首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A tyrosine kinase purified from calf uterus activates the hormone binding of endogenous estradiol receptor (ER) predephosphorylated and preinactivated by a nuclear phosphotyrosine phosphatase. The kinase also activates and phosphorylates the human estradiol receptor HEO synthesized in vitro, which differs from the wild type receptor HEGO because a glycine is replaced by a valine at position 400. Moreover, the kinase activates and phosphorylates a deletion mutant of HEO which consists almost exclusively of the hormone binding domain. Using HEGO and HEO in parallel and measuring both binding activation and phosphorylation of ER we now observe that the wild type receptor is a good kinase substrate, slightly better than HEO. Furthermore, HEGO like the calf uterus receptor in the presence of estradiol, stimulates the kinase. From present findings it appears that ER and uterus tyrosine kinase are functionally associated and that this association is abolished by glycine to valine substitution at position 400 of ER.  相似文献   

2.
Cultured NIH-3T3 cells devoid of endogenous EGF-receptors were transfected with cDNA constructs encoding normal human EGF-receptor and with a construct encoding an insertional mutant of the EGF-receptor containing four additional amino acids in the kinase domain after residue 708. Unlike the wild-type receptor expressed in these cells which exhibits EGF-stimulatable protein tyrosine kinase activity, the mutant receptor lacks protein tyrosine kinase activity both in vitro and in vivo. Despite this deficiency the mutant receptor is properly processed, it binds EGF and it exhibits both high and low affinity binding sites. Moreover, it undergoes efficient EGF-mediated endocytosis. However, EGF fails to stimulate DNA synthesis and is unable to stimulate the phosphorylation of S6 ribosomal protein in cells expressing this receptor mutant. Hence, it is proposed that the protein tyrosine kinase activity of EGF-receptor is essential for the initiation of S6 phosphorylation and for DNA synthesis induced by EGF. However, EGF-receptor processing, the expression of high and low affinity surface receptors and receptor internalization, require neither kinase activity nor receptor autophosphorylation. Interestingly, phorbol ester (TPA) fails to abolish the high affinity state and is also unable to stimulate the phosphorylation of this receptor mutant. This result is consistent with the notion that kinase-C phosphorylation of EGF-receptor is essential for the loss of high affinity EGF-receptors caused by TPA.  相似文献   

3.
Estradiol receptor from rat uteri incubated with [32P] orthophosphate has been purified by diethylstilbestrol--Sepharose followed by heparin--Sepharose chromatography. The purified receptor, analyzed by centrifugation through sucrose gradients after incubation with monoclonal antibodies against purified estradiol receptor, appears to be labeled with 32P. The receptor preparation has been further purified by immunoaffinity chromatography and submitted to SDS--poly-acrylamide gel electrophoresis. A heavily 32P-labeled 68 kd protein and a very lightly 32P-labeled 48 kd protein, probably a proteolytic product of the 68 kd protein, were detected. Phosphoamino acid analysis of the receptor eluted from the immunoaffinity column shows that its 32P-labeling occurs exclusively on tyrosine. This is the first report on phosphorylation on tyrosine of a steroid receptor in tissue. It is consistent with our previous finding that a uterus estradiol receptor-kinase, which confers hormone binding ability to the estradiol receptor, in vitro phosphorylates this receptor exclusively on tyrosine. Calf uterus receptor binds with high specificity and affinity to monoclonal anti-phosphotyrosine antibodies covalently bound to Sepharose (Kd = 0.28 nM). Dephosphorylation of the receptor by nuclei containing the calf uterus nuclear phosphatase abolishes the interaction with antibodies. These results suggest that also in calf uterus, estradiol receptor is phosphorylated on tyrosine. Anti-phosphotyrosine antibodies bound to Sepharose have been used to partially purify the estradiol receptor from calf uterus.  相似文献   

4.
The 68 kDa Src substrate associated during mitosis is an RNA binding protein with Src homology 2 and 3 domain binding sites. A role for Src associated in mitosis 68 as an adaptor protein in signaling transduction has been proposed in different systems such as T-cell receptors. In the present work, we have sought to assess the possible role of Src associated in mitosis 68 in insulin receptor signaling. We performed in vivo studies in HTC-IR cells and in vitro studies using recombinant Src associated in mitosis 68, purified insulin receptor and fusion proteins containing either the N-terminal or the C-terminal Src homology 2 domain of p85 phosphatidylinositol-3-kinase. We have found that Src associated in mitosis 68 is a substrate of the insulin receptor both in vivo and in vitro. Moreover, tyrosine-phosphorylated Src associated in mitosis 68 was found to associate with p85 phosphatidylinositol-3-kinase in response to insulin, as assessed by co-immunoprecipitation studies. Therefore, Src associated in mitosis 68 may be part of the signaling complexes of insulin receptor along with p85. In vitro studies demonstrate that Src associated in mitosis 68 associates with the Src homology 2 domains of p85 after tyrosine phosphorylation by the activated insulin receptor. Moreover, tyr-phosphorylated Src associated in mitosis 68 binds with a higher affinity to the N-terminal Src homology 2 domain of p85 compared to the C-terminal Src homology 2 domain of p85, suggesting a preferential association of Src associated in mitosis 68 with the N-terminal Src homology 2 domain of p85. This association may be important for the link of the signaling with RNA metabolism.  相似文献   

5.
The activated platelet-derived growth factor (PDGF) receptor physically associates with p85, a subunit of phosphatidylinositol-3 kinase. Although this interaction may activate phosphatidylinositol-kinase and is crucial for PDGF-induced mitogenesis, it has not been shown whether p85 is modified in the process. p85 contains two SH2 (Src homology) domains, designated SH2-N and SH2-C. Recent experiments have shown that the SH2-C domain alone determines high-affinity binding of p85 to the PDGF receptor. The function of SH2-N, which binds receptors with lower affinity, is unknown. In this study, using a receptor-blotting technique, we find that p85 is modified by PDGF stimulation of intact cells. This modification involves inhibition of binding of the SH2-N region of p85 to the PDGF receptor. Studies with vanadate suggest that tyrosine phosphorylation of p85 is responsible for the modification of p85 detected by receptor blotting. Furthermore, recombinant p85 is modified in a similar manner when it is tyrosine phosphorylated in vitro by PDGF receptors. Tyrosine phosphorylation of p85 does not block binding of the SH2-C domain and therefore does not release p85 from high-affinity binding sites on the receptor in vitro. Instead, phosphorylation may regulate the ability of the SH2-N of p85 to bind to a different portion of the PDGF receptor or to another molecule in the signaling complex. This study provides the first evidence that p85 is tyrosine phosphorylated upon PDGF stimulation of cells and suggests that tyrosine phosphorylation of p85 regulates its activity or its interaction with other proteins.  相似文献   

6.
7.
Ras GTPase activating protein (GAP) possesses a C-terminal domain that interacts with GTP-bound Ras, and an N-terminal region containing two SH2 domains and an SH3 domain. In addition to its association with Ras, GAP binds stably to autophosphorylated beta PDGF receptors, and to two cytoplasmic phosphoproteins: p62, an RNA binding protein, and p190, which possesses GAP activity towards small guanine nucleotide binding proteins in the Rho/Rac family. To define the region of GAP that mediates these interactions with cellular phosphoproteins, and to investigate the biological significance of these complexes, a truncated GAP polypeptide (GAP-N) containing residues 1-445 was stably expressed in Rat-2 fibroblasts. GAP-N contains the SH2 and SH3 domains, but lacks the Ras GTPase activating domain. Stimulation of cells expressing GAP-N with PDGF induced association of GAP-N with the beta PDGF receptor, and phosphorylation of GAP-N on tyrosine, consistent with the notion that GAP SH2 domains direct binding to the autophosphorylated beta PDGF receptor in vivo. GAP-N bound constitutively to p190 in both serum-deprived and growth factor-stimulated cells. This GAP-N-p190 complex had Rho GAP activity in vitro. The expression of GAP-N in Rat-2 cells correlated with changes in the cytoskeleton and in cell adhesion, typified by the disruption of action stress fibres, a reduction in focal contacts, and an impaired ability to adhere to fibronectin. These results suggest that the N-terminal domain of GAP can direct interactions with cellular phosphoproteins in vivo, and thereby exert an effector function which modulates the cytoskeleton and cell adhesion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Recent experiments have shown that calf uterus oestrogen receptor exists in a tyrosine-phosphorylated hormone binding form and in non-phosphorylated, non-hormone binding form. We report here that physiological concentrations of oestradiol in complex with the receptor stimulate the calf uterus receptor kinase that converts the non-hormone binding receptor into hormone binding receptor through phosphorylation of the receptor on tyrosine. The activity of this enzyme has been followed by reactivation of hormone binding sites and phosphorylation on tyrosine of calf uterus phosphatase-inactivated receptor. Phosphorylation of the receptor has been demonstrated by interaction of kinase 32P-phosphorylated proteins with anti-receptor antibody followed either by sucrose gradient centrifugation or SDS-PAGE of the immunoprecipitated proteins. Hormone stimulation of the kinase is inhibited by receptor occupancy of the anti-oestrogen tamoxifen. Oestradiol-receptor complex increases the affinity of the kinase for the dephosphorylated receptor. Findings of this report are consistent with the observation that several protein tyrosine kinases that are associated with peptide hormone receptors are stimulated by the binding of the hormone to the receptor. This is the first report on the activation of a tyrosine kinase by a steroid hormone. The finding that hormones can regulate their own receptor binding activity through a tyrosine kinase is also new.  相似文献   

9.
Agrin induces both phosphorylation and aggregation of nicotinic acetylcholine receptors (AChRs) when added to myotubes in culture, apparently by binding to a specific receptor on the myotube surface. One such agrin receptor is alpha-dystroglycan, although binding to alpha-dystroglycan appears not to mediate AChR aggregation. To determine whether agrin-induced AChR phosphorylation is mediated by alpha-dystroglycan or by a different agrin receptor, fragments of recombinant agrin that differ in affinity for alpha-dystroglycan were examined for their ability to induce AChR phosphorylation and aggregation in mouse C2 myotubes. The carboxy-terminal 95 kDa agrin fragment agrin-c95(A0B0), which binds to alpha-dystroglycan with high affinity, failed to induce AChR phosphorylation and aggregation. In contrast, agrin-c95(A4B8) which binds less strongly to alpha-dystroglycan, induced both phosphorylation and aggregation, as did a small 21 kDa fragment of agrin, agrin-c21(B8), that completely lacks the binding domain for alpha-dystroglycan. We conclude that agrin-induced AChR phosphorylation and aggregation are triggered by an agrin receptor that is distinct from alpha-dystroglycan.  相似文献   

10.
We have used a transient expression system and mutant platelet-derived growth factor (PDGF) receptors to study the binding specificities of the Src homology 2 (SH2) regions of the Ras GTPase-activator protein (GAP) and the p85 alpha subunit of phosphatidylinositol 3-kinase (PI3 kinase). A number of fusion proteins, each tagged with an epitope allowing recognition by a monoclonal antibody, were expressed at levels comparable to those of endogenous GAP. Fusion proteins containing the central SH2-SH3-SH2 region of GAP or the C-terminal region of p85 alpha, which includes two SH2 domains, bound to PDGF receptors in response to PDGF stimulation. Both fusion proteins showed the same requirements for tyrosine phosphorylation sites in the PDGF receptor as the full-length proteins from which they were derived, i.e., binding of the GAP fusion protein was reduced by mutation of Tyr-771, and binding of the p85 fusion protein was reduced by mutation of Tyr-740, Tyr-751, or both residues. Fusion proteins containing single SH2 domains from either GAP or p85 alpha did not bind detectably to PDGF receptors in this system, suggesting that two SH2 domains in a single polypeptide cooperate to raise the affinity of binding. The sequence specificities of individual SH2 domains were deduced from the binding properties of fusion proteins containing one SH2 domain from GAP and another from p85. The results suggest that the C-terminal GAP SH2 domain specifies binding to Tyr-771, the C-terminal p85 alpha SH2 domain binds to either Tyr-740 or Tyr-751, and each protein's N-terminal SH2 domain binds to unidentified phosphorylation sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The B cell antigen receptor complex (BCR) is composed of membrane Ig and heterodimers of Ig-alpha and Ig-beta/gamma. Recent findings indicate that Ig-alpha associates with Src-family kinases, including Fyn and Lyn, via an approximately 26 amino acid motif termed ARH1. Studies reported here (i) define two mechanisms whereby this motif binds Fyn and (ii) reveal an important functional consequence of binding, i.e. kinase activation. Mutational analysis indicates that specific low-affinity binding is determined by a short sequence, -DCSM-, in the motif and is not dependent on motif tyrosine residues. In contrast, the doubly tyrosine phosphorylated motif binds independently of DCSM and with high affinity. Importantly, this binding leads to Fyn activation. Taken together with studies which map low-affinity binding of Fyn or Lyn to the kinase's N-terminal unique region and high-affinity binding to the kinase's SH2 domain, these results suggest a mechanism of BCR activation in which the non-phosphorylated resting receptor is associated with Src-family kinases and, upon stimulation, tyrosine phosphorylation of Ig-alpha leads to reorientation and activation of receptor-associated kinases.  相似文献   

12.
The effect of phosphorylation of insulin receptor with adenosine 3',5'-cyclic monophosphate-dependent protein kinase (A kinase) on its insulin binding activity was investigated by using insulin receptors prepared from rat liver in vitro. A 95 KDa protein was phosphorylated by stimulation of insulin receptor kinase. This protein was also phosphorylated by A kinase. Analysis of phosphoamino acid showed that tyrosine residue(s) was phosphorylated by activation of insulin receptor kinase, whereas phosphoserine and phosphothreonine were dominantly generated by activation of A kinase. [125I] Iodoinsulin binding activity was decreased by prior phosphorylation of the receptor with A kinase. Scatchard analysis showed that the affinity for insulin was decreased by the phosphorylation with A kinase. Although the maximal activity of insulin receptor kinase was not affected by phosphorylation with A kinase, the insulin concentration which induced half maximal activity (ED50) of the receptor kinase was increased by the phosphorylation with A kinase. These results suggested that counter regulatory hormones whose actions are mediated by the generation of adenosine 3',5'-cyclic monophosphate regulate the insulin binding to the alpha subunit through phosphorylation of the beta subunit of insulin receptor.  相似文献   

13.
p120-catenin is an adherens junction-associated protein that controls E-cadherin function and stability. p120-catenin also binds intracellular proteins, such as the small GTPase RhoA. In this paper, we identify the p120-catenin N-terminal regulatory domain as the docking site for RhoA. Moreover, we demonstrate that the binding of RhoA to p120-catenin is tightly controlled by the Src family-dependent phosphorylation of p120-catenin on tyrosine residues. The phosphorylation induced by Src and Fyn tyrosine kinases on p120-catenin induces opposite effects on RhoA binding. Fyn, by phosphorylating a residue located in the regulatory domain of p120-catenin (Tyr112), inhibits the interaction of this protein with RhoA. By contrast, the phosphorylation of Tyr217 and Tyr228 by Src promotes a better affinity of p120-catenin towards RhoA. In agreement with these biochemical data, results obtained in cell lines support the important role of these phosphorylation sites in the regulation of RhoA activity by p120-catenin. Taken together, these observations uncover a new regulatory mechanism acting on p120-catenin that contributes to the fine-tuned regulation of the RhoA pathways during specific signaling events.  相似文献   

14.
The PWWP domain is a weakly conserved sequence motif found in > 60 eukaryotic proteins, including the mammalian DNA methyltransferases Dnmt3a and Dnmt3b. These proteins often contain other chromatin-association domains. A 135-residue PWWP domain from mouse Dnmt3b (amino acids 223--357) has been structurally characterized at 1.8 A resolution. The N-terminal half of this domain resembles a barrel-like five-stranded structure, whereas the C-terminal half contains a five-helix bundle. The two halves are packed against each other to form a single structural module that exhibits a prominent positive electrostatic potential. The PWWP domain alone binds DNA in vitro, probably through its basic surface. We also show that recombinant Dnmt3b2 protein (a splice variant of Dnmt3b) and two N-terminal deletion mutants (Delta218 and Delta369) have approximately equal methyl transfer activity on unmethylated and hemimethylated CpG-containing oligonucleotides. The Delta218 protein, which includes the PWWP domain, binds DNA more strongly than Delta369, which lacks the PWWP domain.  相似文献   

15.
The human proto-oncogene product c-Cbl and a similar protein in Caenorhabditis elegans (Sli-1) contain a proline-rich COOH-terminal region that binds Src homology 3 (SH3) domains of proteins such as the adapter Grb2. Cb1-Grb2 complexes can be recruited to tyrosine-phosphorylated epidermal growth factor (EGF) receptors through the SH2 domain of Grb2. Here we identify by molecular cloning a Drosophila cDNA encoding a protein (Drosophila Cbl [D-Cbl]) that shows high sequence similarity to the N-terminal region of human c-Cbl but lacks proline-rich sequences and fails to bind Grb2. Nonetheless, in COS-1 cells, expression of hemagglutinin epitope-tagged D-Cbl results in its coimmunoprecipitation with EGF receptors in response to EGF. EGF also caused tyrosine phosphorylation of D-Cbl in such cells, but no association of phosphatidylinositol 3-kinase was detected in assays using anti-p85 antibody. A point mutation in D-Cbl (G305E) that suppresses the negative regulation of LET-23 by the Cbl homolog Sli-1 in C. elegans prevented tyrosine phosphorylation of D-Cbl as well as binding to the liganded EGF receptor in COS-1 cells. Colocalization of EGF receptors with both endogenous c-Cbl or expressed D-Cbl in endosomes of EGF-treated COS-1 cells is also demonstrated by immunofluorescence microscopy. In lysates of adult transgenic Drosophila melanogaster, GST-DCbl binds to the tyrosine-phosphorylated 150-kDa torso-DER chimeric receptor. Expression of D-Cbl directed by the sevenless enhancer in intact Drosophila compromises severely the development of the R7 photoreceptor neuron. These data suggest that despite the lack of Grb2 binding sites, D-Cbl functions as a negative regulator of receptor tyrosine kinase signaling in the Drosophila eye by a mechanism that involves its association with EGF receptors or other tyrosine kinases.  相似文献   

16.
17.
The peptide hormone insulin binds its cognate cell-surface receptors to activate a coordinated biochemical-signaling network and to induce intracellular events. The retina is an integral part of the central nervous system and is known to contain insulin receptors, although their function is unknown. This article, describes recent studies that link the photobleaching of rhodopsin to tyrosine phosphorylation of the insulin receptor and subsequent activation of phosphoinositide 3-kinase (PI3K). We recently found a light-dependent increase in tyrosine phosphorylation of the insulin receptor-β-subunit (IRβ) and an increase in PI3K enzyme activity in isolated rod outer segments (ROS) and in anti-phosphotyrosine (PY) and anti-IRβ immunoprecipitates of retinal homogenates. The light effect, which was localized to photoreceptor neurons, is independent of insulin secretion. Our results suggest that light induces tyrosine phosphorylation of IRβ in outersegment membranes, which leads to the binding of p85 through its N-terminal SH2 domain and the generation of PI-3,4,5-P3. We suggest that the physiological role of this process may be to provide neuroprotection of the retina against light damage by activating proteins that protect against stress-induced apoptosis. The studies linking PI3K activation through tyrosine phosphorylation of IRβ now provide physiological relevance for the presence of these receptors in the retina.  相似文献   

18.
Cortactin is a filamentous actin (F-actin)-binding protein that regulates cytoskeletal dynamics by activating the Arp2/3 complex; it binds to F-actin by means of six N-terminal "cortactin repeats". Gene amplification of 11q13 and consequent overexpression of cortactin in several human cancers is associated with lymph node metastasis. Overexpression as well as tyrosine phosphorylation of cortactin has been reported to enhance cell migration, invasion, and metastasis. Here we report the identification of two alternative splice variants (SV1 and SV2) that affect the cortactin repeats: SV1-cortactin lacks the 6th repeat (exon 11), whereas SV2-cortactin lacks the 5th and 6th repeats (exons 10 and 11). SV-1 cortactin is found co-expressed with wild type (wt)-cortactin in all tissues and cell lines examined, whereas the SV2 isoform is much less abundant. SV1-cortactin binds F-actin and promotes Arp2/3-mediated actin polymerization equally well as wt-cortactin, whereas SV2-cortactin shows reduced F-actin binding and polymerization. Alternative splicing of cortactin does not affect its subcellular localization or growth factor-induced tyrosine phosphorylation. However, cells that overexpress SV1- or SV2-cortactin show significantly reduced cell migration when compared with wt-cortactin-overexpressing cells. Thus, in addition to overexpression and tyrosine phosphorylation, alternative splicing of the F-actin binding domain of cortactin is a new mechanism by which cortactin influences cell migration.  相似文献   

19.
c-Abl kinase regulates the protein binding activity of c-Crk.   总被引:26,自引:1,他引:25       下载免费PDF全文
S M Feller  B Knudsen    H Hanafusa 《The EMBO journal》1994,13(10):2341-2351
c-Crk is a proto-oncogene product composed largely of Src homology (SH) 2 and 3 domains. We have identified a kinase activity, which binds to the first Crk SH3 domain and phosphorylates c-Crk on tyrosine 221 (Y221), as c-Abl. c-Abl has a strong preference for c-Crk, when compared with common tyrosine kinase substrates. The phosphorylation of c-Crk Y221 creates a binding site for the Crk SH2 domain. Bacterially expressed c-Crk protein lacks phosphorylation on Y221 and can bind specifically to several proteins, while mammalian c-Crk, which is phosphorylated on tyrosine, remains uncomplexed. The protein binding activity of c-Crk is therefore likely regulated by a mechanism similar to that of the Src family kinases. v-Crk is truncated before c-Crk Y221 and forms constitutive complexes with c-Abl and other proteins. Our results suggest that c-Abl regulates c-Crk function and that it could be involved in v-Crk transformation.  相似文献   

20.
Insulin receptor substrate (IRS) proteins are phosphorylated by multiple tyrosine kinases, including the insulin receptor. Phosphorylated IRS proteins bind to SH2 domain-containing proteins, thereby triggering downstream signaling pathways. The Drosophila insulin receptor (dIR) C-terminal extension contains potential binding sites for signaling molecules, suggesting that dIR might not require an IRS protein to accomplish its signaling functions. However, we obtained a cDNA encoding Drosophila IRS (dIRS), and we demonstrated expression of dIRS in a Drosophila cell line. Like mammalian IRS proteins, the N-terminal portion of dIRS contains a pleckstrin homology domain and a phosphotyrosine binding domain that binds to phosphotyrosine residues in both human and Drosophila insulin receptors. When coexpressed with dIRS in COS-7 cells, a chimeric receptor (the extracellular domain of human IR fused to the cytoplasmic domain of dIR) mediated insulin-stimulated tyrosine phosphorylation of dIRS. Mutating the juxtamembrane NPXY motif markedly reduced the ability of the receptor to phosphorylate dIRS. In contrast, the NPXY motifs in the C-terminal extension of dIR were required for stable association with dIRS. Coimmunoprecipitation experiments demonstrated insulin-dependent binding of dIRS to phosphatidylinositol 3-kinase and SHP2. However, we did not detect interactions with Grb2, SHC, or phospholipase C-gamma. Taken together with published genetic studies, these biochemical data support the hypothesis that dIRS functions directly downstream from the insulin receptor in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号