首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluated the antioxidant effect of (+)-catechin (CTCH), in the presence of physiological antioxidant levels of ascorbic acid (AA), alpha-tocopherol (AT) and beta-carotene (BC), in human plasma oxidised with AAPH. Following a five-hour incubation, the formation of lipid oxidation products (TBARS) was almost doubled, and the concentrations of lipid soluble antioxidants were 10 to 30% from the initial levels. In these conditions, AA was consumed within the first hour of incubation. The addition of CTCH prevented AT and BC depletion and TBARS formation, but had no effect on AA consumption. When the kinetics of oxidation were analysed CTCH oxidation preceded lipid soluble antioxidant depletion, but no consumption of CTCH was associated to AA oxidation. Considering that CTCH could contribute to the antioxidant activity of red wine, we first characterised both the antioxidant capacity and CTCH content of several wines. The wines with highest content of CTCH and antioxidant activity were also the most effective in preventing AAPH-mediated oxidation of plasma vitamin E. Results support the idea that CTCH could have a role as a physiological antioxidant in human plasma, and that CTCH of wine could contribute to the antioxidant status of human plasma.  相似文献   

2.
Blood plasma was incubated with 50 mM AAPH [2, 2'-azobis-(2-amidinopropane) hydrochloride] in the absence or presence of catechins (5-100 microM). Lipid oxidation was evaluated by measuring the formation of 2-thiobarbituric acid reactive substances (TBARS). The concentration of alpha-tocopherol (AT), beta-carotene (BC), ascorbic acid (AA), and catechins was determined by reverse phase high performance liquid chromatography (HPLC) with electrochemical detection. All the assayed catechins inhibited plasma TBARS formation. Based on the calculated IC50, the order of effectiveness was: epicatechin gallate (ECG) > epigallocatechin gallate (EGCG) > epigallocatechin (EGC) > epicatechin (EC) > catechin (C). Catechins protected plasma AT and BC from AAPH-mediated oxidation. The order of effectiveness for AT protection was ECG > EGCG > EC = C > EGC; and for BC protection, the order was EGCG > ECG > EGC > > EC > C. The addition of catechins modified the kinetics of TBARS formation and AT depletion, but the rate of AA depletion was not affected. Catechin oxidation did not start until the complete depletion of AA, and it preceded AT depletion. These results indicate that catechins are effective antioxidants in human blood plasma, delaying the lipid oxidation and depletion of endogenous lipid-soluble antioxidants (AT and BC).  相似文献   

3.
The lipophilic radical initiator (MeO-AMVN) and the fluorescent probe C11BODIPY581/591 (BODIPY) were used to measure the lipid compartment oxidizability of human plasma. Aqueous plasma oxidizability was initiated by the aqueous peroxyl radical generator, AAPH, and 2',7'-dichlorodihydrofluorescein (DCFH) was employed as the marker of the oxidative reaction. The distribution in aqueous and lipid compartments of the two radical initiators was determined by measuring the rate of consumption of the plasma hydrophilic and lipophilic endogenous antioxidants. In the presence of AAPH (20 mM), the order of consumption was: ascorbic acid > alpha-tocopherol > uric acid > beta-carotene, indicating a gradient of peroxyl radicals from the aqueous to the lipid phase. When MeO-AMVN was used (2mM), beta-carotene was consumed earlier than uric acid and almost at the same time as alpha-tocopherol, reflecting the diffusion and activation of MeO-AMVN in the lipophilic phase. The rate of BODIPY oxidation (increase in green fluorescence) significantly increased after the depletion of endogenous alpha-tocopherol and beta-carotene, whereas it was delayed for 180 min when AAPH was used instead of MeO-AMVN. The measurement of lipid oxidation in plasma was validated by adding to plasma the two lipophilic antioxidants, alpha-tocopherol and beta-carotene, whose inhibitory effects on BODIPY oxidation were dependent on the duration of the preincubation period and hence to their lipid diffusion. DCFH oxidation induced by AAPH only began after uric acid, the main hydrophilic plasma antioxidant, was consumed. In contrast, when MeO-AMVN was used, DCFH oxidation was delayed for 120 min, indicating its localization in the aqueous domain. In summary, the selective fluorescence method reported here is capable of distinguishing the lipophilic and hydrophilic components of the total antioxidant capacity of plasma.  相似文献   

4.
The combination of ascorbate, transition metal ions, and hydrogen peroxide (H(2)O(2)) is an efficient hydroxyl radical generating system called "the Udenfriend system." Although the pro-oxidant role of ascorbate in this system has been well characterized in vitro, it is uncertain whether ascorbate also acts as a pro-oxidant under physiological conditions. To address this question, human plasma, used as a representative biological fluid, was either depleted of endogenous ascorbate with ascorbate oxidase, left untreated, or supplemented with 25 microM-1 mM ascorbate. Subsequently, the plasma samples were incubated at 37 degrees C with 50 microM-1 mM iron (from ferrous ammonium sulfate), 60 or 100 microM copper (from cupric sulfate), and/or 200 microM or 1 mM H(2)O(2). Although endogenous and added ascorbate was depleted rapidly in the presence of transition metal ions and H(2)O(2), no cholesterol ester hydroperoxides or malondialdehyde were formed, i.e., ascorbate protected against, rather than promoted, lipid peroxidation. Conversely, depletion of endogenous ascorbate was sufficient to cause lipid peroxidation, the rate and extent of which were enhanced by the addition of metal ions but not H(2)O(2). Ascorbate also did not enhance protein oxidation in plasma exposed to metal ions and H(2)O(2), as assessed by protein carbonyl formation and depletion of reduced thiols. Interestingly, neither the rate nor the extent of endogenous alpha-tocopherol oxidation in plasma was affected by any of the treatments. Our data show that even in the presence of redox-active iron or copper and H(2)O(2), ascorbate acts as an antioxidant that prevents lipid peroxidation and does not promote protein oxidation in human plasma in vitro.  相似文献   

5.
When human plasma was exposed to the hydrophilic radical initiator, AAPH, (-)-epigallocatechin-(3)-gallate (EGCG) dose-dependently inhibited the aqueous compartment oxidation (IC(50)=0.72 microM) (monitored by DCFH oxidation) and spared the lipophilic antioxidants, alpha-tocopherol, and carotenoids, but not ascorbic acid. When radicals were selectively induced in the lipid compartment by the lipophilic radical initiator, MeO-AMVN, EGCG spared alpha-tocopherol, but not carotenoids and inhibited the lipid compartment oxidation (monitored by BODIPY 581/591) with a potency lower than that found in the aqueous compartment (IC(50)=4.37 microM). Our results indicate that EGCG, mainly localized in the aqueous compartment, effectively quenches aqueous radical species, thus limiting their diffusion into the lipid compartment and preventing lipid-soluble antioxidant depletion. Further, ESR experiments confirmed that EGCG recycled alpha-tocopherol through a H-transfer mechanism at the aqueous/lipid interface affording an additional protective mechanism to the lipid compartment of plasma.  相似文献   

6.
Melatonin is a well-known hydroxyl radical (*OH) scavenger that protects DNA and lipids from free radical attack. In this paper, we studied the ability of melatonin to prevent oxidative damage to bovine serum albumin (BSA) induced by two different paradigms: the metal-catalyzed oxidation (MCO) induced by Cu(2+)/H(2)O(2) and the alkoxyl and alkylperoxyl radicals formed by the azo initiator 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH, 40 mM). The protective effects of melatonin were compared with 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox), glutathione (GSH), ascorbate, 3,4',5-trihydroxy-trans-stilbene (resveratrol, 0.1 microM-4 mM) and mannitol (50 microM-100 mM). Melatonin efficiently prevented protein modification induced by both models, as assayed by polyacrylamide gel electrophoresis and carbonyl content. Both trolox and ascorbate had an obvious pro-oxidant effect in the Cu(2+)/H(2)O(2) model, whereas both prevented BSA damage induced by AAPH. In the MCO model, the efficacy of GSH in terms of protein protection was higher than melatonin at relatively high concentrations (250 microM-4 mM); however, at lower concentrations (50-250 microM), the efficacy of melatonin was superior to GSH. D-Mannitol (50 microM-100 mM) and resveratrol did not protect BSA from the site-specific damage induced by Cu(2+)/H(2)O(2). On the other hand, the relative protective efficiency in the AAPH model was melatonin approximately trolox>GSH>ascorbate.  相似文献   

7.
Conflicting results have been reported regarding the effect of thiopental on aggregation and cytosolic calcium levels in platelets. The present study attempted to clarify these phenomena. Using platelet-rich plasma or washed suspensions, platelet aggregation, thromboxane (TX) B2 formation, arachidonic acid (AA) release, and cytosolic free calcium concentrations ([Ca2+]i) were measured in the presence or absence of thiopental (30-300 microM). Platelet activation was induced by adenosine diphosphate (ADP, 0.5-15 microM), epinephrine (0.1-20 microM) arachidonic acid (0.5-1.5 mM), or (+)-9,11-epithia-11,12-methano-TXA2 (STA2, 30-500 nM). Measurements of primary aggregation were performed in the presence of indomethacin (10 microM). Low concentrations of ADP and epinephrine, which did not induce secondary aggregation in a control study, induced strong secondary aggregation in the presence of thiopental (> or = 100 microM). Thiopental (> or = 100 microM) also increased the TXB2 formation induced by ADP and epinephrine. Thiopental (300 microM) increased ADP- and epinephrine-induced 3H-AA release. Thiopental (300 microM) also augmented the ADP- and epinephrine-induced increases in [Ca2+]i in the presence of indomethacin. Thiopental appears to enhance ADP- and epinephrine-induced secondary platelet aggregation by increasing AA release during primary aggregation, possibly by the activation of phospholipase A2.  相似文献   

8.
The effect of iron on the activity of the plasma membrane H(+)-ATPase (PMA) from corn root microsomal fraction (CRMF) was investigated. In the presence of either Fe(2+) or Fe(3+) (100-200 microM of FeSO(4) or FeCl(3), respectively), 80-90% inhibition of ATP hydrolysis by PMA was observed. Half-maximal inhibition was attained at 25 microM and 50 microM for Fe(2+) and Fe(3+), respectively. Inhibition of the ATPase activity was prevented in the presence of metal ion chelators such as EDTA, deferoxamine or o-phenanthroline in the incubation medium. However, preincubation of CRMF in the presence of 100 microM Fe(2+), but not with 100 microM Fe(3+), rendered the ATPase activity (measured in the presence of excess EDTA) irreversibly inhibited. Inhibition was also observed using a preparation further enriched in plasma membranes by gradient centrifugation. Addition of 0.5 mM ATP to the preincubation medium, either in the presence or in the absence of 5 mM MgCl(2), reduced the extent of irreversible inhibition of the H(+)-ATPase. Addition of 40 microM butylated hydroxytoluene and/or 5 mM dithiothreitol, or deoxygenation of the incubation medium by bubbling a stream of argon in the solution, also caused significant protection of the ATPase activity against irreversible inhibition by iron. Western blots of CRMF probed with a polyclonal antiserum against the yeast plasma membrane H(+)-ATPase showed a 100 kDa cross-reactive band, which disappeared in samples previously exposed to 500 microM Fe(2+). Interestingly, preservation of the 100 kDa band was observed when CRMF were exposed to Fe(2+) in the presence of either 5 mM dithiothreitol or 40 microM butylated hydroxytoluene. These results indicate that iron causes irreversible inhibition of the corn root plasma membrane H(+)-ATPase by oxidation of sulfhydryl groups of the enzyme following lipid peroxidation.  相似文献   

9.
Low concentrations of free Ca2+ stimulated the hydrolysis of ATP by plasma membrane vesicles purified from guinea pig neutrophils and incubated in 100 mM HEPES/triethanolamine, pH 7.25. In the absence of exogenous magnesium, apparent values obtained were 320 nM (EC50 for free Ca2+), 17.7 nmol of Pi/mg X min (Vmax), and 26 microM (Km for total ATP). Studies using trans- 1,2-diaminocyclohexane- N,N,N',N',-tetraacetic acid as a chelator showed this activity was dependent on 13 microM magnesium, endogenous to the medium plus membranes. Without added Mg2+, Ca2+ stimulated the hydrolysis of several other nucleotides: ATP congruent to GTP congruent to CTP congruent to ITP greater than UTP, but Ca2+-stimulated ATPase was not coupled to uptake of Ca2+, even in the presence of 5 mM oxalate. When 1 mM MgCl2 was added, the vesicles demonstrated oxalate and ATP-dependent calcium uptake at approximately 8 nmol of Ca2+/mg X min (based on total membrane protein). Ca2+ uptake increased to a maximum of approximately 17-20 nmol of Ca2+/mg X min when KCl replaced HEPES/triethanolamine in the buffer. In the presence of both KCl and MgCl2, Ca2+ stimulated the hydrolysis of ATP selectively over other nucleotides. Apparent values obtained for the Ca2+-stimulated ATPase were 440 nM (EC50 for free Ca2+), 17.5 nmol Pi/mg X min (Vmax) and 100 microM (Km for total ATP). Similar values were found for Ca2+ uptake which was coupled efficiently to Ca2+-stimulated ATPase with a molar ratio of 2.1 +/- 0.1. Exogenous calmodulin had no effect on the Vmax or EC50 for free Ca2+ of the Ca2+-stimulated ATPase, either in the presence or absence of added Mg2+, with or without an ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid pretreatment of the vesicles. The data demonstrate that calcium stimulates ATP hydrolysis by neutrophil plasma membranes that is coupled optimally to transport of Ca2+ in the presence of concentrations of K+ and Mg2+ that appear to mimic intracellular levels.  相似文献   

10.
[14C]inosine in a range of concentrations of 20 microM to 1 mM was administered to the isolated perfused rat heart for 30 min. The incorporation of the nucleoside into myocardial adenine nucleotides increased for extracellular concentrations of the precursor up to 50 microM, reaching a plateau at 60 nmol . g-1 X 30 min-1 with concentrations ranging between 50 and 200 microM. The supply of 500 microM and 1 mM of inosine induced a further increase in cardiac adenine nucleotide synthesis to about 200 nmol . g-1 X 30 min-1. When supplied during low flow ischaemia (0.5 mL . min-1, 30 min.), 1 mM of inosine protected the heart against ATP degradation, while 100 microM of inosine was inefficacious. In the presence of 1 mM of inosine on reperfusion the adenine nucleotide content of the heart was similar to that observed in the absence of the nucleoside. The incorporation of [14C]inosine into adenine nucleotides was, in this last condition, below the value measured before ischaemia. Inosine administration was effective in protecting the heart against ischaemic breakdown of glycogen and favoured postischaemic restoration of glycogen stores.  相似文献   

11.
In the presence of 1 microM atrial natriuretic factor (ANF) and low (0.1 mM) Mg2+ concentrations, the initial rate of binding of [3H]guanosine 5'-[beta, gamma-imido)triphosphate [( 3H]p[NH]ppG) to rat lung plasma membranes was increased twofold to threefold. ANF-dependent stimulation of the initial rate of [3H]p[NH]ppG binding was reduced at high (5 mM) Mg2+ concentrations. Preincubation of membranes with p[NH]ppG (5 min at 37 degrees C) eliminated the ANF-dependent effect on [3H]p[NH]ppG binding whereas ANF-dependent [3H]p[NH]ppG binding was unaffected by similar pretreatment with guanosine 5'-[beta-thio]diphosphate (GDP[beta S]). An increase in ANF concentration from 10 pM to 1 microM caused a 40% decrease in forskolin-stimulated or isoproterenol-stimulated adenylate cyclase activities (IC50 5 nM) in rat lung plasma membranes. GTP (100 microM) was obligatory for the ANF-dependent inhibition of adenylate cyclase, which could be completely overcome by the presence of 100 microM GDP[beta S] or the addition of 10 mM Mn2+. Reduction of Na2+ concentration from 120 mM to 20 mM had the same effect. Pertussis toxin eliminated ANF-dependent inhibition of adenylate cyclase by catalyzing ADP-ribosylation of membrane-bound Ni protein (41-kDa alpha subunit of the inhibitory guanyl-nucleotide-binding protein of adenylate cyclase). The data support the notion that one of the ANF receptors in rat lung plasma membranes is negatively coupled to a hormone-sensitive adenylate cyclase complex via the GTP-binding Ni protein.  相似文献   

12.
The potent cytotoxic capacity of eosinophils for parasites and host tissue has in part been attributed to the catalytic action of eosinophil peroxidase (EPO), which preferentially oxidizes Br- to the powerful bleaching oxidant HOBr in buffers that mimic serum halide composition (100 mM Cl-, 20-100 microM Br-, less than 1 microM I-). However, serum also contains 20-120 microM SCN-, a pseudohalide whose peroxidative product, HOSCN, is a weak, primarily sulfhydryl-reactive oxidant. Because of its relative abundance and high oxidation potential, we hypothesized that SCN-, not Br- or I-, is the major substrate for EPO in physiologic fluids. We find that in Earle's buffer (100 mM Cl-) supplemented with 100 microM Br- and varying concentrations of SCN-, HOBr production by activated eosinophils and purified EPO, assayed by conversion of fluorescein to dibromofluorescein, was 50% inhibited (ID50) by only 1 microM SCN-. SCN- also blocked (ID50 10 microM) EPO oxidation of I- to HOI, assayed as iodofluorescein, despite the presence of 100 microM (i.e. grossly supraphysiologic) I-. Thionitrobenzoic acid oxidation kinetics indicate that SCN- is the initial species oxidized by EPO in equimolar mixtures of SCN- and Br- and in human serum. EPO also catalyzed the covalent incorporation of [14C]SCN- into proteins in buffers regardless of Br- concentration and in human serum. Comparing the cytotoxicity of HOSCN and HOBr for host cells, we find that even subphysiologic concentrations of SCN- (3.3-10 microM) nearly completely abrogate the potent Br(-)-dependent toxicity of EPO for 51Cr-labeled aortic endothelial cells and isolated working rat hearts, recently developed models of eosinophilic endocarditis. Thus, HOSCN, hitherto best known as a bacteriostatic agent in saliva and milk, is likely also the major oxidant produced by EPO in physiologic fluids, and the presence of SCN- averts damage to EPO-coated host tissues that might otherwise accrue as a result of HOBr generation. In view of these findings, the potential role of HOSCN in eosinophil killing of parasitic pathogens deserves close examination.  相似文献   

13.
The antioxidant properties of curcumin have been studied by evaluating its ability to protect RBCs from AAPH (2,2'-azobis (2-amidinopropane) hydrochloride) induced oxidative damage. RBCs are susceptible to oxidative damage, resulting in peroxidation of the membrane lipids, release of hemoglobin (hemolysis), release of intracellular K(+) ions and depletion of glutathione (GSH). In this paper, lipid peroxidation, hemolysis and K(+) ion loss in RBCs were assessed respectively by formation of thiobarbituric acid reactive substances (TBARS), absorbance of hemoglobin at 532nm and flame photometry. The treatment of RBCs with curcumin showed concentration dependant decrease in level of TBARS and hemolysis. The IC(50) values for inhibition of lipid peroxidation and hemolysis were estimated to be 23.2+/-2.5 and 43+/-5microM respectively. However in contrast to the above mentioned effects, curcumin in similar concentration range, did not prevent release of intracellular K(+) ions during the process of hemolysis, rather curcumin induced its release even in the absence of hemolysis. The ability of curcumin to prevent oxidation of intracellular GSH due to hemolysis showed mixed results. At low concentrations of curcumin (<10microM) it prevented GSH depletion and at higher concentrations, the GSH levels decreased gradually. Curcumin scavenges the peroxyl radical generated from AAPH. Based on these results, it is concluded that curcumin exhibits both antioxidant/pro-oxidant activity, in a concentration dependent manner.  相似文献   

14.
Lanthanides (La3+, Pr3+ and Tb3+) inhibit Na+-gradient-dependent Ca2+ influx into synaptic plasma membrane vesicles. 50% inhibition is obtained by 7 microM lanthanide concentration. The inhibition of the Na+-gradient-dependent Ca2+ uptake exhibits competitive kinetic behaviour. The apparent Km of the Ca2+ influx is increased from 50 microM in the absence of lanthanides to 118 microM in the presence of La3+, 170 microM in the presence of Pr3+ and 130 microM in the presence of Tb3+. The maximal reaction velocity is not altered (8.35 nmol Ca2+ transported per mg protein per min in the absence of lanthanides and 8.16 nmol/mg per min in the presence of lanthanides). Lanthanides also inhibited Na+-gradient-dependent Ca2+ efflux from synaptic plasma membrane vesicles that were preloaded with Ca2+ in a Na+-gradient-dependent manner. Introduction of La3+ into the interior of the synaptic plasma membrane vesicles by rapid freezing of the vesicles in liquid N2 and slow thawing had no effect on either Na+-gradient-dependent Ca2+ influx or efflux. Synaptic plasma membrane vesicles can be preloaded with Ca2+ also in an ATP-dependent manner. This form of Ca2+ uptake is also inhibited by La3+ though at higher concentrations than the Na+-gradient-dependent Ca2+ uptake. Na+-gradient-dependent efflux from synaptic plasma membrane vesicles preloaded in an ATP-dependent fashion ('inside-out' vesicles) unlike efflux from synaptic plasma membrane vesicles preloaded in a Na+-gradient-dependent manner was not inhibited by La3+. These findings suggest that the inhibition by La3+ is manifested asymmetrically on both sides of the synaptic plasma membrane. Lanthanides are probably not transported via the Na+-Ca2+ exchanger since Tb3+ entry measured by fluorescence of Tb3+-dipicolinic acid complex formation occurred at high Tb3+ concentrations only (1.5 mM or above) and was not Na+-gradient dependent.  相似文献   

15.
Cellular redox change regulates pulmonary vascular tone by affecting function of membrane and cytoplasmic proteins, enzymes, and second messengers. This study was designed to test the hypothesis that functional modulation of ion channels by thiol oxidation contributes to regulation of excitation-contraction coupling in isolated pulmonary artery (PA) rings. Acute treatment with the thiol oxidant diamide produced a dose-dependent relaxation in PA rings; the IC50 was 335 and 58 microM for 40 mM K+ - and 2 microM phenylephrine-induced PA contraction, respectively. The diamide-mediated pulmonary vasodilation was affected by neither functional removal of endothelium nor 8-bromoguanosine-3'-5'-cyclic monophosphate (50 microM) and HA-1004 (30 microM). A rise in extracellular K+ concentration (from 20 to 80 mM) attenuated the thiol oxidant-induced PA relaxation. Passive store depletion by cyclopiazonic acid (50 microM) and active store depletion by phenylephrine (in the absence of external Ca2+ both induced PA contraction due to capacitative Ca2+ entry. Thiol oxidation by diamide significantly attenuated capacitative Ca2+ entry-induced PA contraction due to active and passive store depletion. The PA rings isolated from left and right PA branches appeared to respond differently to store depletion. Although the active tension induced by passive store depletion was comparable, the active tension induced by active store depletion was 3.5-fold greater in right branches than in left branches. These data indicate that thiol oxidation causes pulmonary vasodilation by activating K+ channels and inhibiting store-operated Ca2+ channels, which subsequently attenuate Ca2+ influx and decrease cytosolic free Ca2+ concentration in pulmonary artery smooth muscle cells. The mechanisms involved in thiol oxidation-mediated pulmonary vasodilation or activation of K+ channels and inhibition of store-operated Ca2+ channels appear to be independent of functional endothelium and of the cGMP-dependent protein kinase pathway.  相似文献   

16.
Application of 100 microM aspterric acid (AA), a pollen growth inhibitor, with different concentrations of indole-3-acetic acid (IAA) results in the recovery of normal pollen development of Arabidopsis thaliana. Treatment with 100 microM AA plus 5 mM IAA significantly induced the normal seed production. Treatment with 100 microM N-1-naphthylphthalamic acid (NPA), a polar auxin transport inhibitor, did not reduce the pollen growth but inhibited seed production. 100 microM NPA plus 5 mM IAA did not induce any seed production. The endogenous level of IAA in stems and leaves of A. thaliana treated with 100 microM AA was similar to that of the untreated control. In contrast to AA treatment, the IAA level by the treatment with 100 microM NPA was about twice as much as that of the untreated control. These results suggest that AA affects the Arabidopsis reproductive growth without inhibiting IAA biosynthesis and transport.  相似文献   

17.
Dissociated brain cells were isolated from newborn rat pups and loaded with fura-2. These cells were sensitive to low N-methyl-D-aspartate (NMDA) concentrations with EC50 values for NMDA-induced intracellular Ca2+ concentration ([Ca2+]i) increases of approximately 7-16 microM measured in the absence of Mg2+. NMDA-stimulated [Ca2+]i increases could be observed in buffer with Mg2+ when the cells were predepolarized with 15 mM KCl prior to NMDA addition. Under these predepolarized conditions, 100 mM ethanol inhibited 25 microM NMDA responses by approximately 50%, which was similar to the ethanol inhibition observed in buffer without added Mg2+. Ethanol did not alter [Ca2+]i prior to NMDA addition. In the absence of Mg2+, 50 and 100 mM ethanol did not significantly alter the EC50 value for NMDA, but did inhibit NMDA-induced increases in [Ca2+]i in a concentration-dependent manner at 4, 16, 64, and 256 microM NMDA. Whereas NMDA-induced increases in [Ca2+]i were dependent on extracellular Ca2+ and were inhibited by Mg2+, the ability of 100 mM ethanol to inhibit 25 microM NMDA responses was independent of the external Ca2+ or Mg2+ concentrations. Glycine (1, 10, and 100 microM) enhanced 25 microM NMDA-induced increases in [Ca2+]i by approximately 50%. Glycine (1-100 microM) prevented the 100 mM ethanol inhibition of NMDA-stimulated [Ca2+]i observed in the absence of exogenous glycine. MK-801 (25-400 nM) inhibited 25 microM NMDA-stimulated rises in [Ca2+]i in a concentration-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Mechanisms of chromium toxicity in mitochondria   总被引:2,自引:0,他引:2  
The oxygen consumption of isolated rat heart mitochondria was potently depressed in presence of 10-50 microM Na2CrO4 when NAD-linked substrates were oxidized. The succinate stimulated respiration and the oxidation of exogeneous NADH in sonicated mitochondria were not affected by chromate at this concentration range. A rapid and persistent drop (40% in 2 min) in the mitochondrial NADH level was observed after chromate addition (30 microM) under conditions which generally should promote regeneration of NADH. Experiments with bis-(2-ethyl-2-hydroxybutyrato)oxochromate(V) and vanadyl induced reduction of Cr(VI) in presence of excess NADH were performed. These experiments indicated that NADH may be directly oxidized by Cr(V) at physiological pH. The activity of 10 different enzymes were measured after lysis of intact mitochondria pretreated with chromate (1-100 microM). Na2CrO4 at a very low level (3-5 microM) was sufficient for 50% inhibition of alpha-ketoglutarate dehydrogenase. Higher concentrations (20-70 microM) was necessary for similar effect on beta-hydroxybutyrate and pyruvate dehydrogenase. The other enzymes tested were unaffected. Thus, the chromate toxicity in mitochondria may be due to NADH depletion as a result of direct oxidation by Cr(V) as well as reduced formation of NADH due to specific enzyme inhibition.  相似文献   

19.
The present investigation evaluates the effect of AICA-Riboside on the synthesis of purine nucleotides and the growth of normal rat kidney cells in culture. Experiments in the presence and absence of various concentrations of AICA-Riboside were conducted with Dulbecco's Modified Eagle's Medium supplemented with either 1 mM [15N]aspartate or [14N]aspartate. Addition of 50 microM AICA-Riboside to the incubation medium significantly stimulated intracellular adenine nucleotide concentrations following incubation for 48 hours. This stimulation was associated with augmented cell growth and DNA concentration. In contrast, with concentrations above 100 microM of AICA-Riboside in the incubation medium, there was a remarkable inhibition of cell growth and a significant depletion of intracellular pools of adenine nucleotides and DNA. Experiments with [15N]aspartate showed that the initial rate (0-24 hours) of [6-15NH2]adenine nucleotide formation from 1 mM [15N]aspartate was 38.8 +/- 9.6, 67.9 +/- 12.5, and 20.1 +/- 3.8 pmol h-1/10(6) cells in the presence of 0 (control), 50 microM and 500 microM AICA-Riboside, respectively. These observations indicate that the main effect of AICA-Riboside is on the formation of AMP from aspartate and IMP via the sequential action of adenylosuccinate synthetase and adenylosuccinate lyase. The current studies suggest that AICA-Riboside could be used as a factor mediating renal cell mitosis in culture. AICA-Riboside has a biphasic effect on the growth of renal epithelial cells in culture and on their intracellular purine nucleotides and DNA concentration.  相似文献   

20.
The role of oxidation of SH groups in the activity of adenylate cyclase and in radiosensitivity of the enzyme was investigated. Adenylate cyclase activity was measured in purified membrane preparation of 19 day old chicken embryo brains. N-ethyl-maleimide (NEM) and lead-acetate were used as SH inhibitors. Gamma irradiation was carried out with 60-Co source. NEM inhibition of adenylate cyclase was dose dependent and 50 per cent inhibition was observed at 40-50 microM NEM. Activity of adenylate cyclase was elevated at lower concentrations of lead-acetate (10 nM-100 microM) and was inhibited at higher concentrations (above 100 microM). The presence of 40 microM NEM did not alter the shape of lead acetate saturation curve of adenylate cyclase. Gamma irradiation in the dose range of 100-800 Gy elevated the adenylate cyclase activity measured in the presence of 5 mM NaF but did not alter the basal activity. Gamma irradiation did not have significant effect on NEM saturation of adenylate cyclase, while it altered slightly the lead acetate saturation curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号