   

3.
Fifty-two strains belonging to the Lactobacillus plantarum species group were identified and typed. They represented 32 clones of Lactobacillus plantarum and 7 clones of Lactobacillus pentosus. Sensitivity of all strains towards bacteriocins of four different producer strains was investigated using a deferred inhibition test (DIT). Substantial intra-specific variation in sensitivity of clones was observed towards bacteriocinogenic lactic acid bacteria producing nisin ( Lactococcus lactis ATCC 11454) or pediocin PA-1 ( Pediococcus acidilactici PAC-1.0), while none of the strains were sensitive towards the two remaining bacteriocin producers. The minimum inhibitory concentration (MIC) of nisin towards selected strains confirmed the DIT results. No correlation between the susceptibility of fourteen selected strains towards nisin and an array of antibiotics was found. The present study indicates that the variation in bacteriocin-sensitivity within target species might be a potential limitation for the application of bacteriocins as biopreservatives.  相似文献   

4.
N. REKHIF, A ATRIH AND G. LEFEBVRE. 1995. Plantaricin SA6, a bacteriocin produced by Lactobacillus plantarum SA6, exhibited an inhibitory action against several mesophilic lactobacilli. It was stable at 90–100°C at pH 2–4 and it remained stable in the presence of several organic solvents, urea or β-mercaptoethanol. Plantaricin SA6 bound specifically to the cell surface of only plantaricin SA6-sensitive bacteria. The putative receptors are not destroyed by different hydrolytic enzymes added to the phosphate buffer. Plantaricin SA6 acted as a bactericidal agent lysing sensitive strains, that became more permeable to ortho-nitro-phenol-β-galactoside and lost their intracellular K+ ions and u.v.-absorbing materials. Both the adsorption and lethal action of plantaricin SA6 were maximal between pH 4 and 7, but the range of temperature tested (5–37βC) had no effect. Ions (of several salts such as MgCl2) inhibited the binding of plantaricin SA6 and protected cells against bacteriocin action.  相似文献   

5.
In spite of differences in producing strains and their plasmid profiles, amino acid sequence analysis indicates that the bacteriocin produced by Pediococcus acidilactici SJ-1 is identical to that produced by PAC 1.0 and H. Protoplasts prepared from cells of pediocin-resistant strains of Lactobacillus plantarum and Lact. fermentum were lysed by exposure to the pediocin. The interaction of the pediocin with sensitive Lact. plantarum cells did not alter the fluidity of the cell membrane.  相似文献   

6.
Twenty-six strains of Lactobacillus plantarum isolated from green olive fermentations were tested for cross-antagonistic activities in an agar drop diffusion test. Cell-free supernatants from four of these strains were shown to inhibit the growth of at least one of the L. plantarum indicator strains. L. plantarum LPCO10 provided the broadest spectrum of activity and was selected for further studies. The inhibitory compound from this strain was active against some gram-positive bacteria, including clostridia and propionibacteria as well as natural competitors of L. plantarum in olive fermentation brines. In contrast, no activity against gram-negative bacteria was detected. Inhibition due to the effect of organic acids, hydrogen peroxide, or bacteriophages was excluded. Since the inhibitory activity of the active supernatant was lost after treatment with various proteolytic enzymes, this substance could be classified as a bacteriocin, designated plantaricin S. Plantaricin S was also sensitive to glycolytic and lipolytic enzymes, suggesting that it was a glycolipoprotein. It exhibited a bactericidal and nonbacteriolytic mode of action against indicator cells. This bacteriocin was heat stable (60 min at 100 degrees C), active in a pH range of 3.0 to 7.0, and also stable in crude culture supernatants during storage. Ultrafiltration studies indicated that plantaricin S occurred as multimolecular aggregates and that the size of the smallest active form is between 3 and 10 kDa. In sodium dodecyl sulfate-polyacrylamide gels, plantaricin S migrated as a peptide of ca. 2.5 kDa. Maximum production of plantaricin S was obtained in a fermentor system in unregulated pH and log-phase cultures of L. plantarum LPCO10 in MRS broth plus 4% NaCl. In these culture conditions, a second bacteriocin (designated plantaricin T) was produced in late-stationary-phase cultures of L. plantarum LPCO10. On the basis of its biological activity, its sensitivity to various enzymes, and its molecular weight (lower than that of plantaricin S) as assessed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, plantaricin T appeared different from plantaricin S. Curing experiments with L. plantarum LPCO10 resulted in the appearance of variants that no longer produced either of the two bacteriocins but that were still immune to both of them.  相似文献   

7.
8.
A Lactobacillus paraplantarum strain producing a bacteriocin was isolated from kimchi using the spot-on-the lawn method and named L. paraplantarum C7. The bacteriocin, paraplantaricin C7, was found to inhibit certain Lactobacillus strains, including L. plantarum, L. pentosus, and L. delbrueckii subsp. lactis. It also inhibited Enterococcus faecalis, yet did not inhibit most of the other LAB (lactic acid bacteria) tested. The maximum level of paraplantaricin C7 activity was observed under the culture conditions of 25 degrees C and a constant pH of 4.5. Paraplantaricin C7 retained 90% of its activity after 10 min of treatment at 100 degrees C and remained stable within a pH range of 2-8. Based on a culture supernatant, paraplantaricin C7 was purified by DEAE-Sephacel column chromatography and C18 reverse-phase HPLC. SDS-PAGE and activity staining were then conducted using the purified paraplantaricin C7, and its molecular mass determined to be about 3,800 Da. The 28 N-terminal amino acids from the purified paraplantaricin C7 were determined, and the structural gene encoding paraplantaricin C7, ppnC7, was cloned by PCR using degenerate primers based on the N-terminal amino acid sequence. The nucleotide sequences for ppnC7 and other neighboring orfs exhibited a limited homology to the previously reported plantaricin operon genes. Paraplantaricin C7 is a novel type II bacteriocin containing a double glycine leader sequence.  相似文献   

9.
A total of 241 lactic acid bacteria belonging to Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus fermentum/reuteri and Lactobacillus brevis from various processing stages of maize dough fermentation were investigated. Results indicated that each processing stage has its own microenvironment with strong antimicrobial activity. About half of the Lact. plantarum and practically all of the Lact. fermentum/reuteri investigated were shown to inhibit other Gram-positive and Gram-negative bacteria, explaining the elimination of these organisms during the initial processing stages. Further, widespread microbial interactions amounting to 85% to 18% of all combinations tested were demonstrated amongst lactic acid bacteria within the various processing stages, i.e. raw material, steeping, 0 h and 48 h of fermentation, explaining the microbial succession taking place amongst lactic acid bacteria during fermentation. The antimicrobial effect was explained by the combined effect of acids, compounds sensitive to proteolytic enzymes and other compounds with antimicrobial activity with the acid production being the most important factor.
The pattern of antimicrobial factors was not species-specific and the safety and storage stability of fermented maize seem to depend on a mixed population of lactic acid bacteria with different types of antimicrobial characteristics. This means that introduction of pure cultures as starters may impose a risk to the product.  相似文献   

10.
Lactobacillus plantarum 423, isolated from sorghum beer, produces a bacteriocin (plantaricin 423) which is inhibitory to several food spoilage bacteria and food-borne pathogens, including Bacillus cereus , Clostridium sporogenes , Enterococcus faecalis , Listeria spp. and Staphylococcus spp. Plantaricin 423 is resistant to treatment at 80 °C, but loses 50% of its activity after 60 min at 100 °C and 75% of its activity after autoclaving (121 °C, 15 min). Plantaricin 423 remains active after incubation at pH 1–10 and is inactivated when treated with pepsin, papain, α-chymotrypsin, trypsin and Proteinase K. Plantaricin 423 was partially purified and its size estimated at 3·5 kDa, as determined by tricine-SDS-PAGE. The mechanism of activity of plantaricin 423 is weakly bactericidal, as determined against Oenococcus oeni (previously Leuconostoc oenos ). High DNA homology was obtained between the plasmid DNA of strain 423 and the pediocin PA-1 operon of Pediococcus acidilactici PAC 1·0, suggesting that plantaricin 423 is plasmid-encoded and related to the pediocin gene cluster.  相似文献   

11.
Aims:  Characterization and purification of a new bacteriocin produced by Lactobacillus plantarum LP 31 strain, isolated from Argentinian dry-fermented sausage.
Methods and Results:  Lactobacillus plantarum LP 31 strain produces an antimicrobial compound that inhibits the growth of food-borne pathogenic bacteria. It was inactivated by proteolytic enzymes, was stable to heat and catalase and exhibited maximum activity in the pH range from 5·0 to 6·0. Consequently, it was characterized as a bacteriocin. It was purified by RP (reverse-phase) solid-phase extraction, gel filtration chromatography and RP-HPLC. Plantaricin produced by Lact. plantarum LP 31 is a peptide with a molecular weight of 1558·85 Da as determined by Maldi-Tof mass spectrometry and contains 14 amino acid residues. It was shown to have a bactericidal effect against Pseudomonas sp., Staphylococcus aureus , Bacillus cereus and Listeria monocytogenes.
Conclusions:  The bacteriocin produced by Lact. plantarum LP 31 may be considered as a new plantaricin according to its low molecular weight and particular amino acid composition.
Significance and Impact of the Study:  In view of the interesting inhibitory spectrum of this bacteriocin and because of its good technological properties (resistance to heat and activity at acidic pH), this bacteriocin has potential applications as a biopreservative to prevent the growth of food-borne pathogens and food spoilage bacteria in certain food products.  相似文献   

12.
芝麻香型白酒发酵过程中乳酸菌多样性及其演替规律   总被引:1,自引:0,他引:1  
【背景】乳酸菌是白酒发酵过程中一类非常重要的微生物,其种类及动态变化对于白酒品质具有重要影响。然而,目前对于芝麻香型白酒发酵过程中乳酸菌群落结构及其演替规律的认识并不全面。【目的】揭示芝麻香型白酒发酵过程中乳酸菌的多样性及菌群的演替规律,为更好地探索白酒酿造机理和控制白酒品质提供生物学依据。【方法】利用高通量测序技术对芝麻香型白酒发酵过程中乳酸菌菌群演替进行跟踪分析,同时采用实时荧光定量PCR对发酵过程中乳酸菌的生物量进行定量分析。【结果】高通量测序结果显示,芝麻香型白酒发酵过程涉及5个属的乳酸菌:魏斯氏菌属(Weissella)、片球菌属(Pediococcus)、乳杆菌属(Lactobacillus)、明串珠菌属(Leuconostoc)和乳球菌属(Lactococcus),共计43种乳酸菌。其中,在发酵过程中平均相对丰度大于0.5%的乳酸菌有10种,分别是类肠膜魏斯氏菌(Weissella paramesenteroides)、食窦魏斯氏菌(Weissella cibaria)、融合魏斯氏菌(Weissella confusa)、戊糖片球菌(Pediococcus pentosaceus)、假肠膜明串珠菌(Leuconostoc pseudomesenteroides)、发酵乳杆菌(Lactobacillus fermentum)、植物乳杆菌(Lactobacillus plantarum)、副干酪乳杆菌(Lactobacillus paracasei)、耐酸乳杆菌(Lactobacillus acetotolerans)和Lactobacillus sp.。在堆积发酵过程中,Weissella属占细菌总量的50%以上,其次是Pediococcus属和Lactobacillus属,而Leuconostoc属和Lactococcus属相对较少。在窖池发酵过程中Lactobacillus属的乳酸菌逐渐成为优势细菌,尤其是Lactobacillus sp.在窖池发酵中后期相对丰度达到80%以上。实时荧光定量PCR结果显示,在堆积发酵和窖池发酵前期乳酸菌总量变化不大;从窖池发酵5 d开始,乳酸菌总量迅速上升,30 d时达到最大值。【结论】对白酒发酵过程中乳酸菌种类及动态变化的研究有助于探究白酒酿造过程中乳酸菌功能,进而解析白酒酿造机理,最终达到控制白酒品质的目的。  相似文献   

13.
Plantacin B, a bacteriocin produced by Lactobacillus plantarum NCDO 1193   总被引:7,自引:0,他引:7  
Abstract Strains of Lactobacillus plantarum and Leuconostoc mesenteroides were tested for bacteriocin production against each other and a range of closely related bacteria. L. plantarum 1193 was found to produce an inhibitory substance active against L. plantarum 340 and 1752, L. mesenteroides 8015 and Pediococcus damnosus 1832. This substance is a potential bacteriocin and has been named plantacin B.  相似文献   

14.
Forty-two lactic acid bacteria (LAB) of the genera Lactobacillus (32), Leuconostoc (6), Pediococcus (3) and Lactococcus (1), isolated from Rioja red wines, were tested for antimicrobial activity. All these strains, as well as 18 Leuconostoc oenos and 19 yeast strains were used as indicators. Only nine strains showed antimicrobial activity, and all were of the species Lactobacillus plantarum, which constitutes the predominant microflora in Rioja red wines after alcoholic fermentation. Lact. plantarum strain J-51 showed the widest range of action, inhibiting the growth of 31 strains of the four studied LAB genera. Lact. plantarum J-51 antimicrobial activity was lost after treatment with proteases, suggesting a proteinaceous nature for this activity. It was found to be stable between pH 3 and 9 and under strong heating conditions (100 degrees C for 60 min). Polymerase chain reaction (PCR) analysis of Lact. plantarum J-51 genome revealed the presence of the plnA gene that encodes the plantaricin precursor PlnA. A 366-bp fragment was sequenced and showed 95% identity with pln locus of Lact. plantarum C-11. The deduced precursor peptide sequence showed one mutation (Gly7 to Ser7) at the double glycine leader peptide, and the three putative 26-, 23- and 22-residue active peptides remain identical to those of Lact. plantarum C-11. Therefore, antimicrobial peptides constitute a potent adaptation advantage for those strains that dominate in a medium such as wine, and can play an important role in the ecology of wine microflora.  相似文献   

15.
AIMS: To determine which intestinal section of pre and postweaned piglets are colonized by Lactobacillus plantarum 423 and Lactobacillus salivarius 241, and follow production of plantaricin 423 in a gastro-intestinal model. METHODS AND RESULTS: Lactobacillus plantarum 423 and Lact. salivarius 241, single or in combination, were administered to 1-, 14- and 28-day-old (postweaned) piglets. According to results obtained by fluorescent in situ hybridization (FISH), Lact. plantarum 423 adhered strongly to the ileum and posterior colon and Lact. salivarius 241 to the duodenum in preweaned piglets. High numbers of strain 241 were recorded in the duodenum and posterior colon of postweaned piglets, whereas strain 423 remained localized to the ileum. Lowering in Enterococcus faecalis cell numbers were recorded when preweaned piglets were challenged with strain 241. Plantaricin 423 was produced for 96 h in the ileum section of a gastro-intestinal model. CONCLUSIONS: Lactobacillus plantarum 423 and Lact. salivarius 241 adhere to different sections of the intestinal tract, depending on the piglet's age. Ent. faecalis were inhibited in vivo, probably by plantaricin 423. SIGNIFICANCE AND IMPACT OF THE STUDY: Fluorescent in situ hybridization proved valuable in the detection of probiotic bacteria adhered to the intestine. This is the first report of bacteriocin production in a model simulating the porcine gastro-intestinal tract.  相似文献   

16.
Plantaricin 423 is a class IIa bacteriocin produced by Lactobacillus plantarum isolated from sorghum beer. It has been previously determined that plantaricin 423 is encoded by a plasmid designated pPLA4, which is now completely sequenced. The plantaricin 423 operon shares high sequence similarity with the operons of coagulin, pediocin PA-1, and pediocin AcH, with small differences in the DNA sequence encoding the mature bacteriocin peptide and the immunity protein. Apart from the bacteriocin operon, no significant sequence similarity could be detected between the DNA or translated sequence of pPLA4 and the available DNA or translated sequences of the plasmids encoding pediocin AcH, pediocin PA-1, and coagulin, possibly indicating a different origin. In addition to the bacteriocin operon, sequence analysis of pPLA4 revealed the presence of two open reading frames (ORFs). ORF1 encodes a putative mobilization (Mob) protein that is homologous to the pMV158 superfamily of mobilization proteins. Highest sequence similarity occurred between this protein and the Mob protein of L. plantarum NCDO 1088. ORF2 encodes a putative replication protein that revealed low sequence similarity to replication proteins of plasmids pLME300 from Lactobacillus fermentum and pYIT356 from Lactobacillus casei. The immunity protein of plantaricin 423 contains 109 amino acids. Although plantaricin 423 shares high sequence similarity with the pediocin PA-1 operon, no cross-reactivity was recorded between the immunity proteins of plantaricin 423 and pediocin PA-1.  相似文献   

17.
18.
Five psychrotrophic strains of lactic acid bacteria (Lactobacillus casei, Lact. plantarum and Pediococcus spp.) were isolated from 22 samples of commercial salads. These strains were shown to inhibit Aeromonas hydrophila, Listeria monocytogenes, Salmonella typhimurium and Staphylococcus aureus on MRS agar, in salads and in juice prepared from vegetable salads. Lactobacillus casei IMPCLC34 was most effective in reducing total mesophilic bacteria and the coliform group; Aer. hydrophila, Salm. typhimurium and Staph. aureus disappeared after 6 d of storage, while the counts for L. monocytogenes remained constant. The potential application of antimicrobial-producing lactic acid bacteria as biopreservatives of ready-to-use vegetables is suggested.  相似文献   

19.
Lactobacillus plantarum BFE 905 isolated from 'Waldorf' salad produced a bacteriocin termed plantaricin D which was active against Lact. sake and Listeria monocytogenes strains. Plantaricin D was heat stable, retaining activity after heating at 121 °C. The bacteriocin was inactivated by α-chymotrypsin, trypsin, pepsin and proteinase K, but not by papain and other non-proteolytic enzymes tested. Plantaricin D was stable at pH values ranging from 2·0 to 10·0. The bacteriocin inhibited growth of L. monocytogenes in automated turbidity assays. Although Lact. plantarum BFE 905 harboured plasmids ranging in size from 3 to 55 kilobase pairs, loss of bacteriocin production could not be correlated with plasmid loss. A role for bacteriocin-producing Lact. plantarum of vegetable origin in assuring the safety of vegetable foods is suggested.  相似文献   

20.
The development of lactic fermentation processes for the storage of directly brined olives (Aloreña cultivar) was investigated by three procedures: (1) a modification of the traditional method with an initial brine containing 9% (w/v) NaCl and 0.2% (w/v) acetic acid; (2) induced lactic fermentation with 6% NaCl and 0.2% acetic acid; and (3) conservation in acidified brine containing 6% NaCl and 0.6% acetic acid. In all cases, strains of Lactobacillus plantarum and Pediococcus spp. were present in each, indicating the great tolerance of these micro-organisms to high levels of lactic and acetic acids. They also appeared in an altered sequence. Counts of Pediococcus remained moderate (higher than Lact. plantarum ) throughout the last part of the preservation period. A commercial starter improved colonization by Lact. plantarum. Yeasts coexisted with the lactic bacteria throughout the preservation period although their importance in the fermentation process was very limited. The brine characteristics obtained after fermentation were suitable for assured product preservation. There was no spoilage. These results encourage research on the mechanism of lactic acid bacteria inhibition in brines and the development of lactic fermentation processes for directly brined olives from other olive cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号